Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,567)

Search Parameters:
Keywords = integrated circuits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 905 KB  
Article
Inverse Design of Multi-Wavelength Achromatic Metalens Integrated On-Chip with Planar Waveguide
by Mikhail Podobrii, Elena Barulina and Aleksandr Barulin
Nanomaterials 2025, 15(17), 1337; https://doi.org/10.3390/nano15171337 (registering DOI) - 31 Aug 2025
Abstract
Waveguide-integrated metasurfaces offer a promising platform for ultracompact on-chip optical systems, enabling applications such as fluorescence sensing, holography, and near-eye displays. In particular, integrated achromatic metalenses that couple guided modes to free-space radiation are highly desirable for single-molecule fluorescence sensing, where high numerical [...] Read more.
Waveguide-integrated metasurfaces offer a promising platform for ultracompact on-chip optical systems, enabling applications such as fluorescence sensing, holography, and near-eye displays. In particular, integrated achromatic metalenses that couple guided modes to free-space radiation are highly desirable for single-molecule fluorescence sensing, where high numerical aperture (NA), efficient light focusing, and consistent focal volume overlap across excitation and emission wavelengths are critical. However, designing integrated high-NA metalenses with multi-wavelength operation remains fundamentally challenging due to the wavelength-dependent propagation of guided modes. Here, we present an inverse design framework that simultaneously optimizes the geometries and positions of silicon nitride nanofins atop a slab waveguide to achieve diffraction-limited focusing at three wavelengths with unity NA. The resulting metalens outperforms conventional segmented designs in focusing efficiency and sidelobe suppression, particularly at wavelengths corresponding to the excitation and emission bands of the model fluorophore Alexa Fluor 647. Numerical analysis shows that the design yields a high molecule detection efficiency suitable for epi-fluorescence single-molecule sensing. This work highlights the potential of inverse-designed metalenses as a versatile on-chip platform for advanced applications in fluorescence spectroscopy, augmented reality, or optical trapping. Full article
10 pages, 653 KB  
Article
A Novel QCA Design of Energy-Efficient Three-Input AND/OR Circuit
by Amjad Almatrood
Quantum Rep. 2025, 7(3), 38; https://doi.org/10.3390/quantum7030038 (registering DOI) - 31 Aug 2025
Abstract
One of the nanoscale technologies that shows its capability of implementing integrated digital circuits with low power, high speed, and high density is quantum-dot cellular automata (QCA). The fundamental device for designing and implementing circuits in QCA is majority logic. In this paper, [...] Read more.
One of the nanoscale technologies that shows its capability of implementing integrated digital circuits with low power, high speed, and high density is quantum-dot cellular automata (QCA). The fundamental device for designing and implementing circuits in QCA is majority logic. In this paper, a novel energy-efficient QCA design of three-input AND/OR logic functions is proposed. This design can perform both AND and OR logic operations using the same structure with an achievement of 58% and 64% approximate reductions in power consumption compared to majority-based structures, and 31% and 32% approximate reductions in power consumption compared to the best available circuits, respectively. In addition, other physical constraints such as area and latency are improved and have better or similar results compared to the best existing circuits. The proposed circuit can be considered as a fundamental and better alternative to the majority gate for energy-efficient circuit design in QCA. This will pave the way for developing efficient large-scale QCA-based sequential and combinational circuits. Full article
Show Figures

Figure 1

13 pages, 2492 KB  
Article
Interpreting Ring Currents from Hückel-Guided σ- and π-Electron Delocalization in Small Boron Rings
by Dumer S. Sacanamboy, Williams García-Argote, Rodolfo Pumachagua-Huertas, Carlos Cárdenas, Luis Leyva-Parra, Lina Ruiz and William Tiznado
Molecules 2025, 30(17), 3566; https://doi.org/10.3390/molecules30173566 (registering DOI) - 31 Aug 2025
Abstract
The aromaticity of small boron clusters remains under scrutiny due to persistent inconsistencies between magnetic and electronic descriptors. Here, we reexamine B3, B3+, B4, B42+, and B42− using a multidimensional [...] Read more.
The aromaticity of small boron clusters remains under scrutiny due to persistent inconsistencies between magnetic and electronic descriptors. Here, we reexamine B3, B3+, B4, B42+, and B42− using a multidimensional approach that integrates Adaptive Natural Density Partitioning, Electron Density of Delocalized Bonds, magnetically induced current density, and the z-component of the induced magnetic field. We introduce a model in which σ-aromaticity arises from two distinct delocalization topologies: a radial 2e σ-pathway and a tangential multicenter circuit formed by alternating filled and vacant sp2 orbitals. This framework accounts for the evolution of aromaticity upon oxidation or reduction, preserving coherence between electronic structure and magnetic response. B3 features cooperative radial and tangential σ-delocalization, together with a delocalized 2e π-bond, yielding robust double aromaticity. B3+ retains σ- and π-aromaticity, but only via a tangential 6e σ-framework, leading to a more compact delocalization and slightly attenuated ring currents. In B4, the presence of a radial 2e σ-bond and a 4c–2e π-bond confers partial aromatic character, while the tangential 8e σ-framework satisfies the 4n rule and induces a paratropic current. In contrast, B42+ lacks the radial σ-component but retains a tangential 8e σ-circuit and a 2e 4c–2e π-bond, leading to a σ-antiaromatic and π-aromatic configuration. Finally, B42−, exhibits delocalized π- and σ-circuits, yielding consistent diatropic ring currents, which confirms its fully doubly aromatic nature. Altogether, this analysis underscores the importance of resolving σ-framework topology and demonstrates that, when radial and tangential contributions are correctly distinguished, Hückel’s rule remains a powerful tool for interpreting aromaticity in small boron rings. Full article
(This article belongs to the Special Issue Molecular Magnetic Response and Aromaticity)
Show Figures

Figure 1

14 pages, 2756 KB  
Article
Development, Design, and Electrical Performance Simulation of Novel Through-Type 3D Semi Spherical Electrode Detector Based on SOI Substrate
by Zhiyu Liu, Tao Long, Zheng Li, Xuran Zhu, Jun Zhao, Xinqing Li, Manwen Liu and Meishan Wang
Micromachines 2025, 16(9), 1006; https://doi.org/10.3390/mi16091006 (registering DOI) - 31 Aug 2025
Abstract
This article proposes a novel three-dimensional trench electrode detector, named the through-type three-dimensional quasi-hemispherical electrode detector. The detector adopts a trench structure to package each independent unit and achieves complete penetration of trench electrodes with the help of an SOI substrate. The horizontal [...] Read more.
This article proposes a novel three-dimensional trench electrode detector, named the through-type three-dimensional quasi-hemispherical electrode detector. The detector adopts a trench structure to package each independent unit and achieves complete penetration of trench electrodes with the help of an SOI substrate. The horizontal distances from the center anode of the detector to the trench cathode and the detector thickness are equal. It has a near-spherical structure and exhibits spherical-like electrical performance. In this study, we modeled the device physics of the new structure and conducted a systematic three-dimensional simulation of its electrical characteristics, including the electric field, electric potential, electron concentration distribution of the detector, the inducted current caused by incident ions, and the crosstalk between detector units. Computational and technology computer-aided design (TCAD) simulation results show that the detector has an ultra-small capacitance (2.7 fF), low depletion voltage (1.4 V), and uniform electric field distribution. The trench electrodes electrically isolate the pixel units from each other so that the coherence effect between the units is small and can be applied in high-resolution X-ray photon counting detectors to enhance the contrast-to-noise ratio of low-dose imaging and the detection rate of tiny structures, among other things. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

11 pages, 695 KB  
Article
Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method
by Wenbo Wu, Jie Wang, Jiangtao Su, Zhanfei Chen and Zhiping Yu
Micromachines 2025, 16(9), 1005; https://doi.org/10.3390/mi16091005 (registering DOI) - 30 Aug 2025
Abstract
This paper presents a physics-guided machine learning (PGML) approach to model the I-V characteristics of GaN current aperture vertical field effect transistors (CAVET). By adopting the method of transfer learning and the shortcut structure, a physically guided neural network model is established. The [...] Read more.
This paper presents a physics-guided machine learning (PGML) approach to model the I-V characteristics of GaN current aperture vertical field effect transistors (CAVET). By adopting the method of transfer learning and the shortcut structure, a physically guided neural network model is established. The shallow neural network with <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 3rd Edition)
24 pages, 5802 KB  
Article
Full-Bridge T-Type Three-Level LLC Resonant Converter with Wide Output Voltage Range
by Kangjia Zhang, Kun Zhao, Xiaoxiao Yang, Muyang Liu and Zhigang Yao
Energies 2025, 18(17), 4613; https://doi.org/10.3390/en18174613 (registering DOI) - 30 Aug 2025
Abstract
Traditional LLC resonant converters face significant challenges in wide-output-voltage-applications, such as limited voltage gain, efficiency degradation under wide-gain range, and increased complexity in magnetic component design. For example, in electric vehicle charging power modules, achieving wide output voltage typically relies on changing the [...] Read more.
Traditional LLC resonant converters face significant challenges in wide-output-voltage-applications, such as limited voltage gain, efficiency degradation under wide-gain range, and increased complexity in magnetic component design. For example, in electric vehicle charging power modules, achieving wide output voltage typically relies on changing the transformer turns ratio or switching the series-parallel circuit configuration via relays, which prevents real-time dynamic adjustment. To overcome these limitations, this paper proposes a wide-gain-range control method based on a full-bridge T-type three-level LLC resonant converter, capable of achieving a voltage gain range exceeding six times. By integrating a T-type three-level bridge arm with PWM modulation and employing a variable-topology and variable-frequency control strategy, the proposed method achieves synergistic optimization for wide-output-voltage-applications. PWM modulation enables wide-range voltage output by dynamically adjusting both the converter topology and switching frequency. Finally, the proposed method is validated through circuit simulations and experimental results based on a full-bridge T-type three-level LLC converter prototype, demonstrating its effectiveness and feasibility. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters)
16 pages, 5285 KB  
Article
Design of Dual-Polarized All-Dielectric Transmitarray Antenna for Ka-Band Applications
by Baixin Liu, Haixin Sun, Xujia Jiang, Jiayu Hu and Changjiang Deng
Appl. Sci. 2025, 15(17), 9560; https://doi.org/10.3390/app15179560 (registering DOI) - 30 Aug 2025
Abstract
This paper proposes two all-dielectric transmitarrays operating at Ka-band (26.5–40 GHz), achieving dual-polarization and beam-scanning functionalities. The dual-polarized design employs a cross-shaped dielectric post transmission unit, where the lengths of the two posts can be adjusted to enable independent phase modulation in the [...] Read more.
This paper proposes two all-dielectric transmitarrays operating at Ka-band (26.5–40 GHz), achieving dual-polarization and beam-scanning functionalities. The dual-polarized design employs a cross-shaped dielectric post transmission unit, where the lengths of the two posts can be adjusted to enable independent phase modulation in the two orthogonal polarizations. Both polarizations provide 360° continuous phase coverage. To reduce the design complexity and achieve independent control of polarization, an optimized unit group with 16 states and 2-bit phase quantization is developed. A prototype of the all-dielectric transmitarray with 20 × 20 units is fabricated. The measured x/y-polarized peak gains are 25.3 dBi/25.5 dBi and the 1 dB bandwidths achieve 27% and 22%, respectively. To address feed–array integration, another all-dielectric transmitarray is further designed, which uses the same dual-polarized dielectric units, but replaces the horn feed with a dielectric rod antenna array. The feed array can generate multiple beams, enabling discrete beam-scanning within a 60° angle range. Both the dielectric transmitarray and the feed array can be fabricated by using 3D-printed technology, which greatly enhances the system integration and provides flexibility in generating multiple high-gain beams. Full article
(This article belongs to the Special Issue Millimeter-Wave Antenna Arrays: From Design to Applications)
Show Figures

Figure 1

31 pages, 2286 KB  
Review
Industrial-Scale Renewable Hydrogen Production System: A Comprehensive Review of Power Electronics Converters and Electrical Energy Storage
by Junior Diamant Ngando Ebba, Mamadou Baïlo Camara, Mamadou Lamine Doumbia, Brayima Dakyo and Joseph Song-Manguelle
Electronics 2025, 14(17), 3471; https://doi.org/10.3390/electronics14173471 - 29 Aug 2025
Abstract
Given the decline in fossil energy reserves and the need for less pollution, achieving carbon zero is challenging in major industrial sectors. However, the emergence of large-scale hydrogen production systems powered by renewable energy sources offers an achievable option for carbon neutrality in [...] Read more.
Given the decline in fossil energy reserves and the need for less pollution, achieving carbon zero is challenging in major industrial sectors. However, the emergence of large-scale hydrogen production systems powered by renewable energy sources offers an achievable option for carbon neutrality in specific applications. When combined with energy storage systems, static power converters are crucial in these production systems. This paper offers a comprehensive review of various power converter topologies, focusing on AC– and DC–bus architectures that interface battery storage units, electrolyzers, and fuel cells. The evaluation of DC/AC, AC/DC, and DC/DC converter topologies, considering cost, energy efficiency, control complexity, power level suitability, and power quality, represents a significant advancement in the field. Furthermore, the subsequent exploration of battery aging behavioral modeling, characterization methods, and real-time parameter estimation of the battery’s equivalent electrical circuit model enhances our understanding of these systems. Large-scale hydrogen production systems most often use an AC–bus architecture. However, DC–bus configuration offers advantages over AC–bus architecture, including high efficiency, simpler energy management, and lower system costs. In addition, MVDC or HVDC DC/DC converters, including isolated and non-isolated designs based on multiple cascaded DABs and MMC-type topologies, have also been studied to adapt the DC–bus to loads. Finally, this work summarizes several battery energy storage projects in the European Union, specifically supporting the large-scale integration of renewable energy sources. It also provides recommendations, discussion results, and future research perspectives from this study. Full article
(This article belongs to the Special Issue Applications, Control and Design of Power Electronics Converters)
21 pages, 1900 KB  
Article
Novel Tunable Pseudoresistor-Based Chopper-Stabilized Capacitively Coupled Amplifier and Its Machine Learning-Based Application
by Mohammad Aleem Farshori, M. Nizamuddin, Renuka Chowdary Bheemana, Krishna Prakash, Shonak Bansal, Mohammad Zulqarnain, Vipin Sharma, S. Sudhakar Babu and Kanwarpreet Kaur
Micromachines 2025, 16(9), 1000; https://doi.org/10.3390/mi16091000 - 29 Aug 2025
Abstract
This work presents a high-common-mode-rejection-ratio (CMRR) and high-gain FinFET-based bio-potential amplifier with a novel CMRR reduction technique. In this paper, a feedback buffer is used alongside a capacitively coupled chopper-stabilized circuit to reduce the common-mode signal gain, thus boosting the overall CMRR of [...] Read more.
This work presents a high-common-mode-rejection-ratio (CMRR) and high-gain FinFET-based bio-potential amplifier with a novel CMRR reduction technique. In this paper, a feedback buffer is used alongside a capacitively coupled chopper-stabilized circuit to reduce the common-mode signal gain, thus boosting the overall CMRR of the circuit. The conventional pseudoresistor in the feedback circuit is replaced with a tunable parallel-cell configuration of pseudoresistors to achieve high linearity. A chopper spike filter is used to mitigate spikes generated by switching activity. The mid-band gain of the chopper-stabilized amplifier is 42.6 dB, with a bandwidth in the range of 6.96 Hz to 621 Hz. The noise efficiency factor (NEF) of the chopper-stabilized amplifier is 6.1, and its power dissipation is 0.92 µW. The linearity of the parallel pseudoresistor cell is tested for different tuning voltages (Vtune) and various numbers of parallel pseudoresistor cells. The simulation results also demonstrate the pseudoresistor cell performance for different process corners and temperature changes. The low cut-off frequency is adjusted by varying the parameters of the parallel pseudoresistor cell. The CMRR of the chopper-stabilized amplifier, with and without the feedback buffer, is 106.9 dB and 100.3 dB, respectively. The feedback buffer also reduces the low cut-off frequency, demonstrating its multi-utility. The proposed circuit is compatible with bio-signal acquisition and processing. Additionally, a machine learning-based arrhythmia diagnosis model is presented using a convolutional neural network (CNN) + Long Short-Term Memory (LSTM) algorithm. For arrhythmia diagnosis using the CNN+LSTM algorithm, an accuracy of 99.12% and a mean square error (MSE) of 0.0273 were achieved. Full article
25 pages, 1640 KB  
Article
Rapid and Non-Invasive SoH Estimation of Lithium-Ion Cells via Automated EIS and EEC Models
by Ignacio Ezpeleta, Javier Fernández, David Giráldez and Lorena Freire
Batteries 2025, 11(9), 325; https://doi.org/10.3390/batteries11090325 - 29 Aug 2025
Abstract
The growing need for efficient battery reuse and recycling requires rapid, reliable methods to assess the state of health (SoH) of lithium-ion cells. Conventional SoH estimation based on full charge–discharge cycling is slow, energy-intensive, and unsuitable for dismantled cells with unknown histories. This [...] Read more.
The growing need for efficient battery reuse and recycling requires rapid, reliable methods to assess the state of health (SoH) of lithium-ion cells. Conventional SoH estimation based on full charge–discharge cycling is slow, energy-intensive, and unsuitable for dismantled cells with unknown histories. This work presents an automated diagnostic approach using Electrochemical Impedance Spectroscopy (EIS) combined with Electrical Equivalent Circuit (EEC) modeling for fast, non-invasive SoH estimation. A correlation between fitted EIS parameters and cell degradation stages was established through controlled aging tests on NMC-based lithium-ion cells. The methodology was implemented in custom software (BaterurgIA) integrated into a robotic testing bench, enabling automatic EIS acquisition, data fitting, and SoH determination. The system achieves SoH estimation with 5–10% accuracy for cells in intermediate and advanced degradation stages, while additional parameters improve sensitivity during early aging. Compared to conventional cycling methods, the proposed approach reduces diagnostic time from hours to minutes, minimizes energy consumption, and offers predictive insights into internal degradation mechanisms. This enables fast and reliable cell grading for reuse, reconditioning, or recycling, supporting the development of scalable solutions for battery second-life applications and circular economy initiatives. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
21 pages, 6240 KB  
Article
Real-Time Gain Scheduling Controller for Axial Piston Pump Based on LPV Model
by Alexander Mitov, Tsonyo Slavov and Jordan Kralev
Actuators 2025, 14(9), 421; https://doi.org/10.3390/act14090421 - 29 Aug 2025
Abstract
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this [...] Read more.
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this type of pump, the displacement volume depends on the swash plate swivel angle. The swash plate is actuated by a hydraulic-driven mechanism. The classical control device is a hydro-mechanical type, which can realize different control laws (by pressure, flow rate, or power). In the present development, it is replaced by an electro-hydraulic proportional spool valve, which controls the swash plate-actuating mechanism. The designed digital gain scheduling controller evaluates control signal values applied to the proportional valve. The digital controller is based on the new linear parameter-varying mathematical model. This model is estimated and validated from experimental data for various loading modes by an identification procedure. The controller is implemented by a rapid prototyping system, and various real-time loading experiments are performed. The obtained results with the gain scheduling PI controller are compared with those obtained by other classical PI controllers. The developed control system achieves appropriate control performance for a wide working mode of the axial piston pump. The comparison analyses of the experimental results showed the advantages of the adaptive PI controller and confirmed the possibility for its implementation in a real-time control system of different types of variable displacement pumps. Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
Show Figures

Figure 1

22 pages, 14112 KB  
Article
A Topology-Independent and Scalable Methodology for Automated LDO Design Using Open PDKs
by Daniel Arévalos, Jorge Marin, Krzysztof Herman, Jorge Gomez, Stefan Wallentowitz and Christian A. Rojas
Electronics 2025, 14(17), 3448; https://doi.org/10.3390/electronics14173448 - 29 Aug 2025
Viewed by 29
Abstract
This work proposes a methodology for the automated sizing of transistors in analog integrated circuits, based on a modular and hierarchical representation of the circuit. The methodology combines structured design techniques and systematic design flow to generate a hierarchy of simplified macromodels that [...] Read more.
This work proposes a methodology for the automated sizing of transistors in analog integrated circuits, based on a modular and hierarchical representation of the circuit. The methodology combines structured design techniques and systematic design flow to generate a hierarchy of simplified macromodels that define their specifications locally and are interconnected with other macromodels or transistor-level primitive blocks. These primitive blocks can be described using symbolic models or pre-characterized data from look-up tables (LUTs). The symbolic representation of the system is obtained using Modified Nodal Analysis (MNA), and the exploration of each block is performed using local design spaces constrained by top-level specifications. The methodology is validated through the design of low dropout voltage regulators (LDOs) for DC-DC integrated power systems using open-source tools and three process design kits: Sky130A, GF180MCU, and IHP-SG13G2. Results show that the methodology allows the exploration of several topologies and technologies, demonstrating its versatility and modularity, which are key aspects in analog design. Full article
(This article belongs to the Special Issue Mixed Design of Integrated Circuits and Systems)
Show Figures

Figure 1

12 pages, 2455 KB  
Article
Reconfigurable All-Optical Synapse Based on Photonic Crystal Nanobeam Cavities with Ferroelectric Carrier Injection Valve
by Duomao Li, Han Xie, Danyang Yao, Erqi Zhang, Jiaren Song, Youbin Wang, Yiwei Zhang, Xu Ran, Dongming Fang, Xiaoli Lu, Xiaohua Ma and Yue Hao
Photonics 2025, 12(9), 871; https://doi.org/10.3390/photonics12090871 - 29 Aug 2025
Viewed by 125
Abstract
Synaptic activity is fundamental to memory and learning in the nervous system. However, most artificial synaptic devices are limited to mimicking static plasticity, and tunable plasticity has not been achieved at the device level. Here, we introduce a dynamic all-optical synapse based on [...] Read more.
Synaptic activity is fundamental to memory and learning in the nervous system. However, most artificial synaptic devices are limited to mimicking static plasticity, and tunable plasticity has not been achieved at the device level. Here, we introduce a dynamic all-optical synapse based on photonic crystal nanobeam cavities with a ferroelectric carrier injection valve. By leveraging the nonlinear and ferroelectric electrostatic doping effects in silicon, integrated with Hf0.5Zr0.5O2 (HZO) film as the ferroelectric layer and indium tin oxide (ITO) as the top electrode, we enhance linearity and reduce power consumption. Increasing the bias voltage further improves linearity while decreasing power consumption. This innovation offers a promising pathway for developing energy-efficient nanophotonic devices in neuromorphic computing. Full article
(This article belongs to the Special Issue Silicon Photonics: From Fundamentals to Future Directions)
Show Figures

Figure 1

24 pages, 17568 KB  
Article
Super-Resolved Pseudo Reference in Dual-Branch Embedding for Blind Ultra-High-Definition Image Quality Assessment
by Jiacheng Gu, Qingxu Meng, Songnan Zhao, Yifan Wang, Shaode Yu and Qiurui Sun
Electronics 2025, 14(17), 3447; https://doi.org/10.3390/electronics14173447 - 29 Aug 2025
Viewed by 72
Abstract
In the Ultra-High-Definition (UHD) domain, blind image quality assessment remains challenging due to the high dimensionality of UHD images, which exceeds the input capacity of deep learning networks. Motivated by the visual discrepancies observed between high- and low-quality images after down-sampling and Super-Resolution [...] Read more.
In the Ultra-High-Definition (UHD) domain, blind image quality assessment remains challenging due to the high dimensionality of UHD images, which exceeds the input capacity of deep learning networks. Motivated by the visual discrepancies observed between high- and low-quality images after down-sampling and Super-Resolution (SR) reconstruction, we propose a SUper-Resolved Pseudo References In Dual-branch Embedding (SURPRIDE) framework tailored for UHD image quality prediction. SURPRIDE employs one branch to capture intrinsic quality features from the original patch input and the other to encode comparative perceptual cues from the SR-reconstructed pseudo-reference. The fusion of the complementary representation, guided by a novel hybrid loss function, enhances the network’s ability to model both absolute and relational quality cues. Key components of the framework are optimized through extensive ablation studies. Experimental results demonstrate that the SURPRIDE framework achieves competitive performance on two UHD benchmarks (AIM 2024 Challenge, PLCC = 0.7755, SRCC = 0.8133, on the testing set; HRIQ, PLCC = 0.882, SRCC = 0.873). Meanwhile, its effectiveness is verified on high- and standard-definition image datasets across diverse resolutions. Future work may explore positional encoding, advanced representation learning, and adaptive multi-branch fusion to align model predictions with human perceptual judgment in real-world scenarios. Full article
Show Figures

Figure 1

15 pages, 4071 KB  
Article
Electrostatic MEMS Phase Shifter for SiN Photonic Integrated Circuits
by Seyedfakhreddin Nabavi, Michaël Ménard and Frederic Nabki
J. Sens. Actuator Netw. 2025, 14(5), 88; https://doi.org/10.3390/jsan14050088 - 29 Aug 2025
Viewed by 152
Abstract
Optical phase modulation is essential for a wide range of silicon photonic integrated circuits used in communication applications. In this study, an optical phase shifter utilizing photo-elastic effects is proposed, where mechanical stress is induced by electrostatic micro-electro-mechanical systems (MEMS) with actuators arranged [...] Read more.
Optical phase modulation is essential for a wide range of silicon photonic integrated circuits used in communication applications. In this study, an optical phase shifter utilizing photo-elastic effects is proposed, where mechanical stress is induced by electrostatic micro-electro-mechanical systems (MEMS) with actuators arranged in a comb drive configuration. The design incorporates suspended serpentine silicon nitride (SiN) optical waveguides. Through extensive numerical simulations, it is shown that the change in the effective refractive index (neff) of the optical waveguide is a function of the voltage applied to the electrostatic actuators and that such neff tuning can be achieved for a broad range of wavelengths. Implemented within one arm of an unbalanced Mach–Zehnder interferometer (MZI), the phase shifter achieves a phase change of π when the stressed optical path measures 4.7 mm, and the actuators are supplied with 80 V DC and consume almost no power. This results in a half-wave voltage-length product (VπL) of 37.6 V·cm. Comparative analysis with contemporary optical phase shifters highlights the proposed design’s superior power efficiency, compact footprint, and simplified fabrication process, making it a highly efficient component for reconfigurable MEMS-based silicon nitride photonic integrated circuits. Full article
Show Figures

Figure 1

Back to TopTop