Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (517)

Search Parameters:
Keywords = intelligent sensing technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 4818 KB  
Review
Intelligent Gas Sensors: From Mechanism to Applications
by Jianghong Wei, Qing Peng, Yuee Xie and Yuanping Chen
Sensors 2025, 25(20), 6321; https://doi.org/10.3390/s25206321 (registering DOI) - 13 Oct 2025
Abstract
Intelligent gas sensors are indispensable devices widely used in modern society for environmental monitoring, healthcare, the food industry, and public safety. Recent advancements in wireless communication, cloud storage, computing technologies, and artificial intelligence algorithms have significantly enhanced the intelligence level and performance requirements [...] Read more.
Intelligent gas sensors are indispensable devices widely used in modern society for environmental monitoring, healthcare, the food industry, and public safety. Recent advancements in wireless communication, cloud storage, computing technologies, and artificial intelligence algorithms have significantly enhanced the intelligence level and performance requirements of these sensors. Particularly in the Internet of Things (IoT) environment, flexible and wearable gas sensors are playing an increasingly important role due to their convenience and real-time monitoring capabilities. This review systematically summarizes the latest progress in intelligent gas sensors, covering conceptual frameworks, working principles, and applications across various fields, as well as the construction of IoT networks using sensor arrays. It provides a comprehensive assessment of recent advancements in intelligent gas sensing technologies, highlighting innovations in device architecture, functional mechanisms, and performance in diverse application environments. Special emphasis is placed on transformative developments in flexible and wearable sensor platforms and the enhanced intelligence achieved through the integration of advanced computational algorithms and machine learning techniques. Finally, a summary and future prospects are presented. Despite significant progress, intelligent gas sensors still face challenges related to sensing accuracy, stability, and cost in future applications. Full article
(This article belongs to the Special Issue Feature Review Papers in Intelligent Sensors)
21 pages, 4623 KB  
Article
Combining Neural Architecture Search and Weight Reshaping for Optimized Embedded Classifiers in Multisensory Glove
by Hiba Al Youssef, Sara Awada, Mohamad Raad, Maurizio Valle and Ali Ibrahim
Sensors 2025, 25(19), 6142; https://doi.org/10.3390/s25196142 - 4 Oct 2025
Viewed by 228
Abstract
Intelligent sensing systems are increasingly used in wearable devices, enabling advanced tasks across various application domains including robotics and human–machine interaction. Ensuring these systems are energy autonomous is highly demanded, despite strict constraints on power, memory and processing resources. To meet these requirements, [...] Read more.
Intelligent sensing systems are increasingly used in wearable devices, enabling advanced tasks across various application domains including robotics and human–machine interaction. Ensuring these systems are energy autonomous is highly demanded, despite strict constraints on power, memory and processing resources. To meet these requirements, embedded neural networks must be optimized to achieve a balance between accuracy and efficiency. This paper presents an integrated approach that combines Hardware-Aware Neural Architecture Search (HW-NAS) with optimization techniques—weight reshaping, quantization, and their combination—to develop efficient classifiers for a multisensory glove. HW-NAS automatically derives 1D-CNN models tailored to the NUCLEO-F401RE board, while the additional optimization further reduces model size, memory usage, and latency. Across three datasets, the optimized models not only improve classification accuracy but also deliver an average reduction of 75% in inference time, 69% in flash memory, and more than 45% in RAM compared to NAS-only baselines. These results highlight the effectiveness of integrating NAS with optimization techniques, paving the way towards energy-autonomous wearable systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Sensing and Intelligent Sensors 2025)
Show Figures

Figure 1

30 pages, 401 KB  
Systematic Review
Explainable Artificial Intelligence and Machine Learning for Air Pollution Risk Assessment and Respiratory Health Outcomes: A Systematic Review
by Israel Edem Agbehadji and Ibidun Christiana Obagbuwa
Atmosphere 2025, 16(10), 1154; https://doi.org/10.3390/atmos16101154 - 1 Oct 2025
Viewed by 225
Abstract
Air pollution is a leading environmental risk that causes respiratory morbidity and mortality. The increasing availability of high-resolution environmental data and air pollution-related health cases have accelerated the use of machine learning models (ML) to estimate environmental exposure–response relationships, forecast health risks and [...] Read more.
Air pollution is a leading environmental risk that causes respiratory morbidity and mortality. The increasing availability of high-resolution environmental data and air pollution-related health cases have accelerated the use of machine learning models (ML) to estimate environmental exposure–response relationships, forecast health risks and call for the needed policy and practical interventions. Unfortunately, ML models are opaque, in a sense that, it is unclear how these models combine various data inputs to make a concise decision. Thus, limiting its trust and use in clinical matters. Explainable artificial intelligence (xAI) models offer the necessary techniques to ensure transparent and interpretable models. This systematic review explores online data repositories through the lens of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline to synthesize articles from 2020 to 2025. Various inclusion and exclusion criteria were established to narrow the search to a final selection of 92 articles, which were thoroughly reviewed by independent researchers to reduce bias in article assessment. Equally, the ROBINS-I (Risk Of Bias In Non-randomized Studies of Interventions) domain strategy was helpful in further reducing any possible risk in the article assessment and its reproducibility. The findings reveal a growing adoption of ML techniques such as random forests, XGBoost, parallel lightweight diagnosis models and deep neural networks for health risk prediction, with SHAP (SHapley Additive exPlanations) emerging as the dominant technique for these models’ interpretability. The extremely randomized tree (ERT) technique demonstrated optimal performance but lacks explainability. Moreover, the limitations of these models include generalizability, data limitations and policy translation. This review’s outcome suggests limited research on the integration of LIME (Local Interpretable Model-Agnostic Explanations) in the current ML model; it recommends that future research could focus on causal-xAI-ML models. Again, the use of such models in respiratory health issues may be complemented with a medical professional’s opinion. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

49 pages, 517 KB  
Review
A Comprehensive Review of Data-Driven Techniques for Air Pollution Concentration Forecasting
by Jaroslaw Bernacki and Rafał Scherer
Sensors 2025, 25(19), 6044; https://doi.org/10.3390/s25196044 - 1 Oct 2025
Viewed by 585
Abstract
Air quality is crucial for public health and the environment, which makes it important to both monitor and forecast the level of pollution. Polluted air, containing harmful substances such as particulate matter, nitrogen oxides, or ozone, can lead to serious respiratory and circulatory [...] Read more.
Air quality is crucial for public health and the environment, which makes it important to both monitor and forecast the level of pollution. Polluted air, containing harmful substances such as particulate matter, nitrogen oxides, or ozone, can lead to serious respiratory and circulatory diseases, especially in people at risk. Air quality forecasting allows for early warning of smog episodes and taking actions to reduce pollutant emissions. In this article, we review air pollutant concentration forecasting methods, analyzing both classical statistical approaches and modern techniques based on artificial intelligence, including deep models, neural networks, and machine learning, as well as advanced sensing technologies. This work aims to present the current state of research and identify the most promising directions of development in air quality modeling, which can contribute to more effective health and environmental protection. According to the reviewed literature, deep learning–based models, particularly hybrid and attention-driven architectures, emerge as the most promising approaches, while persistent challenges such as data quality, interpretability, and integration of heterogeneous sensing systems define the open issues for future research. Full article
(This article belongs to the Special Issue Smart Gas Sensor Applications in Environmental Change Monitoring)
Show Figures

Figure 1

17 pages, 2347 KB  
Article
A Convolutional Neural Network-Based Vehicle Security Enhancement Model: A South African Case Study
by Thapelo Samuel Matlala, Michael Moeti, Khuliso Sigama and Relebogile Langa
Appl. Sci. 2025, 15(19), 10584; https://doi.org/10.3390/app151910584 - 30 Sep 2025
Viewed by 197
Abstract
This paper applies a Convolutional Neural Network (CNN)-based vehicle security enhancement model, with a specific focus on the South African context. While conventional security systems, including immobilizers, alarms, steering locks, and GPS trackers, provide a baseline level of protection, they are increasingly being [...] Read more.
This paper applies a Convolutional Neural Network (CNN)-based vehicle security enhancement model, with a specific focus on the South African context. While conventional security systems, including immobilizers, alarms, steering locks, and GPS trackers, provide a baseline level of protection, they are increasingly being circumvented by technologically adept adversaries. These limitations have spurred the development of advanced security solutions leveraging artificial intelligence (AI), with a particular emphasis on computer vision and deep learning techniques. This paper presents a CNN-based Vehicle Security Enhancement Model (CNN-based VSEM) that integrates facial recognition with GSM and GPS technologies to provide a robust, real-time security solution in South Africa. This study contributes a novel integration of CNN-based authentication with GSM and GPS tracking in the South African context, validated on a functional prototype.The prototype, developed on a Raspberry Pi 4 platform, was validated through practical demonstrations and user evaluations. The system achieved an average recognition accuracy of 85.9%, with some identities reaching 100% classification accuracy. While misclassifications led to an estimated False Acceptance Rate (FAR) of ~5% and False Rejection Rate (FRR) of ~12%, the model consistently enabled secure authentication. Preliminary latency tests indicated a decision time of approximately 1.8 s from image capture to ignition authorization. These results, together with positive user feedback, confirm the model’s feasibility and reliability. This integrated approach presents a promising advancement in intelligent vehicle security for regions with high rates of vehicle theft. Future enhancements will explore the incorporation of 3D sensing, infrared imaging, and facial recognition capable of handling variations in facial appearance. Additionally, the model is designed to detect authorized users, identify suspicious behaviour in the vicinity of the vehicle, and provide an added layer of protection against unauthorized access. Full article
Show Figures

Figure 1

42 pages, 5042 KB  
Review
A Comprehensive Review of Remote Sensing and Artificial Intelligence Integration: Advances, Applications, and Challenges
by Nikolay Kazanskiy, Roman Khabibullin, Artem Nikonorov and Svetlana Khonina
Sensors 2025, 25(19), 5965; https://doi.org/10.3390/s25195965 - 25 Sep 2025
Viewed by 1290
Abstract
The integration of remote sensing (RS) and artificial intelligence (AI) has revolutionized Earth observation, enabling automated, efficient, and precise analysis of vast and complex datasets. RS techniques, leveraging satellite imagery, aerial photography, and ground-based sensors, provide critical insights into environmental monitoring, disaster response, [...] Read more.
The integration of remote sensing (RS) and artificial intelligence (AI) has revolutionized Earth observation, enabling automated, efficient, and precise analysis of vast and complex datasets. RS techniques, leveraging satellite imagery, aerial photography, and ground-based sensors, provide critical insights into environmental monitoring, disaster response, agriculture, and urban planning. The rapid developments in AI, specifically machine learning (ML) and deep learning (DL), have significantly enhanced the processing and interpretation of RS data. AI-powered models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and reinforcement learning (RL) algorithms, have demonstrated remarkable capabilities in feature extraction, classification, anomaly detection, and predictive modeling. This paper provides a comprehensive survey of the latest developments at the intersection of RS and AI, highlighting key methodologies, applications, and emerging challenges. While AI-driven RS offers unprecedented opportunities for automation and decision-making, issues related to model generalization, explainability, data heterogeneity, and ethical considerations remain significant hurdles. The review concludes by discussing future research directions, emphasizing the need for improved model interpretability, multimodal learning, and real-time AI deployment for global-scale applications. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

30 pages, 1350 KB  
Review
Mango Quality Assessment Using Near-Infrared Spectroscopy and Hyperspectral Imaging: A Systematic Review
by Ramesh Kumar Chaudhary, Arjun Neupane, Zhenglin Wang and Kerry Walsh
Agronomy 2025, 15(10), 2271; https://doi.org/10.3390/agronomy15102271 - 25 Sep 2025
Viewed by 1846
Abstract
Mango is considered a high-value tropical fruit, and its commercial and consumer acceptance depends on internal and external quality attributes such as Total Soluble Solids (TSS), Dry Matter Content (DMC), firmness, ripeness, and surface defects. In recent years, non-destructive sensing technologies such as [...] Read more.
Mango is considered a high-value tropical fruit, and its commercial and consumer acceptance depends on internal and external quality attributes such as Total Soluble Solids (TSS), Dry Matter Content (DMC), firmness, ripeness, and surface defects. In recent years, non-destructive sensing technologies such as Near-Infrared Spectroscopy (NIRS) and Hyperspectral Imaging (HSI) have gained prominence for their ability to quickly and accurately evaluate mango quality. In this study, 101 articles published within the last ten years, were systematically retrieved, and 85 research papers were selected for detailed analysis. The review focuses on statistical analysis, conventional machine learning, deep learning, and transformer-based methods applied to mango quality assessment. The objective is to systematically review and analyse data-driven models for non-destructive mango grading using NIRS and HSI technologies, with particular emphasis on data collection methods, preprocessing techniques, dimensionality reduction, and predictive modelling approaches. This review aims to identify the most effective and widely adopted machine learning and deep learning methods, especially transformer models, for accurate and real-time mango quality assessment. Furthermore, it highlights key quality traits evaluated, current research gaps, and future opportunities to advance intelligent, real-time, and automated mango grading systems for practical use in the fruit industry. Full article
Show Figures

Figure 1

21 pages, 2310 KB  
Article
Development of a Model for Detecting Spectrum Sensing Data Falsification Attack in Mobile Cognitive Radio Networks Integrating Artificial Intelligence Techniques
by Lina María Yara Cifuentes, Ernesto Cadena Muñoz and Rafael Cubillos Sánchez
Algorithms 2025, 18(10), 596; https://doi.org/10.3390/a18100596 - 24 Sep 2025
Viewed by 275
Abstract
Mobile Cognitive Radio Networks (MCRNs) have emerged as a promising solution to address spectrum scarcity by enabling dynamic access to underutilized frequency bands assigned to Primary or Licensed Users (PUs). These networks rely on Cooperative Spectrum Sensing (CSS) to identify available spectrum, but [...] Read more.
Mobile Cognitive Radio Networks (MCRNs) have emerged as a promising solution to address spectrum scarcity by enabling dynamic access to underutilized frequency bands assigned to Primary or Licensed Users (PUs). These networks rely on Cooperative Spectrum Sensing (CSS) to identify available spectrum, but this collaborative approach also introduces vulnerabilities to security threats—most notably, Spectrum Sensing Data Falsification (SSDF) attacks. In such attacks, malicious nodes deliberately report false sensing information, undermining the reliability and performance of the network. This paper investigates the application of machine learning techniques to detect and mitigate SSDF attacks in MCRNs, particularly considering the additional challenges introduced by node mobility. We propose a hybrid detection framework that integrates a reputation-based weighting mechanism with Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) classifiers to improve detection accuracy and reduce the influence of falsified data. Experimental results on software defined radio (SDR) demonstrate that the proposed method significantly enhances the system’s ability to identify malicious behavior, achieving high detection accuracy, reduces the rate of data falsification by approximately 5–20%, increases the probability of attack detection, and supports the dynamic creation of a blacklist to isolate malicious nodes. These results underscore the potential of combining machine learning with trust-based mechanisms to strengthen the security and reliability of mobile cognitive radio networks. Full article
Show Figures

Figure 1

33 pages, 4951 KB  
Review
GIS Applications in Monitoring and Managing Heavy Metal Contamination of Water Resources
by Gabriel Murariu, Silvius Stanciu, Lucian Dinca and Dan Munteanu
Appl. Sci. 2025, 15(19), 10332; https://doi.org/10.3390/app151910332 - 23 Sep 2025
Viewed by 487
Abstract
Heavy metal contamination of aquatic systems represents a critical environmental and public health concern due to the persistence, toxicity, and bioaccumulative potential of these elements. Geographic information systems (GISs) have emerged as indispensable tools for the spatial assessment and management of heavy metals [...] Read more.
Heavy metal contamination of aquatic systems represents a critical environmental and public health concern due to the persistence, toxicity, and bioaccumulative potential of these elements. Geographic information systems (GISs) have emerged as indispensable tools for the spatial assessment and management of heavy metals (HMs) in water resources. This review systematically synthesizes current research on GIS applications in detecting, monitoring, and modeling heavy metal pollution in surface and groundwater. A bibliometric analysis highlights five principal research directions: (i) global research trends on GISs and heavy metals in water, (ii) occurrence of HMs in relation to World Health Organization (WHO) permissible limits, (iii) GIS-based modeling frameworks for contamination assessment, (iv) identification of pollution sources, and (v) health risk evaluations through geospatial analyses. Case studies demonstrate the adaptability of GISs across multiple spatial scales, ranging from localized aquifers and river basins to regional hydrological systems, with frequent integration of advanced statistical techniques, remote sensing data, and machine learning approaches. Evidence indicates that concentrations of some HMs often surpass WHO thresholds, posing substantial risks to human health and aquatic ecosystems. Furthermore, GIS-supported analyses increasingly function as decision support systems, providing actionable insights for policymakers, environmental managers, and public health authorities. The synthesis presented herein confirms that the GIS is evolving beyond a descriptive mapping tool into a predictive, integrative framework for environmental governance. Future research directions should focus on coupling GISs with real-time monitoring networks, artificial intelligence, and transdisciplinary collaborations to enhance the precision, accessibility, and policy relevance of heavy metal risk assessments in water resources. Full article
(This article belongs to the Special Issue GIS-Based Spatial Analysis for Environmental Applications)
Show Figures

Figure 1

40 pages, 7450 KB  
Systematic Review
A Systematic Review of AI-Based Classifications Used in Agricultural Monitoring in the Context of Achieving the Sustainable Development Goals
by Vasile Adrian Nan, Gheorghe Badea, Ana Cornelia Badea and Anca Patricia Grădinaru
Sustainability 2025, 17(19), 8526; https://doi.org/10.3390/su17198526 - 23 Sep 2025
Viewed by 820
Abstract
The integration of Artificial Intelligence (AI) into remote sensing data classification has revolutionized agriculture and environmental monitoring. AI is one of the main technologies used in smart farming that enhances and optimizes the sustainability of agricultural production. The use of AI in agriculture [...] Read more.
The integration of Artificial Intelligence (AI) into remote sensing data classification has revolutionized agriculture and environmental monitoring. AI is one of the main technologies used in smart farming that enhances and optimizes the sustainability of agricultural production. The use of AI in agriculture can involve land use mapping and crop detection, crop yield monitoring, flood-prone area detection, pest disease monitoring, droughts prediction, soil content analysis and soil production capacity detection, and for monitoring the evolution of forests and vegetation. This review examines recent advancements in AI-driven classification techniques for various applications regarding agriculture and environmental monitoring to answer the following research questions: (1) What are the main problems that can be solved through incorporating AI-driven classification techniques into the field of smart agriculture and environmental monitoring? (2) What are the main methods and strategies used in this technology? (3) What type of data can be used in this regard? For this study, a systematic literature review approach was adopted, analyzing publications from Scopus and WoS (Web of Science) between 1 January 2020 and 31 December 2024. By synthesizing recent developments, this review provides valuable insights for researchers, highlighting the current trends, challenges and future research directions, in the context of achieving the Sustainable Development Goals. Full article
Show Figures

Figure 1

29 pages, 3643 KB  
Systematic Review
Soil Nutrient Monitoring Technologies for Sustainable Agriculture: A Systematic Review
by Doaa M. Sobhy and Aavudai Anandhi
Sustainability 2025, 17(18), 8477; https://doi.org/10.3390/su17188477 - 22 Sep 2025
Viewed by 1439
Abstract
Soil nutrient monitoring plays a vital role in advancing sustainable agriculture by maintaining soil health, optimizing crop productivity, and minimizing environmental impacts. This study addresses gaps in unified definitions and standard methodologies by systematically analyzing 93 articles using the Preferred Reporting Items for [...] Read more.
Soil nutrient monitoring plays a vital role in advancing sustainable agriculture by maintaining soil health, optimizing crop productivity, and minimizing environmental impacts. This study addresses gaps in unified definitions and standard methodologies by systematically analyzing 93 articles using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. The results highlight five major monitoring approaches: traditional methods, Remote Sensing (RS), Internet of Things (IoT) and smart systems, in situ sensors, and Artificial Intelligence (AI)-based models, each contributing uniquely to nutrient assessment. A noticeable trend toward integrating machine learning and deep learning with sensor technologies underscores the advancement toward real-time, data-driven precision agriculture. The study also explores spatial and temporal publication trends, criteria for site selection, and the validation techniques used to assess monitoring accuracy. A synthesized definition of soil nutrient monitoring is proposed to support future research and standardization. This review highlights the crucial role of soil nutrient monitoring technologies in sustainable agriculture, crop optimization, and environmental management. It provides a comprehensive overview of the techniques employed in monitoring soil nutrients for precision soil management. Full article
(This article belongs to the Special Issue (Re)Designing Processes for Improving Supply Chain Sustainability)
Show Figures

Figure 1

33 pages, 2085 KB  
Review
Advances in Nondestructive Technologies for External Eggshell Quality Evaluation
by Pengpeng Yu, Chaoping Shen, Junhui Cheng, Xifeng Yin, Chao Liu and Ziting Yu
Sensors 2025, 25(18), 5796; https://doi.org/10.3390/s25185796 - 17 Sep 2025
Viewed by 614
Abstract
The structural integrity of poultry eggs is essential for food safety, economic value, and hatchability. External eggshell quality—measured by thickness, strength, cracks, color, and cleanliness—is a key criterion for grading and sorting. Traditional assessment methods, although simple, suffer from subjectivity, low efficiency, and [...] Read more.
The structural integrity of poultry eggs is essential for food safety, economic value, and hatchability. External eggshell quality—measured by thickness, strength, cracks, color, and cleanliness—is a key criterion for grading and sorting. Traditional assessment methods, although simple, suffer from subjectivity, low efficiency, and destructive nature. In contrast, recent developments in nondestructive testing (NDT) technologies have enabled precise, automated, and real-time evaluation of eggshell characteristics. This review systematically summarizes state-of-the-art NDT techniques including acoustic resonance, ultrasonic imaging, terahertz spectroscopy, machine vision, and electrical property sensing. Deep learning and sensor fusion methods are highlighted for their superior accuracy in microcrack detection (up to 99.4%) and shell strength prediction. We further discuss emerging challenges such as noise interference, signal variability, and scalability for industrial deployment. The integration of explainable AI, multimodal data acquisition, and edge computing is proposed as a future direction to develop intelligent, scalable, and cost-effective eggshell inspection systems. This comprehensive analysis provides a valuable reference for advancing nondestructive quality control in poultry product supply chains. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

26 pages, 3077 KB  
Review
A Point-Line-Area Paradigm: 3D Printing for Next-Generation Health Monitoring Sensors
by Mei Ming, Xiaohong Yin, Yinchen Luo, Bin Zhang and Qian Xue
Sensors 2025, 25(18), 5777; https://doi.org/10.3390/s25185777 - 16 Sep 2025
Viewed by 478
Abstract
Three-dimensional printing technology is fundamentally reshaping the design and fabrication of health monitoring sensors. While it holds great promise for achieving miniaturization, multi-material integration, and personalized customization, the lack of a clear selection framework hinders the optimal matching of printing technologies to specific [...] Read more.
Three-dimensional printing technology is fundamentally reshaping the design and fabrication of health monitoring sensors. While it holds great promise for achieving miniaturization, multi-material integration, and personalized customization, the lack of a clear selection framework hinders the optimal matching of printing technologies to specific sensor requirements. This review presents a classification framework based on existing standards and specifically designed to address sensor-related requirements, categorizing 3D printing technologies into point-based, line-based, and area-based modalities according to their fundamental fabrication unit. This framework directly bridges the capabilities of each modality, such as nanoscale resolution, multi-material versatility, and high-throughput production, with the critical demands of modern health monitoring sensors. We systematically demonstrate how this approach guides technology selection: Point-based methods (e.g., stereolithography, inkjet) enable micron-scale features for ultra-sensitive detection; line-based techniques (e.g., Direct Ink Writing, Fused Filament Fabrication) excel in multi-material integration for creating complex functional devices such as sweat-sensing patches; and area-based approaches (e.g., Digital Light Processing) facilitate rapid production of sensor arrays and intricate structures for applications like continuous glucose monitoring. The point–line–area paradigm offers a powerful heuristic for designing and manufacturing next-generation health monitoring sensors. We also discuss strategies to overcome existing challenges, including material biocompatibility and cross-scale manufacturing, through the integration of AI-driven design and stimuli-responsive materials. This framework not only clarifies the current research landscape but also accelerates the development of intelligent, personalized, and sustainable health monitoring systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

38 pages, 3221 KB  
Article
Simulating the Effects of Sensor Failures on Autonomous Vehicles for Safety Evaluation
by Francisco Matos, João Durães and João Cunha
Informatics 2025, 12(3), 94; https://doi.org/10.3390/informatics12030094 - 15 Sep 2025
Viewed by 1482
Abstract
Autonomous vehicles (AVs) are increasingly becoming a reality, enabled by advances in sensing technologies, intelligent control systems, and real-time data processing. For AVs to operate safely and effectively, they must maintain a reliable perception of their surroundings and internal state. However, sensor failures, [...] Read more.
Autonomous vehicles (AVs) are increasingly becoming a reality, enabled by advances in sensing technologies, intelligent control systems, and real-time data processing. For AVs to operate safely and effectively, they must maintain a reliable perception of their surroundings and internal state. However, sensor failures, whether due to noise, malfunction, or degradation, can compromise this perception and lead to incorrect localization or unsafe decisions by the autonomous control system. While modern AV systems often combine data from multiple sensors to mitigate such risks through sensor fusion techniques (e.g., Kalman filtering), the extent to which these systems remain resilient under faulty conditions remains an open question. This work presents a simulation-based fault injection framework to assess the impact of sensor failures on AVs’ behavior. The framework enables structured testing of autonomous driving software under controlled fault conditions, allowing researchers to observe how specific sensor failures affect system performance. To demonstrate its applicability, an experimental campaign was conducted using the CARLA simulator integrated with the Autoware autonomous driving stack. A multi-segment urban driving scenario was executed using a modified version of CARLA’s Scenario Runner to support Autoware-based evaluations. Faults were injected simulating LiDAR, GNSS, and IMU sensor failures in different route scenarios. The fault types considered in this study include silent sensor failures and severe noise. The results obtained by emulating sensor failures in our chosen system under test, Autoware, show that faults in LiDAR and IMU gyroscope have the most critical impact, often leading to erratic motion and collisions. In contrast, faults in GNSS and IMU accelerometers were well tolerated. This demonstrates the ability of the framework to investigate the fault-tolerance of AVs in the presence of critical sensor failures. Full article
Show Figures

Figure 1

37 pages, 3679 KB  
Review
Application of Artificial Intelligence in Hydrological Modeling for Streamflow Prediction in Ungauged Watersheds: A Review
by Jerome G. Gacu, Cris Edward F. Monjardin, Ronald Gabriel T. Mangulabnan and Jerime Chris F. Mendez
Water 2025, 17(18), 2722; https://doi.org/10.3390/w17182722 - 14 Sep 2025
Viewed by 1687
Abstract
Streamflow prediction in ungauged watersheds remains a critical challenge in hydrological science due to the absence of in situ measurements, particularly in remote, data-scarce, and developing regions. This review synthesizes recent advancements in artificial intelligence (AI) for streamflow modeling, focusing on machine learning [...] Read more.
Streamflow prediction in ungauged watersheds remains a critical challenge in hydrological science due to the absence of in situ measurements, particularly in remote, data-scarce, and developing regions. This review synthesizes recent advancements in artificial intelligence (AI) for streamflow modeling, focusing on machine learning (ML), deep learning (DL), and hybrid modeling frameworks. Three core methodological domains are examined: regionalization techniques that transfer models from gauged to ungauged basins using physiographic similarity and transfer learning; synthetic data generation through proxy variables such as NDVI, soil moisture, and digital elevation models; and model performance evaluation using both deterministic and probabilistic metrics. Findings from recent literature consistently demonstrate that AI-based models, especially Long Short-Term Memory (LSTM) networks and hybrid attention-based architectures, outperform traditional conceptual and physically based models in capturing nonlinear hydrological responses across diverse climatic and physiographic settings. The integration of AI with remote sensing enhances generalizability, particularly in ungauged and human-impacted basins. This review also addresses several persistent research gaps, including inconsistencies in model evaluation protocols, limited transferability across heterogeneous regions, a lack of reproducibility and open-source tools, and insufficient integration of physical hydrological knowledge into AI models. To bridge these gaps, future research should prioritize the development of physics-informed AI frameworks, standardized benchmarking datasets, uncertainty quantification methods, and interpretable modeling tools to support robust, scalable, and operational streamflow forecasting in ungauged watersheds. Full article
(This article belongs to the Special Issue Application of Machine Learning in Hydrologic Sciences)
Show Figures

Figure 1

Back to TopTop