Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,680)

Search Parameters:
Keywords = intelligent control systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 876 KB  
Article
Blockchain-Based Self-Sovereign Identity Management Mechanism in AIoT Environments
by Jingjing Ren, Jie Zhang, Yongjun Ren and Jiang Xu
Electronics 2025, 14(19), 3954; https://doi.org/10.3390/electronics14193954 - 8 Oct 2025
Abstract
With the rapid growth of Artificial Intelligence of Things (AIoT), identity management and trusted communication have become critical for system security and reliability. Continuous AI learning and large-scale device connectivity introduce challenges such as permission drift, cross-domain access, and fine-grained API calls. Traditional [...] Read more.
With the rapid growth of Artificial Intelligence of Things (AIoT), identity management and trusted communication have become critical for system security and reliability. Continuous AI learning and large-scale device connectivity introduce challenges such as permission drift, cross-domain access, and fine-grained API calls. Traditional identity management often fails to balance privacy protection with efficiency, leading to risks of data leakage and misuse. To address these issues, this paper proposes a blockchain-based self-sovereign identity (SSI) management mechanism for AIoT. By integrating SSI with a zero-trust framework, it achieves decentralized identity storage and continuous verification, effectively preventing unauthorized access and misuse of identity data. The mechanism employs selective disclosure (SD) technology, allowing users to submit only necessary attributes, thereby ensuring user control over self-sovereign identity information and guaranteeing the privacy and integrity of undisclosed attributes. This significantly reduces verification overhead. Additionally, this paper designs a context-aware dynamic permission management that generates minimal permission sets in real time based on device requirements and environmental changes. Combined with the zero-trust principles of continuous verification and least privilege, it enhances secure interactions while maintaining flexibility. Performance experiments demonstrate that, compared with conventional approaches, the proposed zero-trust architecture-based SSI management mechanism better mitigates the risk of sensitive attribute leakage, improves identity verification efficiency under SD, and enhances the responsiveness of dynamic permission management, providing robust support for secure and efficient AIoT operations. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

31 pages, 367 KB  
Article
The Role of Artificial Intelligence in Enhancing ESG Outcomes: Insights from Saudi Arabia
by Amina Hamdouni
J. Risk Financial Manag. 2025, 18(10), 572; https://doi.org/10.3390/jrfm18100572 - 8 Oct 2025
Abstract
This study investigates the relationship between artificial intelligence (AI) adoption and environmental, social, and governance (ESG) performance among 100 listed Saudi Arabian firms over the period 2015–2024. Drawing on panel data regression techniques, including fixed effects models with Driscoll–Kraay standard errors, pooled OLS [...] Read more.
This study investigates the relationship between artificial intelligence (AI) adoption and environmental, social, and governance (ESG) performance among 100 listed Saudi Arabian firms over the period 2015–2024. Drawing on panel data regression techniques, including fixed effects models with Driscoll–Kraay standard errors, pooled OLS with industry and year controls, and dynamic panel estimations using system GMM, the analysis reveals a significant and positive association between AI implementation and overall ESG scores. Disaggregated analysis shows that AI adoption is particularly associated with improvements in the environmental and social dimensions, with a more moderate relationship to governance practices. To address potential issues of cross-sectional dependence and heterogeneity, the study applies the Common Correlated Effects Mean Group (CCEMG) and Mean Group (MG) estimators as robustness checks, which confirm the consistency of the main findings. In addition, the Dumitrescu–Hurlin panel Granger causality test indicates that AI adoption Granger-causes ESG performance—especially in the environmental and social dimensions—while no reverse causality is observed. The results suggest that AI technologies are positively linked to firms’ sustainability strategies and performance, supporting the integration of digital transformation into national and corporate ESG agendas, particularly in emerging markets like Saudi Arabia. Full article
32 pages, 3888 KB  
Review
AI-Driven Innovations in 3D Printing: Optimization, Automation, and Intelligent Control
by Fatih Altun, Abdulcelil Bayar, Abdulhammed K. Hamzat, Ramazan Asmatulu, Zaara Ali and Eylem Asmatulu
J. Manuf. Mater. Process. 2025, 9(10), 329; https://doi.org/10.3390/jmmp9100329 - 7 Oct 2025
Viewed by 36
Abstract
By greatly increasing automation, accuracy, and flexibility at every step of the additive manufacturing process, from design and production to quality assurance, artificial intelligence (AI) is revolutionizing the 3D printing industry. The integration of AI algorithms into 3D printing systems enables real-time optimization [...] Read more.
By greatly increasing automation, accuracy, and flexibility at every step of the additive manufacturing process, from design and production to quality assurance, artificial intelligence (AI) is revolutionizing the 3D printing industry. The integration of AI algorithms into 3D printing systems enables real-time optimization of print parameters, accurate prediction of material behavior, and early defect detection using computer vision and sensor data. Machine learning (ML) techniques further streamline the design-to-production pipeline by generating complex geometries, automating slicing processes, and enabling adaptive, self-correcting control during printing—functions that align directly with the principles of Industry 4.0/5.0, where cyber-physical integration, autonomous decision-making, and human–machine collaboration drive intelligent manufacturing systems. Along with improving operational effectiveness and product uniformity, this potent combination of AI and 3D printing also propels the creation of intelligent manufacturing systems that are capable of self-learning. This confluence has the potential to completely transform sectors including consumer products, healthcare, construction, and aerospace as it develops. This comprehensive review explores how AI enhances the capabilities of 3D printing, with a focus on process optimization, defect detection, and intelligent control mechanisms. Moreover, unresolved challenges are highlighted—including data scarcity, limited generalizability across printers and materials, certification barriers in safety-critical domains, computational costs, and the need for explainable AI. Full article
Show Figures

Figure 1

25 pages, 2551 KB  
Article
Deep-Reinforcement-Learning-Based Sliding Mode Control for Optimized Energy Management in DC Microgrids
by Monia Charfeddine, Mongi Ben Moussa and Khalil Jouili
Mathematics 2025, 13(19), 3212; https://doi.org/10.3390/math13193212 - 7 Oct 2025
Viewed by 79
Abstract
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning [...] Read more.
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning (DQL) agent that learns optimal high-level policies for charging, discharging, and load management. This dual-layer design leverages the real-time precision of SMC and the adaptive decision-making capability of DQL to achieve dynamic power sharing and balanced state-of-charge levels across storage units, thereby reducing asymmetric wear. Simulation results under variable operating scenarios showed that the proposed method significantly improvedvoltage stability, loweredthe occurrence of deep battery discharges, and decreased load shedding compared to conventional fuzzy-logic-based energymanagement, highlighting its effectiveness and resilience in the presence of renewable generation variability and fluctuating load demands. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

22 pages, 1538 KB  
Article
Research on Key Technologies and Integrated Solutions for Intelligent Mine Ventilation Systems
by Deyun Zhong, Lixue Wen, Yulong Liu, Zhaohao Wu, Liguan Wang and Xianwei Ji
Technologies 2025, 13(10), 451; https://doi.org/10.3390/technologies13100451 - 6 Oct 2025
Viewed by 83
Abstract
Intelligent ventilation systems can optimize airflow regulation to enhance mining safety and reduce energy consumption, driving green development in mineral resource extraction. This paper systematically elaborates on the overall architecture, cutting-edge advances, and core technologies of current intelligent mining ventilation. Building upon this [...] Read more.
Intelligent ventilation systems can optimize airflow regulation to enhance mining safety and reduce energy consumption, driving green development in mineral resource extraction. This paper systematically elaborates on the overall architecture, cutting-edge advances, and core technologies of current intelligent mining ventilation. Building upon this foundation, a comprehensive intelligent mine ventilation solution encompassing the entire process of ventilation design, optimization, and operation is constructed based on a five-layer architecture, integrating key technologies such as intelligent sensing, real-time solving, airflow regulation, and remote control, providing an overarching framework for smart mine ventilation development. To address the computational efficiency bottleneck of traditional methods, an improved loop-solving method based on minimal independent closed loops is realized, achieving near real-time analysis of ventilation networks. Furthermore, a multi-level airflow regulation strategy is realized, including the methods of optimization control based on mixed integer linear programming and equipment-driven demand-based regulation, effectively resolving the challenges of calculating nonlinear programming models. Case studies indicate that the intelligent ventilation system significantly enhances mine safety and efficiency, leading to approximately 10–20% energy saving, a 40–60% quicker emergency response, and an average increase of about 20% in the utilization of fresh air at working faces through its remote and real-time control capabilities. Full article
33 pages, 2954 KB  
Review
Classification Evolution, Control Strategy Innovation, and Future Challenges of Vehicle Suspension Systems: A Review
by Yixin Mei, Ruochen Wang, Renkai Ding and Yu Jiang
Actuators 2025, 14(10), 485; https://doi.org/10.3390/act14100485 - 6 Oct 2025
Viewed by 254
Abstract
The suspension system can adapt to different road excitations by adjusting its own stiffness or damping, or outputting active driving force, thereby improving the comprehensive dynamic performance of the vehicle, including ride comfort and vehicle handling. As the automotive industry’s requirements for “intelligence, [...] Read more.
The suspension system can adapt to different road excitations by adjusting its own stiffness or damping, or outputting active driving force, thereby improving the comprehensive dynamic performance of the vehicle, including ride comfort and vehicle handling. As the automotive industry’s requirements for “intelligence, comfort, and safety” continue to increase, the intelligence of suspension systems has become a research hotspot for scientific research institutions and enterprises, with broad development prospects. This article reviews the current development status of automotive suspensions and introduces the working principles and research status of different types of suspension systems, such as passive suspensions, semi-active suspensions, active suspensions, and electromagnetic suspensions. In addition, it summarizes the control methods of vehicle intelligent suspensions, including classical control, modern control, and intelligent control, and expounds the advantages and disadvantages of each control strategy. Finally, it summarizes the challenges and development trends faced by suspension systems. This review can provide technical reference for researchers engaged in the study of intelligent suspension under the modern chassis architecture and offer direction guidance for the development of key suspension technologies. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

31 pages, 1677 KB  
Review
A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review
by Pooya Parvizi, Alireza Mohammadi Amidi, Mohammad Reza Zangeneh, Jordi-Roger Riba and Milad Jalilian
Eng 2025, 6(10), 267; https://doi.org/10.3390/eng6100267 - 6 Oct 2025
Viewed by 332
Abstract
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating [...] Read more.
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating points, often fail to maintain stability under large load and generation fluctuations. Optimization-based methods are highly sensitive to model inaccuracies and parameter uncertainties, reducing their reliability in dynamic environments. Intelligent approaches, such as fuzzy logic and ML-based controllers, provide adaptability but suffer from high computational demands, limited interpretability, and challenges in real-time deployment. These limitations highlight the need for robust control strategies that can guarantee reliable operation despite disturbances, uncertainties, and varying operating conditions. Numerical performance indices demonstrate that the reviewed robust control strategies outperform conventional linear, optimization-based, and intelligent controllers in terms of system stability, voltage and current regulation, and dynamic response. This paper provides a comprehensive review of recent robust control strategies for hybrid AC/DC microgrids, systematically categorizing classical model-based, intelligent, and adaptive approaches. Key research gaps are identified, including the lack of unified benchmarking, limited experimental validation, and challenges in integrating decentralized frameworks. Unlike prior surveys that broadly cover microgrid types, this work focuses exclusively on hybrid AC/DC systems, emphasizing hierarchical control architectures and outlining future directions for scalable and certifiable robust controllers. Also, comparative results demonstrate that state of the art robust controllers—including H∞-based, sliding mode, and hybrid intelligent controllers—can achieve performance improvements for metrics such as voltage overshoot, frequency settling time, and THD compared to conventional PID and droop controllers. By synthesizing recent advancements and identifying critical research gaps, this work lays the groundwork for developing robust control strategies capable of ensuring stability and adaptability in future hybrid AC/DC microgrids. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

23 pages, 1883 KB  
Review
Multisensor Data Fusion-Driven Digital Twins in Computer Numerical Control Machining: A Review
by Yang Cao
Machines 2025, 13(10), 921; https://doi.org/10.3390/machines13100921 - 6 Oct 2025
Viewed by 101
Abstract
As key equipment in the manufacturing industry, computer numerical control (CNC) machines need to meet the ever-increasing demands for high automation, intelligence, and integration. Since its introduction in 2003, digital twin (DT) has seen its broad applications in various areas, such as product [...] Read more.
As key equipment in the manufacturing industry, computer numerical control (CNC) machines need to meet the ever-increasing demands for high automation, intelligence, and integration. Since its introduction in 2003, digital twin (DT) has seen its broad applications in various areas, such as product design, process monitoring, quality control, and fault diagnosis. A DT creates a virtual replica of the physical system by integrating real-time data with simulation technologies, providing new possibilities to make CNC machining more intelligent. In the past decade, extensive research has been conducted on the implementation of CNC machining DTs (CNCDTs). This paper focuses specifically on multisensor data fusion-driven CNCDTs by introducing key technologies including sensors, data fusion, and CNCDT architecture. A comprehensive survey is conducted on existing studies of CNCDTs according to their application areas, followed by critical analysis on existing challenges. This review summarizes the current progress of CNCDTs and provides guidance for further development. Full article
(This article belongs to the Special Issue Smart Tools in Advanced Machining)
Show Figures

Figure 1

28 pages, 3034 KB  
Review
Review of Thrust Vectoring Technology Applications in Unmanned Aerial Vehicles
by Yifan Luo, Bo Cui and Hongye Zhang
Drones 2025, 9(10), 689; https://doi.org/10.3390/drones9100689 - 6 Oct 2025
Viewed by 284
Abstract
Thrust vectoring technology significantly improves the manoeuvrability and environmental adaptability of unmanned aerial vehicles by dynamically regulating the direction and magnitude of thrust. In this paper, the principles and applications of mechanical thrust vectoring technology, fluidic thrust vectoring technology and the distributed electric [...] Read more.
Thrust vectoring technology significantly improves the manoeuvrability and environmental adaptability of unmanned aerial vehicles by dynamically regulating the direction and magnitude of thrust. In this paper, the principles and applications of mechanical thrust vectoring technology, fluidic thrust vectoring technology and the distributed electric propulsion system are systematically reviewed. It is shown that the mechanical vector nozzle can achieve high-precision control but has structural burdens, the fluidic thrust vectoring technology improves the response speed through the design of no moving parts but is accompanied by the loss of thrust, and the distributed electric propulsion system improves the hovering efficiency compared with the traditional helicopter. Addressing multi-physics coupling and non-linear control challenges in unmanned aerial vehicles, this paper elucidates the disturbance compensation advantages of self-disturbance rejection control technology and the optimal path generation capabilities of an enhanced path planning algorithm. These two approaches offer complementary technical benefits: the former ensures stable flight attitude, while the latter optimises flight trajectory efficiency. Through case studies such as the Skate demonstrator, the practical value of these technologies in enhancing UAV manoeuvrability and adaptability is further demonstrated. However, thermal management in extreme environments, energy efficiency and lack of standards are still bottlenecks in engineering. In the future, breakthroughs in high-temperature-resistant materials and intelligent control architectures are needed to promote the development of UAVs towards ultra-autonomous operation. This paper provides a systematic reference for the theory and application of thrust vectoring technology. Full article
Show Figures

Figure 1

18 pages, 4365 KB  
Article
Thermo-Mechanical Coupled Characteristics for the Non-Axisymmetric Outer Ring of the High-Speed Rail Axle Box Bearing with Embedded Intelligent Sensor Slots
by Longkai Wang, Can Hu, Fengyuan Liu and Hongbin Tang
Symmetry 2025, 17(10), 1667; https://doi.org/10.3390/sym17101667 - 6 Oct 2025
Viewed by 173
Abstract
As high-speed railway systems continue to develop toward intelligent operation, axle box bearings integrated with sensors have become key components for real-time condition monitoring. However, introducing sensor-embedded slots disrupts the structural continuity and thermal conduction paths of traditional bearing rings. This results in [...] Read more.
As high-speed railway systems continue to develop toward intelligent operation, axle box bearings integrated with sensors have become key components for real-time condition monitoring. However, introducing sensor-embedded slots disrupts the structural continuity and thermal conduction paths of traditional bearing rings. This results in localized stress concentrations and thermal distortion, which compromise the bearing’s overall performance and service life. This study focuses on a double-row tapered roller bearing used in axle boxes and develops a multi-physics finite element model incorporating the effects of sensor-embedded grooves, based on Hertzian contact theory and the Palmgren frictional heat model. Both contact load verification and thermo-mechanical coupling analysis were performed to evaluate the influence of two key design parameters—groove depth and arc length—on equivalent stress, temperature distribution, and thermo-mechanical coupling deformation. The results show that the embedded slot structure significantly alters the local thermodynamic response. Especially when the slot depth reaches a certain value, both stress and deformation due to thermo-mechanical effects exhibit obvious nonlinear escalation. During the design process, the length and depth of the arc-shaped embedded slot, among other parameters, should be strictly controlled. The study of the stress and temperature characteristics under the thermos-mechanical coupling effect of the axle box bearing is of crucial importance for the design of the intelligent bearing body structure and safety assessment. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 1043 KB  
Article
Multi-Criteria Decision-Making Algorithm Selection and Adaptation for Performance Improvement of Two Stroke Marine Diesel Engines
by Hla Gharib and György Kovács
J. Mar. Sci. Eng. 2025, 13(10), 1916; https://doi.org/10.3390/jmse13101916 - 5 Oct 2025
Viewed by 247
Abstract
Selecting an appropriate Multi-Criteria Decision-Making (MCDM) algorithm for optimizing marine diesel engine operation presents a complex challenge due to the diversity in mathematical formulations, normalization schemes, and trade-off resolutions across methods. This study systematically evaluates fourteen MCDM algorithms, which are grouped into five [...] Read more.
Selecting an appropriate Multi-Criteria Decision-Making (MCDM) algorithm for optimizing marine diesel engine operation presents a complex challenge due to the diversity in mathematical formulations, normalization schemes, and trade-off resolutions across methods. This study systematically evaluates fourteen MCDM algorithms, which are grouped into five primary methodological categories: Scoring-Based, Distance-Based, Pairwise Comparison, Outranking, and Hybrid/Intelligent System-Based methods. The goal is to identify the most suitable algorithm for real-time performance optimization of two stroke marine diesel engines. Using Diesel-RK software, calibrated for marine diesel applications, simulations were performed on a variant of the MAN-B&W-S60-MC-C8-8 engine. A refined five-dimensional parameter space was constructed by systematically varying five key control variables: Start of Injection (SOI), Dwell Time, Fuel Mass Fraction, Fuel Rail Pressure, and Exhaust Valve Timing. A subset of 4454 high-potential alternatives was systematically evaluated according to three equally important criteria: Specific Fuel Consumption (SFC), Nitrogen Oxides (NOx), and Particulate Matter (PM). The MCDM algorithms were evaluated based on ranking consistency and stability. Among them, Proximity Indexed Value (PIV), Integrated Simple Weighted Sum Product (WISP), and TriMetric Fusion (TMF) emerged as the most stable and consistently aligned with the overall consensus. These methods reliably identified optimal engine control strategies with minimal sensitivity to normalization, making them the most suitable candidates for integration into automated marine engine decision-support systems. The results underscore the importance of algorithm selection and provide a rigorous basis for establishing MCDM in emission-constrained maritime environments. This study is the first comprehensive, simulation-based evaluation of fourteen MCDM algorithms applied specifically to the optimization of two stroke marine diesel engines using Diesel-RK software. Full article
(This article belongs to the Special Issue Marine Equipment Intelligent Fault Diagnosis)
Show Figures

Figure 1

24 pages, 4205 KB  
Article
Mechanism and Data-Driven Grain Condition Information Perception Method for Comprehensive Grain Storage Monitoring
by Yunshandan Wu, Ji Zhang, Xinze Li, Yaqiu Zhang, Wenfu Wu and Yan Xu
Foods 2025, 14(19), 3426; https://doi.org/10.3390/foods14193426 - 5 Oct 2025
Viewed by 200
Abstract
Conventional grain monitoring systems often rely on isolated data points (e.g., point-based temperature measurements), limiting holistic condition assessment. This study proposes a novel Mechanism and Data Driven (MDD) framework that integrates physical mechanisms with real-time sensor data. The framework quantitatively analyzes solar radiation [...] Read more.
Conventional grain monitoring systems often rely on isolated data points (e.g., point-based temperature measurements), limiting holistic condition assessment. This study proposes a novel Mechanism and Data Driven (MDD) framework that integrates physical mechanisms with real-time sensor data. The framework quantitatively analyzes solar radiation and external air temperature effects on silo boundaries and introduces a novel interpolation-optimized model parameter initialization technique to enable comprehensive grain condition perception. Rigorous multidimensional validation confirms the method’s accuracy: The novel initialization technique achieved high precision, demonstrating only 1.89% error in Day-2 low-temperature zone predictions (27.02 m2 measured vs. 26.52 m2 simulated). Temperature fields were accurately reconstructed (≤0.5 °C deviation in YOZ planes), capturing spatiotemporal dynamics with ≤0.45 m2 maximum low-temperature zone deviation. Cloud map comparisons showed superior simulation fidelity (SSIM > 0.97). Further analysis revealed a 22.97% reduction in total low-temperature zone area (XOZ plane), with Zone 1 (near south exterior wall) declining 27.64%, Zone 2 (center) 25.30%, and Zone 3 20.35%. For dynamic evolution patterns, high-temperature zones exhibit low moisture (<14%), while low-temperature zones retain elevated moisture (>14%). A strong positive correlation between temperature and relative humidity fields; temperature homogenization drives humidity uniformity. The framework enables holistic monitoring, providing actionable insights for smart ventilation control, condensation risk warnings, and mold prevention. It establishes a robust foundation for intelligent grain storage management, ultimately reducing post-harvest losses. Full article
Show Figures

Figure 1

14 pages, 920 KB  
Article
AI-Based Facial Emotion Analysis for Early and Differential Diagnosis of Dementia
by Letizia Bergamasco, Anita Coletta, Gabriella Olmo, Aurora Cermelli, Elisa Rubino and Innocenzo Rainero
Bioengineering 2025, 12(10), 1082; https://doi.org/10.3390/bioengineering12101082 - 4 Oct 2025
Viewed by 359
Abstract
Early and differential diagnosis of dementia is essential for timely and targeted care. This study investigated the feasibility of using an artificial intelligence (AI)-based system to discriminate between different stages and etiologies of dementia by analyzing facial emotions. We collected video recordings of [...] Read more.
Early and differential diagnosis of dementia is essential for timely and targeted care. This study investigated the feasibility of using an artificial intelligence (AI)-based system to discriminate between different stages and etiologies of dementia by analyzing facial emotions. We collected video recordings of 64 participants exposed to standardized audio-visual stimuli. Facial emotion features in terms of valence and arousal were extracted and used to train machine learning models on multiple classification tasks, including distinguishing individuals with mild cognitive impairment (MCI) and overt dementia from healthy controls (HCs) and differentiating Alzheimer’s disease (AD) from other types of cognitive impairment. Nested cross-validation was adopted to evaluate the performance of different tested models (K-Nearest Neighbors, Logistic Regression, and Support Vector Machine models) and optimize their hyperparameters. The system achieved a cross-validation accuracy of 76.0% for MCI vs. HCs, 73.6% for dementia vs. HCs, and 64.1% in the three-class classification (MCI vs. dementia vs. HCs). Among cognitively impaired individuals, a 75.4% accuracy was reached in distinguishing AD from other etiologies. These results demonstrated the potential of AI-driven facial emotion analysis as a non-invasive tool for early detection of cognitive impairment and for supporting differential diagnosis of AD in clinical settings. Full article
Show Figures

Figure 1

18 pages, 552 KB  
Article
A Novel Convolutional Vision Transformer Network for Effective Level-of-Detail Awareness in Digital Twins
by Min-Seo Yang, Ji-Wan Kim and Hyun-Suk Lee
Electronics 2025, 14(19), 3942; https://doi.org/10.3390/electronics14193942 - 4 Oct 2025
Viewed by 275
Abstract
In this paper, we propose a novel integrated model architecture, called a level-of-detail (LoD)-aware convolutional vision transformer network (LCvT). It is designed to enhance digital twin (DT) synchronization by effectively integrating LoD awareness in DTs through hierarchical image classification. LCvT employs a vision [...] Read more.
In this paper, we propose a novel integrated model architecture, called a level-of-detail (LoD)-aware convolutional vision transformer network (LCvT). It is designed to enhance digital twin (DT) synchronization by effectively integrating LoD awareness in DTs through hierarchical image classification. LCvT employs a vision transformer (ViT)-based backbone coupled with dedicated branch networks for each LoD. This integration of ViT and branch networks ensures that key features are accurately detected and tailored to the specific objectives of each detail level while also efficiently extracting common features across all levels. Furthermore, LCvT leverages a coarse-to-fine inference strategy and incorporates an early exit mechanism for each LoD, which significantly reduces computational overhead without compromising accuracy. This design enables a single model to dynamically adapt to varying LoD requirements in real-time, offering substantial improvements in inference time and resource efficiency compared to deploying separate models for each level. Through extensive experiments on benchmark datasets, we demonstrate that LCvT outperforms existing methods in accuracy and efficiency across all LoDs, especially in DT synchronization scenarios where LoD requirements fluctuate dynamically. Full article
(This article belongs to the Special Issue Data-Centric Artificial Intelligence: New Methods for Data Processing)
Show Figures

Figure 1

16 pages, 1895 KB  
Article
Modernization of Hoisting Operations Through the Design of an Automated Skip Loading System—Enhancing Efficiency and Sustainability
by Keane Baulen Size, Rejoice Moyo, Richard Masethe, Tawanda Zvarivadza and Moshood Onifade
Mining 2025, 5(4), 62; https://doi.org/10.3390/mining5040062 - 4 Oct 2025
Viewed by 158
Abstract
This study presents the design and validation of an automated skip loading system for vertical shaft hoisting operations, aimed at addressing inefficiencies in current manual systems that contribute to consistent underperformance in meeting daily production targets. Initial assessments revealed a task completion rate [...] Read more.
This study presents the design and validation of an automated skip loading system for vertical shaft hoisting operations, aimed at addressing inefficiencies in current manual systems that contribute to consistent underperformance in meeting daily production targets. Initial assessments revealed a task completion rate of 91.6%, largely due to delays and inaccuracies in manual ore loading and accounting. To resolve these challenges, an automated system was developed using a bin and conveyor mechanism integrated with a suite of industrial automation components, including a programmable logic controller (PLC), stepper motors, hydraulic cylinders, ultrasonic sensors, and limit switches. The system is designed to transport ore from the draw point, halt when one ton is detected, and activate the hoisting process automatically. Digital simulations demonstrated that the automated system reduced loading time by 12% and increased utilization by 16.6%, particularly by taking advantage of the 2 h post-blast idle period. Financial evaluation of the system revealed a positive Net Present Value (NPV) of $1,019,701, a return on investment (ROI) of 69.7% over four years, and a payback period of 2 years and 11 months. The study concludes that the proposed solution significantly improves operational efficiency and recommends further enhancements to the hoisting infrastructure to fully optimize performance. Full article
(This article belongs to the Special Issue Mine Automation and New Technologies, 2nd Edition)
Show Figures

Figure 1

Back to TopTop