Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (552)

Search Parameters:
Keywords = integrating sphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 16819 KB  
Article
LncRNA TSPEAR-AS2 Maintains the Stemness of Gastric Cancer Stem Cells by Regulating the miR-15a-5p/CCND1 Axis
by Qiong Li, Yanan Wang, Liyang Chen, Yan Shen, Shijiao Zhang, Dengyuan Yue and Xiaowei Chen
Biomolecules 2025, 15(9), 1227; https://doi.org/10.3390/biom15091227 - 26 Aug 2025
Viewed by 265
Abstract
Cancer stem cells (CSCs), a subpopulation of tumor cells endowed with self-renewal capacity, drive cancer initiation and progression. While long non-coding RNAs (lncRNAs) are increasingly recognized as critical regulators of CSC stemness, their specific roles in gastric cancer stem cells (GCSCs) remain poorly [...] Read more.
Cancer stem cells (CSCs), a subpopulation of tumor cells endowed with self-renewal capacity, drive cancer initiation and progression. While long non-coding RNAs (lncRNAs) are increasingly recognized as critical regulators of CSC stemness, their specific roles in gastric cancer stem cells (GCSCs) remain poorly understood. This study investigates the functional significance of lncRNA TSPEAR-AS2 in modulating GCSC properties and uncovers its underlying molecular mechanisms. Through integrated whole-transcriptome sequencing, bioinformatics analysis, and validation in 48 paired gastric cancer tissues and adjacent normal tissues, TSPEAR-AS2 was identified as a differentially expressed lncRNA upregulated in both GCSCs and tumor samples. Functional experiments revealed that TSPEAR-AS2 overexpression significantly enhanced GCSC sphere-forming ability, proliferation, cell cycle progression, epithelial–mesenchymal transition (EMT), and expression of stemness markers (CD54, CD44, OCT4, NANOG, and SOX2) while suppressing apoptosis. Conversely, TSPEAR-AS2 knockdown attenuated these malignant phenotypes. In vivo tumorigenicity assays in nude mice further confirmed that TSPEAR-AS2 promotes tumor growth, with overexpression accelerating and knockdown inhibiting tumor formation. Mechanistically, bioinformatics predictions and dual-luciferase reporter assays established TSPEAR-AS2 as a competing endogenous RNA (ceRNA) that sponges miR-15a-5p, thereby derepressing the miR-15a-5p target gene CCND1. Rescue experiments demonstrated that overexpression of miR-15a-5p phenocopied TSPEAR-AS2 knockdown, reducing GCSC stemness, while miR-15a-5p inhibition rescued the effects of TSPEAR-AS2 suppression. Collectively, these findings reveal a novel TSPEAR-AS2/miR-15a-5p/CCND1 regulatory axis that sustains GCSC stemness and tumorigenicity. These results highlight TSPEAR-AS2 as a potential therapeutic target for eradicating gastric cancer stem cells and improving clinical outcomes. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

25 pages, 1928 KB  
Review
Governance in Crisis: A Mixed-Methods Analysis of Global Health Governance During COVID-19
by Kadria Ali Abdel-Motaal and Sungsoo Chun
Int. J. Environ. Res. Public Health 2025, 22(8), 1305; https://doi.org/10.3390/ijerph22081305 - 20 Aug 2025
Viewed by 544
Abstract
Background: The COVID-19 pandemic exposed major structural deficiencies in global health governance, including stark inequities in vaccine access, intervention timing, and mortality outcomes. While economic resources played a role, the influence of governance performance remains insufficiently examined. This study addresses a significant gap [...] Read more.
Background: The COVID-19 pandemic exposed major structural deficiencies in global health governance, including stark inequities in vaccine access, intervention timing, and mortality outcomes. While economic resources played a role, the influence of governance performance remains insufficiently examined. This study addresses a significant gap by integrating governance metrics with pandemic response data to assess how governance quality, independent of income level, affected national outcomes. Although the Oxford COVID-19 Government Response Tracker (OxCGRT) dataset has been widely used to document policy responses, this study offers a novel contribution by linking these policy interventions with governance performance and evaluating their joint effect on health outcomes and vaccine equity. Methods: This mixed-methods study combines quantitative analysis of global datasets with a qualitative literature review. Quantitative data were mainly obtained from the Oxford COVID-19 Government Response Tracker (OxCGRT), the World Bank’s Worldwide Governance Indicators (WGIs), and World Bank/WHO databases. A governance performance index was constructed using two WGI components: Government Effectiveness and Regulatory Quality. Countries were grouped into high, medium, or low governance categories. Statistical tests included ANOVA, Kaplan Meier survival analysis, and multivariable OLS regression. The qualitative component reviewed 45 academic and institutional sources on governance performance during COVID-19. Results: Countries with high governance performance had earlier public health interventions, lower mortality, and broader vaccine coverage, independent of income level. Kaplan Meier analysis revealed faster school closures in these countries (p < 0.01). Multivariable regression showed governance remained a significant predictor after adjusting for income and health spending. Qualitative findings highlighted recurring weaknesses in legal enforceability, intergovernmental coordination, and global financing mechanisms. Conclusions: Governance performance had a decisive impact on pandemic outcomes. The COVID-19 crisis revealed the need for robust governance systems capable of responding to complex emergencies that extend beyond the health sector into institutional, economic, and social spheres. Full article
(This article belongs to the Special Issue Advancing Health Equity: Challenges and Opportunities)
Show Figures

Figure 1

26 pages, 2039 KB  
Article
Monetary Policy and Liquidity of the Bond Market—Evidence from the Chinese Local Government Bond Market
by Xiao Liu, Yunzhe Hu, Fang Liu and Rongxi Zhou
Mathematics 2025, 13(16), 2586; https://doi.org/10.3390/math13162586 - 13 Aug 2025
Viewed by 512
Abstract
The bond market serves dual roles in fiscal and financial spheres, playing a crucial role in coordinating monetary policy. This paper investigates the impact of quantitative and price-based monetary policies on the liquidity level of China’s bond market. A comprehensive index measuring the [...] Read more.
The bond market serves dual roles in fiscal and financial spheres, playing a crucial role in coordinating monetary policy. This paper investigates the impact of quantitative and price-based monetary policies on the liquidity level of China’s bond market. A comprehensive index measuring the liquidity of the local bond market is constructed using a combination weighting method that integrates the entropy method and the coefficient of variation. Employing the time-varying stochastic volatility structure vector autoregression (TVP-SV-SVAR) model on data spanning from 2013 to 2021, this study empirically compares the impulse response of local bond market liquidity to monetary policy shocks. The findings reveal that both types of monetary policy operations exhibit asymmetric, nonlinear, and time-varying impacts on bond market liquidity. Quantitative monetary instruments induce deeper impulse responses, with longer-lasting effects. These conclusions offer insights for monetary policy reforms and bond market development in China. Full article
Show Figures

Figure 1

43 pages, 29857 KB  
Article
Spherical Shape Functions for a Six-Node Tri-Rectangular Prism and an Eight-Node Quadrangular Right Prism
by Anna Maria Marotta, Riccardo Barzaghi and Roberto Sabadini
Math. Comput. Appl. 2025, 30(4), 88; https://doi.org/10.3390/mca30040088 - 10 Aug 2025
Viewed by 254
Abstract
In this work, we present the procedure to obtain exact spherical shape functions for finite element modeling applications, without resorting to any kind of approximation, for generic prismatic spherical elements and for the case of spherical six-node tri-rectangular and eight-node quadrangular spherical prisms. [...] Read more.
In this work, we present the procedure to obtain exact spherical shape functions for finite element modeling applications, without resorting to any kind of approximation, for generic prismatic spherical elements and for the case of spherical six-node tri-rectangular and eight-node quadrangular spherical prisms. The proposed spherical shape functions, given in explicit analytical form, are expressed in geographic coordinates, namely colatitude, longitude and distance from the center of the sphere. We demonstrate that our analytical shape functions satisfy all the properties required by this class of functions, deriving at the same time the analytical expression of the Jacobian, which allows us changes in coordinate systems. Within the perspective of volume integration on Earth, entering a variety of geophysical and geodetic problems, as for mass change contribution to gravity, we consider our analytical expression of the shape functions and Jacobian for the six-node tri-rectangular and eight-node quadrangular right spherical prisms as reference volumes to evaluate the volume of generic spherical triangular and quadrangular prisms over the sphere; volume integration is carried out via Gauss–Legendre quadrature points. We show that for spherical quadrangular prisms, the percentage volume difference between the exact and the numerically evaluated volumes is independent from both the geographical position and the depth and ranges from 10−3 to lower than 10−4 for angular dimensions ranging from 1° × 1° to 0.25° × 0.25°. A satisfactory accuracy is attained for eight Gauss–Legendre quadrature points. We also solve the Poisson equation and compare the numerical solution with the analytical solution, obtained in the case of steady-state heat conduction with internal heat production. We show that, even with a relatively coarse grid, our elements are capable of providing a satisfactory fit between numerical and analytical solutions, with a maximum difference in the order of 0.2% of the exact value. Full article
Show Figures

Figure 1

27 pages, 7729 KB  
Article
Autonomous Exploration in Unknown Indoor 2D Environments Using Harmonic Fields and Monte Carlo Integration
by Dimitrios Kotsinis, George C. Karras and Charalampos P. Bechlioulis
Sensors 2025, 25(16), 4894; https://doi.org/10.3390/s25164894 - 8 Aug 2025
Viewed by 227
Abstract
Efficient autonomous exploration in unknown obstacle cluttered environments with interior obstacles remains a challenging task for mobile robots. In this work, we present a novel exploration process for a non-holonomic agent exploring 2D spaces using onboard LiDAR sensing. The proposed method generates velocity [...] Read more.
Efficient autonomous exploration in unknown obstacle cluttered environments with interior obstacles remains a challenging task for mobile robots. In this work, we present a novel exploration process for a non-holonomic agent exploring 2D spaces using onboard LiDAR sensing. The proposed method generates velocity commands based on the calculation of the solution of an elliptic Partial Differential Equation with Dirichlet boundary conditions. While solving Laplace’s equation yields collision-free motion towards the free space boundary, the agent may become trapped in regions distant from free frontiers, where the potential field becomes almost flat, and consequently the agent’s velocity nullifies as the gradient vanishes. To address this, we solve a Poisson equation, introducing a source point on the free explored boundary which is located at the closest point from the agent and attracts it towards unexplored regions. The source values are determined by an exponential function based on the shortest path of a Hybrid Visibility Graph, a graph that models the explored space and connects obstacle regions via minimum-length edges. The computational process we apply is based on the Walking on Sphere algorithm, a method that employs Brownian motion and Monte Carlo Integration and ensures efficient calculation. We validate the approach using a real-world platform; an AmigoBot equipped with a LiDAR sensor, controlled via a ROS-MATLAB interface. Experimental results demonstrate that the proposed method provides smooth and deadlock-free navigation in complex, cluttered environments, highlighting its potential for robust autonomous exploration in unknown indoor spaces. Full article
(This article belongs to the Special Issue Radar Remote Sensing and Applications—2nd Edition)
Show Figures

Figure 1

17 pages, 3093 KB  
Article
Determination of Quantum Yield in Scattering Media Using Monte Carlo Photoluminescence Cascade Simulation and Integrating Sphere Measurements
by Philip Gelbing, Joachim Jelken, Florian Foschum and Alwin Kienle
Materials 2025, 18(15), 3710; https://doi.org/10.3390/ma18153710 - 7 Aug 2025
Viewed by 394
Abstract
Accurate determination of the quantum yield (Φf) in scattering media is essential for numerous scientific and industrial applications, but it remains challenging due to re-absorption and scattering-induced biases. In this study, we present a GPU-accelerated Monte Carlo simulation framework that [...] Read more.
Accurate determination of the quantum yield (Φf) in scattering media is essential for numerous scientific and industrial applications, but it remains challenging due to re-absorption and scattering-induced biases. In this study, we present a GPU-accelerated Monte Carlo simulation framework that solves the full fluorescence radiative transfer equation (FRTE), incorporating spectrally dependent absorption, scattering, and fluorescence cascade processes. The model accounts for re-emission shifts, energy scaling due to the Stokes shift and implements a digital optical twin of the experimental setup, including the precise description of the applied integrating sphere. Using Rhodamine 6G in both ethanol and PDMS matrices, we demonstrate the accuracy of the method by comparing simulated reflectance and transmission spectra with independent experimental measurements. Φf and emission distributions are optimized using a Levenberg–Marquardt algorithm. The obtained quantum yields agree well with literature values for Rhodamine 6G. This approach eliminates the need for empirical correction factors, enabling the reliable determination of actual, undistorted emission spectra and the Φf in complex scattering media. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Graphical abstract

19 pages, 5269 KB  
Article
Three-Dimensional Ordered Porous SnO2 Nanostructures Derived from Polystyrene Sphere Templates for Ethyl Methyl Carbonate Detection in Battery Safety Applications
by Peijiang Cao, Linlong Qu, Fang Jia, Yuxiang Zeng, Deliang Zhu, Chunfeng Wang, Shun Han, Ming Fang, Xinke Liu, Wenjun Liu and Sachin T. Navale
Nanomaterials 2025, 15(15), 1150; https://doi.org/10.3390/nano15151150 - 25 Jul 2025
Viewed by 428
Abstract
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling [...] Read more.
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling rapid detection of various gas-phase indicators of battery failure. Utilizing this approach, 3D ordered tin oxide (SnO2) nanostructures were synthesized using polystyrene sphere (PS) templates of varied diameters (200–1500 nm) and precursor concentrations (0.2–0.6 mol/L) to detect key electrolyte–vapors, especially ethyl methyl carbonate (EMC), released in the early stages of TR. The 3D ordered SnO2 nanostructures with ring- and nanonet-like morphologies, formed after PS template removal, were characterized, and the effects of template size and precursor concentration on their structure and sensing performance were investigated. Among various nanostructures of SnO2, nanonets achieved by a 1000 nm PS template and 0.4 mol/L precursor showed higher mesoporosity (~28 nm) and optimal EMC detection. At 210 °C, it detected 10 ppm EMC with a response of ~7.95 and response/recovery times of 14/17 s, achieving a 500 ppb detection limit alongside excellent reproducibility/stability. This study demonstrates that precise structural control of SnO2 nanostructures using templates enables sensitive EMC detection, providing an effective sensor-based strategy to enhance LIB safety. Full article
(This article belongs to the Special Issue Trends and Prospects in Gas-Sensitive Nanomaterials)
Show Figures

Figure 1

24 pages, 6623 KB  
Article
Light Exposure as a Tool to Enhance the Regenerative Potential of Adipose-Derived Mesenchymal Stem/Stromal Cells
by Kaarthik Sridharan, Tawakalitu Okikiola Waheed, Susanne Staehlke, Alexander Riess, Mario Mand, Juliane Meyer, Hermann Seitz, Kirsten Peters and Olga Hahn
Cells 2025, 14(15), 1143; https://doi.org/10.3390/cells14151143 - 24 Jul 2025
Viewed by 496
Abstract
Photobiomodulation (PBM) utilizes different wavelengths of light to modulate cellular functions and has emerged as a promising approach in regenerative medicine. In this study, we examined the effects of blue (455 nm), red (660 nm), and near-infrared (810 nm) light, both individually and [...] Read more.
Photobiomodulation (PBM) utilizes different wavelengths of light to modulate cellular functions and has emerged as a promising approach in regenerative medicine. In this study, we examined the effects of blue (455 nm), red (660 nm), and near-infrared (810 nm) light, both individually and in combination, on human adipose-derived mesenchymal stem/stromal cells (adMSCs). A single, short-term exposure of adMSCs in suspension to these wavelengths using an integrating sphere revealed distinct wavelength- and dose-dependent cellular responses. Blue light exposure led to a dose-dependent increase in intracellular reactive oxygen species, accompanied by reduced cell proliferation, metabolic activity, interleukin-6/interleukin-8 secretion, and adipogenic differentiation. In contrast, red and near-infrared light preserved cell viability and metabolic function while enhancing cell migration, consistent with their documented ability to stimulate proliferation and mitochondrial activity in mesenchymal stem cells. These findings highlight the necessity of precise wavelength and dosage selection in PBM applications and support the potential of PBM as a customizable tool for optimizing patient-specific regenerative therapies. Full article
Show Figures

Figure 1

31 pages, 23687 KB  
Article
Spatiotemporal Dynamics of Ecosystem Services and Human Well-Being in China’s Karst Regions: An Integrated Carbon Flow-Based Assessment
by Yinuo Zou, Yuefeng Lyu, Guan Li, Yanmei Ye and Cifang Wu
Land 2025, 14(8), 1506; https://doi.org/10.3390/land14081506 - 22 Jul 2025
Viewed by 395
Abstract
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still [...] Read more.
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still needs to be strengthened. As an element transferred in the natural–society coupling system, carbon can assist in characterizing the dynamic interactions within coupled human–natural systems. Carbon, as a fundamental element transferred across ecological and social spheres, offers a powerful lens to characterize these linkages. This study develops and applies a novel analytical framework that integrates carbon flow as a unifying metric to quantitatively assess the spatiotemporal dynamics of the land use and land cover change (LUCC)–ESs–HWB nexus in Guizhou Province, China, from 2000 to 2020. The results show that: (1) Ecosystem services in Guizhou showed distinct trends from 2000 to 2020: supporting and regulating services declined and then recovered, and provisioning services steadily increased, while cultural services remained stable but varied across cities. (2) Human well-being generally improved over time, with health remaining stable and the HSI rising across most cities, although security levels fluctuated and remained low in some areas. (3) The contribution of ecosystem services to human well-being peaked in 2010–2015, followed by declines in central and northern regions, while southern and western areas maintained or improved their levels. (4) Supporting and regulating services were positively correlated with HWB security, while cultural services showed mixed effects, with strong synergies between culture and health in cities like Liupanshui and Qiandongnan. Overall, this study quantified the coupled dynamics between ecosystem services and human well-being through a carbon flow framework, which not only offers a unified metric for cross-dimensional analysis but also reduces subjective bias in evaluation. This integrated approach provides critical insights for crafting spatially explicit land management policies in Guizhou and offers a replicable methodology for exploring sustainable development pathways in other ecologically fragile karst regions worldwide. Compared with conventional ecosystem service frameworks, the carbon flow approach provides a process-based, dynamic mediator that quantifies biogeochemical linkages in LUCC–ESs–HWB systems, which is particularly important in fragile karst regions. However, we acknowledge that further empirical comparison with traditional ESs metrics could strengthen the framework’s generalizability. Full article
(This article belongs to the Special Issue Advances in Land Consolidation and Land Ecology (Second Edition))
Show Figures

Graphical abstract

27 pages, 11254 KB  
Article
Improved RRT-Based Obstacle-Avoidance Path Planning for Dual-Arm Robots in Complex Environments
by Jing Wang, Genliang Xiong, Bowen Dang, Jianli Chen, Jixian Zhang and Hui Xie
Machines 2025, 13(7), 621; https://doi.org/10.3390/machines13070621 - 18 Jul 2025
Viewed by 600
Abstract
To address the obstacle-avoidance path-planning requirements of dual-arm robots operating in complex environments, such as chemical laboratories and biomedical workstations, this paper proposes ODSN-RRT (optimization-direction-step-node RRT), an efficient planner based on rapidly-exploring random trees (RRT). ODSN-RRT integrates three key optimization strategies. First, a [...] Read more.
To address the obstacle-avoidance path-planning requirements of dual-arm robots operating in complex environments, such as chemical laboratories and biomedical workstations, this paper proposes ODSN-RRT (optimization-direction-step-node RRT), an efficient planner based on rapidly-exploring random trees (RRT). ODSN-RRT integrates three key optimization strategies. First, a two-stage sampling-direction strategy employs goal-directed growth until collision, followed by hybrid random-goal expansion. Second, a dynamic safety step-size strategy adapts each extension based on obstacle size and approach angle, enhancing collision detection reliability and search efficiency. Third, an expansion-node optimization strategy generates multiple candidates, selects the best by Euclidean distance to the goal, and employs backtracking to escape local minima, improving path quality while retaining probabilistic completeness. For collision checking in the dual-arm workspace (self and environment), a cylindrical-spherical bounding-volume model simplifies queries to line-line and line-sphere distance calculations, significantly lowering computational overhead. Redundant waypoints are pruned using adaptive segmental interpolation for smoother trajectories. Finally, a master-slave planning scheme decomposes the 14-DOF problem into two 7-DOF sub-problems. Simulations and experiments demonstrate that ODSN-RRT rapidly generates collision-free, high-quality trajectories, confirming its effectiveness and practical applicability. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

22 pages, 3480 KB  
Article
Comprehensive DEM Calibration Using Face Central Composite Design and Response Surface Methodology for Rice–PLA Interactions in Enhanced Bucket Elevator Performance
by Pirapat Arunyanart, Nithitorn Kongkaew and Supattarachai Sudsawat
AgriEngineering 2025, 7(7), 240; https://doi.org/10.3390/agriengineering7070240 - 17 Jul 2025
Viewed by 551
Abstract
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere [...] Read more.
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere clusters to accurately represent their physical dimensions (6.5 mm length), while the Hertz–Mindlin contact model provided the theoretical framework for particle interactions. The calibration process employed a multi-phase experimental design integrating Plackett–Burmann screening, steepest ascent method, and Face Central Composite Design to systematically identify and optimize critical micro-mechanical parameters for agricultural material handling. Statistical analysis revealed the coefficient of static friction between rice and PLA as the dominant factor, contributing 96.49% to system performance—significantly higher than previously recognized in conventional agricultural processing designs. Response Surface Methodology generated predictive models achieving over 90% correlation with experimental results from 3D-printed PLA shear box tests. Validation through comparative velocity profile analysis during bucket elevator discharge operations confirmed excellent agreement between simulated and experimental behavior despite a 20% discharge velocity variance that warrants further investigation into agricultural material-specific phenomena. The established parameter set enables accurate virtual prototyping of sustainable agricultural handling equipment, offering post-harvest processing engineers a powerful tool for optimizing bulk material handling systems with reduced environmental impact. This integrated approach bridges fundamental agricultural material properties with sustainable engineering design principles, providing a scalable framework applicable across multiple agricultural processing operations using biodegradable components. Full article
Show Figures

Graphical abstract

25 pages, 5935 KB  
Article
Point-Kernel Code Development for Gamma-Ray Shielding Applications
by Mario Matijević, Krešimir Trontl, Siniša Šadek and Paulina Družijanić
Appl. Sci. 2025, 15(14), 7795; https://doi.org/10.3390/app15147795 - 11 Jul 2025
Viewed by 340
Abstract
The point-kernel (PK) technique has a long history in applied radiation shielding, originating from the early days of digital computers. The PK technique applied to gamma-ray attenuation is one of many successful applications, based on the linear superposition principle applied to distributed radiation [...] Read more.
The point-kernel (PK) technique has a long history in applied radiation shielding, originating from the early days of digital computers. The PK technique applied to gamma-ray attenuation is one of many successful applications, based on the linear superposition principle applied to distributed radiation sources. Mathematically speaking, the distributed source will produce a detector response equivalent to the numerical integration of the radiation received from an equivalent number of point sources. In this treatment, there is no interference between individual point sources, while inherent limitations of the PK method are its inability to simulate gamma scattering in shields and the usage of simple boundary conditions. The PK method generally works for gamma-ray shielding with corrective B-factor for scattering and only specifically for fast neutron attenuation in a hydrogenous medium with the definition of cross section removal. This paper presents theoretical and programming aspects of the PK program developed for a distributed source of photons (line, disc, plane, sphere, slab volume, etc.) and slab shields. The derived flux solutions go beyond classical textbooks as they include the analytical integration of Taylor B-factor, obtaining a closed form readily suitable for programming. The specific computational modules are unified with a graphical user interface (GUI), assisting users with input/output data and visualization, developed for the fast radiological characterization of simple shielding problems. Numerical results of the selected PK test cases are presented and verified with the CADIS hybrid shielding methodology of the MAVRIC/SCALE6.1.3 code package from the ORNL. Full article
Show Figures

Figure 1

21 pages, 7602 KB  
Article
Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation
by Stelios Loukopoulos, Elias Sakellis, Polychronis Tsipas, Spiros Gardelis, Vassilis Psycharis, Marios G. Kostakis, Nikolaos S. Thomaidis and Vlassis Likodimos
Nanomaterials 2025, 15(14), 1076; https://doi.org/10.3390/nano15141076 - 11 Jul 2025
Cited by 1 | Viewed by 2462
Abstract
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 [...] Read more.
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 inverse opal (IO) films that synergistically integrate photonic, plasmonic, and semiconducting functionalities to overcome these limitations. The materials were synthesized via a one-step evaporation-induced co-assembly approach, embedding MoS2 nanosheets and plasmonic nanoparticles (Ag or Au) within a nanocrystalline TiO2 photonic framework. The inverse opal architecture enhances light harvesting through slow-photon effects, while MoS2 and plasmonic nanoparticles improve visible-light absorption and charge separation. By tuning the template sphere size, the photonic band gap was aligned with the TiO2-MoS2 absorption edge and the localized surface plasmon resonance of Ag, enabling optimal spectral overlap. The corresponding Ag/MoS2-TiO2 photonic films exhibited superior photocatalytic and photoelectrocatalytic degradation of tetracycline under visible light. Ultraviolet photoelectron spectroscopy and Mott–Schottky analysis confirmed favorable band alignment and Fermi level shifts that facilitate interfacial charge transfer. These results highlight the potential of integrated photonic–plasmonic-semiconductor architectures for efficient solar-driven water treatment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 274 KB  
Article
Political Discourse and Theological Challenges of Korean Conservative Christianity
by Minseok Kim
Religions 2025, 16(7), 879; https://doi.org/10.3390/rel16070879 - 8 Jul 2025
Viewed by 1484
Abstract
This paper examines the political discourse of South Korean conservative Christianity, focusing on its alignment with far-right ideologies that undermine both democratic norms and the theological integrity of faith. Triggered by recent constitutional crises involving former President Suk-yeol Yoon, far-right Protestant groups have [...] Read more.
This paper examines the political discourse of South Korean conservative Christianity, focusing on its alignment with far-right ideologies that undermine both democratic norms and the theological integrity of faith. Triggered by recent constitutional crises involving former President Suk-yeol Yoon, far-right Protestant groups have engaged in mobilisations marked by hate speech, disinformation, and theological politicisation. Drawing upon Heinrich Bedford-Strohm’s model of public theology, the study critiques this trend and argues for a reconfiguration of Christian public engagement toward justice, inclusion, and rational dialogue. It further explores the blurred boundaries between conservative and far-right Christian movements, the distortion of the public sphere, and the impact of digital misinformation. Ultimately, the paper proposes a theological and ethical roadmap for restoring the credibility of Christianity in South Korea’s pluralistic democracy. Full article
14 pages, 272 KB  
Article
Constant Density Models in Einstein–Gauss–Bonnet Gravity
by Sunil D. Maharaj, Shavani Naicker and Byron P. Brassel
Universe 2025, 11(7), 220; https://doi.org/10.3390/universe11070220 - 2 Jul 2025
Viewed by 421
Abstract
We investigate the influence of the higher-order curvature corrections on a static configuration with constant density in Einstein–Gauss–Bonnet (EGB) gravity. This analysis is applied to both neutral and charged fluid distributions in arbitrary spacetime dimensions. The EGB field equations are generated, and the [...] Read more.
We investigate the influence of the higher-order curvature corrections on a static configuration with constant density in Einstein–Gauss–Bonnet (EGB) gravity. This analysis is applied to both neutral and charged fluid distributions in arbitrary spacetime dimensions. The EGB field equations are generated, and the condition of pressure isotropy is shown to generalise the general relativity equation. The gravitational potentials are unique in all spacetime dimensions for neutral gravitating spheres. Charged gravitating spheres are not unique and depend on the form of the electric field. Our treatment is extended to the particular case of a charged fluid distribution with a constant energy density and constant electric field intensity. The charged EGB field equations are integrated to give exact models in terms of hypergeometric functions which can also be written as a series. Full article
Back to TopTop