Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (142)

Search Parameters:
Keywords = intelligent transport systems (ITSs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1515 KB  
Article
Quantum-Enhanced Battery Anomaly Detection in Smart Transportation Systems
by Alexander Mutiso Mutua and Ruairí de Fréin
Appl. Sci. 2025, 15(17), 9452; https://doi.org/10.3390/app15179452 (registering DOI) - 28 Aug 2025
Abstract
Ensuring the safety, reliability, and longevity of Lithium-ion (Li-ion) batteries is crucial for sustainable integration of Electric Vehicles (EVs) within Intelligent Transportation Systems (ITSs). However, thermal stress and degradation-induced anomalies can cause sudden performance failures, posing critical operational and safety risks. Capturing complex, [...] Read more.
Ensuring the safety, reliability, and longevity of Lithium-ion (Li-ion) batteries is crucial for sustainable integration of Electric Vehicles (EVs) within Intelligent Transportation Systems (ITSs). However, thermal stress and degradation-induced anomalies can cause sudden performance failures, posing critical operational and safety risks. Capturing complex, non-linear, and high-dimensional patterns remains challenging for traditional Machine Learning (ML) models. We propose a hybrid anomaly detection method that incorporates a Variational Quantum Neural Network (VQNN), which uses the principles of quantum mechanics, such as superposition, entanglement, and parallelism, to learn complex non-linear patterns. The VQNN is integrated with Isolation Forest (IF) and a Median Absolute Deviation (MAD)-based spike characterisation method to form a Quantum Anomaly Detector (QAD). This method distinguishes between normal and anomalous spikes in battery behaviour. Using an Arrhenius-based model, we simulate how the State of Health (SoH) and voltage of a Li-ion battery reduce as temperatures increase. We perform experiments on NASA battery datasets and detect abnormal spikes in 14 out of 168 cycles, corresponding to 8.3% of the cycles. The QAD achieves the highest Receiver Operating Characteristic Area Under the Curve (ROC-AUC) of 0.9820, outperforming the baseline IF model by 7.78%. We use ML to predict the SoH and voltage changes when the temperature varies. Gradient Boosting (GB) achieves a voltage Mean Squared Error (MSE) of 0.001425, while Support Vector Regression (SVR) achieves the highest R2 score of 0.9343. These results demonstrate that Quantum Machine Learning (QML) can be applied for anomaly detection in Battery Management Systems (BMSs) within intelligent transportation ecosystems and could enable EVs to autonomously adapt their routing and schedule preventative maintenance. With these capabilities, safety will be improved, downtime minimised, and public confidence in sustainable transport technologies increased. Full article
12 pages, 596 KB  
Article
Quantum Computing for Intelligent Transportation Systems: VQE-Based Traffic Routing and EV Charging Scheduling
by Uman Khalid, Usama Inam Paracha, Syed Muhammad Abuzar Rizvi and Hyundong Shin
Mathematics 2025, 13(17), 2761; https://doi.org/10.3390/math13172761 - 27 Aug 2025
Abstract
Complex optimization problems, such as traffic routing and electric vehicle (EV) charging scheduling, are becoming increasingly challenging for intelligent transportation systems (ITSs), in particular as computational resources are limited and network conditions evolve frequently. This paper explores a quantum computing approach to address [...] Read more.
Complex optimization problems, such as traffic routing and electric vehicle (EV) charging scheduling, are becoming increasingly challenging for intelligent transportation systems (ITSs), in particular as computational resources are limited and network conditions evolve frequently. This paper explores a quantum computing approach to address these issues by proposing a hybrid quantum-classical (HQC) workflow that leverages the variational quantum eigensolver (VQE), an algorithm particularly well suited for execution on noisy intermediate-scale quantum (NISQ) hardware. To this end, the EV charging scheduling and traffic routing problems are both reformulated as binary optimization problems and then encoded into Ising Hamiltonians. Within each VQE iteration, a parametrized quantum circuit (PQC) is prepared and measured on the quantum processor to evaluate the Hamiltonian’s expectation value, while a classical optimizer—such as COBYLA, SPSA, Adam, or RMSProp—updates the circuit parameters until convergence. In order to find optimal or nearly optimal solutions, VQE uses PQCs in combination with classical optimization algorithms to iteratively minimize the problem Hamiltonian. Simulation results exhibit that the VQE-based method increases the efficiency of EV charging coordination and improves route selection performance. These results demonstrate how quantum computing will potentially advance optimization algorithms for next-generation ITSs, representing a practical step toward quantum-assisted mobility solutions. Full article
(This article belongs to the Special Issue Advanced Methods in Intelligent Transportation Systems, 2nd Edition)
Show Figures

Figure 1

16 pages, 2587 KB  
Article
Video Display Improvement by Using Collaborative Edge Devices with YOLOv11
by Byoungkug Kim, Soohyun Wang and Jaeho Lee
Appl. Sci. 2025, 15(17), 9241; https://doi.org/10.3390/app15179241 - 22 Aug 2025
Viewed by 171
Abstract
Efficient human detection in video streams is essential for various IoT applications, including surveillance, smart cities, intelligent transportation systems (ITSs), and industrial automation. However, resource-constrained IoT devices often face limitations in handling deep learning-based object detection. This study proposes a collaborative edge computing [...] Read more.
Efficient human detection in video streams is essential for various IoT applications, including surveillance, smart cities, intelligent transportation systems (ITSs), and industrial automation. However, resource-constrained IoT devices often face limitations in handling deep learning-based object detection. This study proposes a collaborative edge computing framework utilizing multiple Raspberry Pi-based IoT devices to improve YOLOv11-based human detection performance. By distributing video frames across multiple edge devices, the proposed system effectively balances the computational load, resulting in an increase in the FPS (Frames Per Second) for processed video outputs. The experimental results confirm that as more edge devices collaborate, overall video processing efficiency improves, demonstrating the feasibility of distributed object detection for scalable and cost-effective IoT-based video analytics. In particular, the proposed approach holds significant potential for ITS applications such as pedestrian monitoring at intersections, real-time incident detection, and enhancing traffic safety by enabling responsive and decentralized analysis at the edge. Full article
(This article belongs to the Special Issue Advances in Intelligent Transportation and Its Applications)
Show Figures

Figure 1

26 pages, 1971 KB  
Article
Dynamic Allocation of C-V2X Communication Resources Based on Graph Attention Network and Deep Reinforcement Learning
by Zhijuan Li, Guohong Li, Zhuofei Wu, Wei Zhang and Alessandro Bazzi
Sensors 2025, 25(16), 5209; https://doi.org/10.3390/s25165209 - 21 Aug 2025
Viewed by 372
Abstract
Vehicle-to-vehicle (V2V) and vehicle-to-network (V2N) communications are two key components of intelligent transport systems (ITSs) that can share spectrum resources through in-band overlay. V2V communication primarily supports traffic safety, whereas V2N primarily focuses on infotainment and information exchange. Achieving reliable V2V transmission alongside [...] Read more.
Vehicle-to-vehicle (V2V) and vehicle-to-network (V2N) communications are two key components of intelligent transport systems (ITSs) that can share spectrum resources through in-band overlay. V2V communication primarily supports traffic safety, whereas V2N primarily focuses on infotainment and information exchange. Achieving reliable V2V transmission alongside high-rate V2N services in resource-constrained, dynamically changing traffic environments poses a significant challenge for resource allocation. To address this, we propose a novel reinforcement learning (RL) framework, termed Graph Attention Network (GAT)-Advantage Actor–Critic (GAT-A2C). In this framework, we construct a graph based on V2V links and their potential interference relationships. Each V2V link is represented as a node, and edges connect nodes that may interfere. The GAT captures key interference patterns among neighboring vehicles while accounting for real-time mobility and channel variations. The features generated by the GAT, combined with individual link characteristics, form the environment state, which is then processed by the RL agent to jointly optimize the resource blocks allocation and the transmission power for both V2V and V2N communications. Simulation results demonstrate that the proposed method substantially improves V2N rates and V2V communication success ratios under various vehicle densities. Furthermore, the approach exhibits strong scalability, making it a promising solution for future large-scale intelligent vehicular networks operating in dynamic traffic scenarios. Full article
Show Figures

Figure 1

22 pages, 9411 KB  
Article
A Spatiotemporal Multi-Model Ensemble Framework for Urban Multimodal Traffic Flow Prediction
by Zhenkai Wang and Lujin Hu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 308; https://doi.org/10.3390/ijgi14080308 - 10 Aug 2025
Viewed by 684
Abstract
Urban multimodal travel trajectory prediction is a core challenge in Intelligent Transportation Systems (ITSs). It requires modeling both spatiotemporal dependencies and dynamic interactions among different travel modes such as taxi, bike-sharing, and buses. To address the limitations of existing methods in capturing these [...] Read more.
Urban multimodal travel trajectory prediction is a core challenge in Intelligent Transportation Systems (ITSs). It requires modeling both spatiotemporal dependencies and dynamic interactions among different travel modes such as taxi, bike-sharing, and buses. To address the limitations of existing methods in capturing these diverse trajectory characteristics, we propose a spatiotemporal multi-model ensemble framework, which is an ensemble model called GLEN (GCN and LSTM Ensemble Network). Firstly, the trajectory feature adaptive driven model selection mechanism classifies trajectories into dynamic travel and fixed-route scenarios. Secondly, we use a Graph Convolutional Network (GCN) to capture dynamic travel patterns and Long Short-Term Memory (LSTM) network to model fixed-route patterns. Subsequently the outputs of these models are dynamically weighted, integrated, and fused over a spatiotemporal grid to produce accurate forecasts of urban total traffic flow at multiple future time steps. Finally, experimental validation using Beijing’s Chaoyang district datasets demonstrates that our framework effectively captures spatiotemporal and interactive characteristics between multimodal travel trajectories and outperforms mainstream baselines, thereby offering robust support for urban traffic management and planning. Full article
Show Figures

Figure 1

28 pages, 2959 KB  
Article
Trajectory Prediction and Decision Optimization for UAV-Assisted VEC Networks: An Integrated LSTM-TD3 Framework
by Jiahao Xie and Hao Hao
Information 2025, 16(8), 646; https://doi.org/10.3390/info16080646 - 29 Jul 2025
Viewed by 306
Abstract
With the rapid development of intelligent transportation systems (ITSs) and Internet of Things (IoT), vehicle-mounted edge computing (VEC) networks are facing the challenge of handling increasingly growing computation-intensive and latency-sensitive tasks. In the UAV-assisted VEC network, by introducing mobile edge servers, the coverage [...] Read more.
With the rapid development of intelligent transportation systems (ITSs) and Internet of Things (IoT), vehicle-mounted edge computing (VEC) networks are facing the challenge of handling increasingly growing computation-intensive and latency-sensitive tasks. In the UAV-assisted VEC network, by introducing mobile edge servers, the coverage of ground infrastructure is effectively supplemented. However, there is still the problem of decision-making lag in a highly dynamic environment. This paper proposes a deep reinforcement learning framework based on the long short-term memory (LSTM) network for trajectory prediction to optimize resource allocation in UAV-assisted VEC networks. Uniquely integrating vehicle trajectory prediction with the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, this framework enables proactive computation offloading and UAV trajectory planning. Specifically, we design an LSTM network with an attention mechanism to predict the future trajectory of vehicles and integrate the prediction results into the optimization decision-making process. We propose state smoothing and data augmentation techniques to improve training stability and design a multi-objective optimization model that incorporates the Age of Information (AoI), energy consumption, and resource leasing costs. The simulation results show that compared with existing methods, the method proposed in this paper significantly reduces the total system cost, improves the information freshness, and exhibits better environmental adaptability and convergence performance under various network conditions. Full article
Show Figures

Figure 1

28 pages, 4089 KB  
Article
Highway Travel-Time Forecasting with Greenshields Model-Based Cascaded Fuzzy Logic Systems
by Miin-Jong Hao and Yu-Xuan Zheng
Appl. Sci. 2025, 15(14), 7729; https://doi.org/10.3390/app15147729 - 10 Jul 2025
Viewed by 376
Abstract
Intelligent Transportation Systems (ITSs) play a vital role in improving urban and regional mobility by reducing traffic congestion and enhancing trip planning. A key element of ITS is travel-time prediction, which supports informed decisions for both travelers and traffic management. While non-parametric models [...] Read more.
Intelligent Transportation Systems (ITSs) play a vital role in improving urban and regional mobility by reducing traffic congestion and enhancing trip planning. A key element of ITS is travel-time prediction, which supports informed decisions for both travelers and traffic management. While non-parametric models offer flexibility, they often require large datasets and significant computation. Parametric models, though easier to fit and interpret, are less adaptable. Fuzzy logic models, by contrast, provide robustness and scalability, adjusting to new data and changing conditions. This paper proposes a cascaded fuzzy logic system for highway travel-time prediction, using the Greenshields model as its reasoning foundation. The system consists of multiple fuzzy subsystems, each representing a highway segment. These subsystems transform traffic flow and density inputs into speed predictions through fuzzification, Greenshields-based rules, and defuzzification. The approach enables localized and segment-specific predictions, enhancing route planning and congestion avoidance. The system’s accuracy is evaluated by comparing its predictions with those of a regression model using real traffic data from the Sun Yat-Sen Highway in Taiwan. Simulation results confirm that the proposed model achieves reliable, adaptable travel-time forecasts, including for long-distance trips. Full article
Show Figures

Figure 1

20 pages, 2004 KB  
Review
An Overview of Intelligent Transportation Systems in Europe
by Nicolae Cordoș, Irina Duma, Dan Moldovanu, Adrian Todoruț and István Barabás
World Electr. Veh. J. 2025, 16(7), 387; https://doi.org/10.3390/wevj16070387 - 9 Jul 2025
Viewed by 1049
Abstract
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study [...] Read more.
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study examines how ITS technologies, such as automation, real-time traffic data analytics and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, have been integrated to improve urban mobility and road safety. In addition, it reviews significant European initiatives and case studies from several cities, which show visible improvements in reducing congestion, reducing CO2 emissions and increasing the use of public transport. The paper highlights, despite progress, major obstacles to widespread adoption, such as technical interoperability, inadequate regulatory frameworks and insufficient data sharing between stakeholders. These issues prevent ITS applications from scaling up and functioning well in EU Member States. To overcome these problems, the study highlights the need for common standards and cooperation frameworks. The research analyses the laws, technological developments and socio-economic effects of ITSs. By promoting sustainable and inclusive mobility, ITSs can contribute to the European Green Deal and climate goals. Finally, the paper presents ITSs as a revolutionary solution for future European transport systems and offers suggestions to improve their interoperability, data governance and policy support. Full article
Show Figures

Graphical abstract

26 pages, 3294 KB  
Article
RIS-Aided V2I–VLC for the Next-Generation Intelligent Transportation Systems in Mountain Areas
by Wei Yang, Haoran Liu, Guangpeng Cheng, Zike Su and Yuanyuan Fan
Photonics 2025, 12(7), 664; https://doi.org/10.3390/photonics12070664 - 1 Jul 2025
Viewed by 396
Abstract
Visible light communication (VLC) is considered to be one of the key technologies for advancing the next-generation intelligent transportation systems (ITSs). However, in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) VLC, the line-of-sight (LOS) link for communication is often obstructed by vehicle mobility. To address [...] Read more.
Visible light communication (VLC) is considered to be one of the key technologies for advancing the next-generation intelligent transportation systems (ITSs). However, in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) VLC, the line-of-sight (LOS) link for communication is often obstructed by vehicle mobility. To address this issue and enhance system performance, a novel V2I–VLC system is proposed and analyzed in this study. The system targets mountain road traffic scenarios employing optical reflecting intelligent surfaces (RISs). To emphasize the practicality of the study, the effects of atmospheric turbulence (AT) and weather conditions are also considered in the channel modeling. Further, the closed-form expressions for average path loss, channel capacity, and outage probability are derived. Furthermore, a novel closed-form expression is also derived for the properties of RIS, which can be used to calculate the required number of RIS elements to achieve a target energy efficiency. In the performance analysis, the accuracy of the derived theoretical expression is validated by numerical simulation, and the effectiveness of the RIS-aided V2I–VLC system is evaluated. Moreover, with a reasonable number of required RIS elements, the system performance in terms of path loss is improved by more than 23.5% on average over the existing studies. Full article
(This article belongs to the Special Issue Emerging Technologies in Visible Light Communication)
Show Figures

Figure 1

35 pages, 1399 KB  
Systematic Review
Congestion Forecasting Using Machine Learning Techniques: A Systematic Review
by Mehdi Attioui and Mohamed Lahby
Future Transp. 2025, 5(3), 76; https://doi.org/10.3390/futuretransp5030076 - 1 Jul 2025
Viewed by 1739
Abstract
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 [...] Read more.
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 to 2024, adhering to the PRISMA 2020 guidelines. A comprehensive search of three major databases (IEEE Xplore, SpringerLink, and ScienceDirect) yielded 9695 initial records, with 115 studies meeting the inclusion criteria following rigorous screening. Data extraction encompassed methodological approaches, ML techniques, traffic characteristics, and forecasting periods, with quality assessment achieving near-perfect inter-rater reliability (Cohen’s κ = 0.89). Deep Neural Networks were the predominant technical approach (47%), with supervised learning being the most prevalent (57%). Classification tasks were the most common (42%), primarily addressing recurrent congestion scenarios (76%) and passenger vehicles (90%). The quality of publications was notably high, with 85% appearing in Q1-ranked journals, demonstrating exponential growth from minimal activity in 2010 to 18 studies in 2022. Significant research gaps persist: reinforcement learning is underutilized (8%), rural road networks are underrepresented (2%), and industry–academia collaboration is limited (3%). Future research should prioritize multimodal transportation systems, real-time adaptation mechanisms, and enhanced practical implementation to advance intelligent transportation systems (ITSs). This review was not registered because it focused on mapping the research landscape rather than intervention effects. Full article
Show Figures

Figure 1

16 pages, 12607 KB  
Article
On the Capacity of V2X Communication Networks to Support the Delivery of Emerging C-ITS Services: A Case Study on an Irish Motorway
by Arif Hossan, Md Noor-a-Rahim, Cormac J. Sreenan, Piraba Navaratnam, Shobanraj Navaratnarajah, Thomas Allen, David Laoide-Kemp and Aisling O’Driscoll
Information 2025, 16(7), 563; https://doi.org/10.3390/info16070563 - 30 Jun 2025
Viewed by 542
Abstract
Roadside communication networks with Cooperative Intelligent Transport Systems (C-ITSs) offer services that aim to enhance traffic management and road safety.This paper presents a comprehensive scalability study of C-ITSs to support a deployment of Day 1 advisory services on the busiest Irish motorway. Specifically, [...] Read more.
Roadside communication networks with Cooperative Intelligent Transport Systems (C-ITSs) offer services that aim to enhance traffic management and road safety.This paper presents a comprehensive scalability study of C-ITSs to support a deployment of Day 1 advisory services on the busiest Irish motorway. Specifically, the performance of the two standardized C-ITS short-range communication technologies, namely ITS-G5 and C-V2X, are quantified. Both technologies are evaluated while considering different market penetration rates (MPRs), real-world vehicle densities during daily time periods, and data traffic demands linked to real world C-ITS services. The simulation results show that ITS-G5 performs slightly better at shorter distances, and C-V2X performs marginally better at medium and longer distances, benefiting from technology that supports better signal quality and communication robustness. Full article
(This article belongs to the Special Issue Internet of Everything and Vehicular Networks)
Show Figures

Figure 1

22 pages, 12020 KB  
Article
TFF-Net: A Feature Fusion Graph Neural Network-Based Vehicle Type Recognition Approach for Low-Light Conditions
by Huizhi Xu, Wenting Tan, Yamei Li and Yue Tian
Sensors 2025, 25(12), 3613; https://doi.org/10.3390/s25123613 - 9 Jun 2025
Viewed by 740
Abstract
Accurate vehicle type recognition in low-light environments remains a critical challenge for intelligent transportation systems (ITSs). To address the performance degradation caused by insufficient lighting, complex backgrounds, and light interference, this paper proposes a Twin-Stream Feature Fusion Graph Neural Network (TFF-Net) model. The [...] Read more.
Accurate vehicle type recognition in low-light environments remains a critical challenge for intelligent transportation systems (ITSs). To address the performance degradation caused by insufficient lighting, complex backgrounds, and light interference, this paper proposes a Twin-Stream Feature Fusion Graph Neural Network (TFF-Net) model. The model employs multi-scale convolutional operations combined with an Efficient Channel Attention (ECA) module to extract discriminative local features, while independent convolutional layers capture hierarchical global representations. These features are mapped as nodes to construct fully connected graph structures. Hybrid graph neural networks (GNNs) process the graph structures and model spatial dependencies and semantic associations. TFF-Net enhances the representation of features by fusing local details and global context information from the output of GNNs. To further improve its robustness, we propose an Adaptive Weighted Fusion-Bagging (AWF-Bagging) algorithm, which dynamically assigns weights to base classifiers based on their F1 scores. TFF-Net also includes dynamic feature weighting and label smoothing techniques for solving the category imbalance problem. Finally, the proposed TFF-Net is integrated into YOLOv11n (a lightweight real-time object detector) with an improved adaptive loss function. For experimental validation in low-light scenarios, we constructed the low-light vehicle dataset VDD-Light based on the public dataset UA-DETRAC. Experimental results demonstrate that our model achieves 2.6% and 2.2% improvements in mAP50 and mAP50-95 metrics over the baseline model. Compared to mainstream models and methods, the proposed model shows excellent performance and practical deployment potential. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

33 pages, 917 KB  
Systematic Review
Publish/Subscribe-Middleware-Based Intelligent Transportation Systems: Applications and Challenges
by Basem Almadani, Ekhlas Hashem, Raneem R. Attar, Farouq Aliyu and Esam Al-Nahari
Appl. Sci. 2025, 15(12), 6449; https://doi.org/10.3390/app15126449 - 8 Jun 2025
Viewed by 727
Abstract
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, [...] Read more.
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, Physical, and Communications Views (or layers). This review focuses on the Communications View, examining how publish/subscribe middleware enhances ITS through the communication layer. It identified application areas across ITS infrastructure, transportation modes, and communication technologies, and highlights key challenges. In the infrastructure domain, publish/subscribe middleware enhances responsiveness and real-time processing in systems such as traffic surveillance, VANETs, and road sensor networks, especially when replacing legacy infrastructure is cost-prohibitive. Moreover, the middleware supports scalable, low-latency communication in land, air, and marine modes, enabling public transport coordination, cooperative driving, and UAV integration. At the communications layer, publish/subscribe systems facilitate interoperable, delay-tolerant data dissemination over heterogeneous platforms, including 4G/5G, ICN, and peer-to-peer networks. However, integrating publish/subscribe middleware in ITS has several challenges, including privacy risks, real-time data constraints, fault tolerance, bandwidth limitations, and security vulnerabilities. This paper provides a domain-informed foundation for researchers and practitioners developing resilient, scalable, and interoperable communication systems in next-generation ITSs. Full article
Show Figures

Figure 1

19 pages, 2320 KB  
Article
Evaluation of Correlation-Based Methods for Time Period Estimation in Vehicle Speed Measurement Using Pyroelectric Infrared Sensors
by Bui Hai Dang, Vu Toan Thang and Vu Van Quang
Appl. Sci. 2025, 15(11), 6255; https://doi.org/10.3390/app15116255 - 2 Jun 2025
Viewed by 534
Abstract
Accurate time period estimation (TPE) between sensor signals is essential for vehicle speed measurement in intelligent transportation systems (ITSs). In this context, we focus on time period estimation using signals acquired from a dual pyroelectric infrared (PIR) sensor setup. To estimate the time [...] Read more.
Accurate time period estimation (TPE) between sensor signals is essential for vehicle speed measurement in intelligent transportation systems (ITSs). In this context, we focus on time period estimation using signals acquired from a dual pyroelectric infrared (PIR) sensor setup. To estimate the time period between these signals, this paper analyzes and compares two correlation-based methods—conventional cross-correlation (CCF) and Hilbert transform-enhanced cross-correlation (CCFHT). An analytical framework is developed to quantify the bias and variance of each method under practical conditions, including sensor mismatch and noise. The PIR sensor signals are modeled based on their dynamic response characteristics, enabling theoretical analysis supported by simulations and field experiments. Results show that although both methods yield negligible bias under ideal conditions, CCFHT significantly reduces estimation variance in noisy or mismatched scenarios. These findings confirm the advantages of CCFHT for achieving robust and precise vehicle speed estimation using low-cost PIR sensor systems, and provide insights into practical deployment within ITSs. Full article
(This article belongs to the Special Issue Diagnostic Methodology and Sensors Technologies: 2nd Edition)
Show Figures

Figure 1

24 pages, 12352 KB  
Article
Predictive Models and GIS for Road Safety: Application to a Segment of the Chone–Flavio Alfaro Road
by Luis Alfonso Moreno-Ponce, Ana María Pérez-Zuriaga and Alfredo García
Sustainability 2025, 17(11), 5032; https://doi.org/10.3390/su17115032 - 30 May 2025
Viewed by 934
Abstract
The analysis of traffic crashes facilitates the identification of trends that can inform strategies to enhance road safety. This study aimed to detect high-risk zones and forecast collision patterns by integrating spatial analysis and predictive modeling. Traffic incidents along the Chone–Flavio Alfaro road [...] Read more.
The analysis of traffic crashes facilitates the identification of trends that can inform strategies to enhance road safety. This study aimed to detect high-risk zones and forecast collision patterns by integrating spatial analysis and predictive modeling. Traffic incidents along the Chone–Flavio Alfaro road segment in Manabí, Ecuador, were examined using Geographic Information Systems (GIS) and Kernel Density Estimation (KDE), based on official data from the National Traffic Agency (ANT) covering the period 2017–2023. Additionally, ARIMA, Prophet, and Long Short-Term Memory (LSTM) models were applied to predict crash occurrences. The most influential contributing factors were driver distraction, excessive speed, and adverse weather. Four main crash hotspots were identified: near Chone (PS 0–2.31), PS 2.31–7.10, PS 13.39–21.31, and PS 31.27–33.92, close to Flavio Alfaro. A total of 55 crashes were recorded, with side impacts (27.3%), pedestrian-related collisions (14.5%), and rear-end crashes (12.7%) being the most frequent types. The predictive models performed well, with Prophet achieving the highest estimated accuracy (90.8%), followed by LSTM (88.2%) and ARIMA (87.6%), based on MAE evaluations. These findings underscore the potential of intelligent transportation systems (ITSs) and predictive analytics to support proactive traffic management and resilient infrastructure development in rural regions. Full article
Show Figures

Figure 1

Back to TopTop