Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (60,036)

Search Parameters:
Keywords = interactive effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3254 KB  
Article
Optimizing Steel Industry and Air Conditioning Clusters Using Coordination-Based Time-Series Fusion Transformer
by Xinyu Luo, Zhaofan Zhou, Bin Li, Yumeng Zhang, Chenle Yi, Kun Shi and Songsong Chen
Processes 2025, 13(10), 3265; https://doi.org/10.3390/pr13103265 (registering DOI) - 13 Oct 2025
Abstract
The steel industry, a typical energy-intensive sector, experiences significant load power fluctuations, particularly during peak periods, posing challenges to power-grid stability. Traditional studies often overlook its unique production characteristics, limiting a comprehensive understanding of power fluctuations. Meanwhile, air conditioning (AC), as a flexible [...] Read more.
The steel industry, a typical energy-intensive sector, experiences significant load power fluctuations, particularly during peak periods, posing challenges to power-grid stability. Traditional studies often overlook its unique production characteristics, limiting a comprehensive understanding of power fluctuations. Meanwhile, air conditioning (AC), as a flexible load, offers stable regulation with an aggregation effect. This study explores the potential for coordinated load dispatch between the steel industry and air conditioning clusters to enhance power system flexibility. A power characteristic model for steel loads was developed based on energy consumption patterns, while a physical ETP model aggregated air conditioning loads. To improve forecasting accuracy, a parallel LSTM-Transformer model predicts both steel and air conditioning loads. CEEMDAN-VMD decomposition reduces noise in steel-load data, and the QR algorithm computes confidence intervals for load responses. The study further examines interactions between electric-arc furnace control strategies and air conditioning demand response. Case studies using real-world data demonstrate that the proposed model enhances prediction accuracy, peak suppression, and variance reduction. These findings provide insights into steel industry power fluctuations and large-scale air conditioning load adjustments. Full article
18 pages, 355 KB  
Article
The Impact of Environmental Regulation and Cognition of Manure Treatment on the Resource Utilization Behaviors of Swine Farmers
by Jianqiang Li, Hongming Liu, Xingqiang Zheng, Wenjie Liu and Huan Wang
Agriculture 2025, 15(20), 2131; https://doi.org/10.3390/agriculture15202131 (registering DOI) - 13 Oct 2025
Abstract
The resource utilization of swine manure represents a critical pathway for advancing sustainable agricultural development. This study, based on survey data from 509 swine farmers in Sichuan Province, employs the Ordered Probit (Oprobit) model and the Conditional Mixed Process (CMP) model to analyze [...] Read more.
The resource utilization of swine manure represents a critical pathway for advancing sustainable agricultural development. This study, based on survey data from 509 swine farmers in Sichuan Province, employs the Ordered Probit (Oprobit) model and the Conditional Mixed Process (CMP) model to analyze the mechanisms and pathways through which cognition about manure treatment, environmental regulation, and their interaction influence farmers’ behaviors towards manure resource utilization. It further delves into the heterogeneous characteristics of influencing factors. The findings reveal the following: (1) Farmers possess a high level of cognition regarding manure treatment, while environmental regulation is moderately implemented. The principal methods of manure resource utilization focus on recycling to fields and organic fertilizer production, with over 95% of farmers adopting at least one method of resource utilization. (2) Both cognition of manure treatment and environmental regulation significantly promote the behavior of manure resource utilization. There are substitutive or complementary effects between moral cognition and constraint regulation, as well as capability cognition and guidance regulation. (3) Among the farming community, the behavior of large-scale farmers is mainly influenced by moral cognition, whereas non-large-scale farmers are more affected by capability cognition and guidance regulation; middle-aged and young farmers are predominantly influenced by capability cognition, incentives, and guidance regulation, whereas the older generation of farmers is driven more by moral cognition and guidance regulation. Based on these insights, this study proposes targeted strategies for enhancing cognition and regulatory alignment across different groups, aiming to elevate the level of manure resource utilization and promote the green transformation of livestock farming. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

38 pages, 1914 KB  
Review
Photobiomodulation Meets Mechanotransduction: Immune-Stromal Crosstalk in Orthodontic Remodeling
by Jovan Marković and Miodrag Čolić
Biomedicines 2025, 13(10), 2495; https://doi.org/10.3390/biomedicines13102495 (registering DOI) - 13 Oct 2025
Abstract
Orthodontic tooth movement (OTM) arises from force-induced mechanotransduction within the periodontal ligament (PDL), which coordinates osteoblast and osteoclast activity with immune responses to remodel the PDL and alveolar bone. This review integrates contemporary biological insights on OTM and assesses photobiomodulation (PBM) as an [...] Read more.
Orthodontic tooth movement (OTM) arises from force-induced mechanotransduction within the periodontal ligament (PDL), which coordinates osteoblast and osteoclast activity with immune responses to remodel the PDL and alveolar bone. This review integrates contemporary biological insights on OTM and assesses photobiomodulation (PBM) as an adjunctive therapy. We propose that mechanical and photonic inputs may interact and potentiate signaling through the Ca2+-NFAT, MAPK (ERK, p38, JNK), PI3K–Akt–mTOR, NF-kB, TGF-β/Smad, and Wnt/β-catenin pathways. Such interaction could influence processes such as cell proliferation, differentiation, specific cellular functions, apoptosis, autophagy, and communication between stromal and immune cells. This convergence establishes a solid foundation for understanding the context-dependent effects of PBM in OTM. In principle, PBM appears most effective as a phase-tuned adjunct, promoting early inflammatory recruitment of osteoclasts and subsequently facilitating late-phase remodeling through immunomodulatory and reparative mechanisms. However, inconsistent irradiation parameters, small sample sizes, trial heterogeneity, and the absence of mechanistic endpoints undermine current conclusions. Furthermore, the lack of integrated PBM–OTM models limits mechanistic understanding, as much of the available evidence is derived from non-OTM contexts. Overall, PBM remains a promising adjunct in orthodontics, with the potential to integrate mechanical and photonic signals in a phase-dependent manner, though its application is not yet standardized. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 1142 KB  
Review
Virtual Reality Exergaming in Outpatient Stroke Rehabilitation: A Scoping Review and Clinician Roadmap
by Błażej Cieślik
J. Clin. Med. 2025, 14(20), 7227; https://doi.org/10.3390/jcm14207227 (registering DOI) - 13 Oct 2025
Abstract
Background/Objectives: Outpatient stroke rehabilitation is expanding as inpatient episodes shorten. Virtual reality (VR) exergaming can extend practice and standardize progression, but setting-specific effectiveness and implementation factors remain unclear. This scoping review mapped VR exergaming in outpatient stroke care and identified technology typologies and [...] Read more.
Background/Objectives: Outpatient stroke rehabilitation is expanding as inpatient episodes shorten. Virtual reality (VR) exergaming can extend practice and standardize progression, but setting-specific effectiveness and implementation factors remain unclear. This scoping review mapped VR exergaming in outpatient stroke care and identified technology typologies and functional outcomes. Methods: Guided by the JBI Manual and PRISMA-ScR, searches of MEDLINE, Embase, CENTRAL, Scopus, and Web of Science were conducted in April 2025. The study included adults post-stroke undergoing VR exergaming programs with movement tracking delivered in clinic-based outpatient or home-based outpatient settings. Interventions focused on functional rehabilitation using interactive VR. Results: Sixty-six studies met the criteria, forty-four clinic-based and twenty-two home-based. Serious games accounted for 65% of interventions and commercial exergames for 35%. Superiority on a prespecified functional endpoint was reported in 41% of trials, 29% showed within-group improvement only, and 30% found no between-group difference; effects were more consistent in supervised clinic programs than in home-based implementations. Signals were most consistent for commercial off-the-shelf and camera-based systems. Gloves or haptics and locomotor platforms were promising but less studied. Head-mounted display interventions showed mixed findings. Adherence was generally high, and adverse events were infrequent and mild. Conclusions: VR exergaming appears clinically viable for outpatient stroke rehabilitation, with the most consistent gains in supervised clinic-based programs; home-based effects are more variable and sensitive to dose and supervision. Future work should compare platform types by therapeutic goal; embed mechanistic measures; strengthen home delivery with dose control and remote supervision; and standardize the reporting of fidelity, adherence, and cost. Full article
(This article belongs to the Special Issue Chronic Disease Management and Rehabilitation in Older Adults)
Show Figures

Figure 1

12 pages, 2340 KB  
Article
The Effect of Light on Plant Growth and Physiology of Acmella radicans and A. paniculata in China
by Xiaohan Wu, Fengping Zheng, Zhijie Wang, Qiurui Li, Kexin Yang, Gaofeng Xu, Yunhai Yang, David Roy Clements, Shaosong Yang, Bin Yao, Guimei Jin, Shicai Shen, Fudou Zhang and Michael Denny Day
Diversity 2025, 17(10), 709; https://doi.org/10.3390/d17100709 (registering DOI) - 13 Oct 2025
Abstract
Acmella radicans (Jacquin) R.K.Jansen is an annual herb native to Central America. In China, it is becoming increasingly invasive and often co-occurs with the native congener A. paniculata (Wall. ex DC.) R.K.Jansen in some habitats. In order to understand the invasion mechanism of [...] Read more.
Acmella radicans (Jacquin) R.K.Jansen is an annual herb native to Central America. In China, it is becoming increasingly invasive and often co-occurs with the native congener A. paniculata (Wall. ex DC.) R.K.Jansen in some habitats. In order to understand the invasion mechanism of A. radicans, we investigated the growth parameters of both the invasive A. radicans and the native congener, A. paniculata, under different light conditions (5%, 25%, 50%, 75%, and 100% of light availability) using potted plants in a glasshouse. Light level, plant species, and their interaction were significant, with plant species generally having a greater effect than light level. Acmella radicans and A. paniculata showed great phenotypic plasticity to various light intensities and had a similar trend with increased shade. The plasticity indices of all parameters of A. radicans, except for branch length and inflorescence number, were greater than those of A. paniculata under the same light intensity. The physiological parameters for A. radicans under both favorable (high light intensity) and unfavorable (low light intensity) conditions showed less inhibition than those of A. paniculata. All these responses indicated that A. radicans had greater phenotypic plasticity and higher adaptability to low light, which may contribute to its invasion success. Full article
(This article belongs to the Special Issue Ecology, Distribution, Impacts, and Management of Invasive Plants)
Show Figures

Figure 1

51 pages, 1430 KB  
Article
The Effect of Critical Factors on Team Performance of Human–Robot Collaboration in Construction Projects: A PLS-SEM Approach
by Guodong Zhang, Xiaowei Luo, Wei Li, Lei Zhang and Qiming Li
Buildings 2025, 15(20), 3685; https://doi.org/10.3390/buildings15203685 (registering DOI) - 13 Oct 2025
Abstract
Human–Robot Collaboration (HRC) in construction projects promises enhanced productivity, safety, and quality, yet realizing these benefits requires understanding the multifaceted human and robotic factors that influence team performance. This study develops and validates a multidimensional framework that links key human abilities (operational skill, [...] Read more.
Human–Robot Collaboration (HRC) in construction projects promises enhanced productivity, safety, and quality, yet realizing these benefits requires understanding the multifaceted human and robotic factors that influence team performance. This study develops and validates a multidimensional framework that links key human abilities (operational skill, decision-making ability, and learning ability) and robot capacities (functionality and operability) to HRC team performance, with task complexity considered as contextual influence. A field survey of construction practitioners (n = 548) was analyzed using partial least squares structural equation modeling (PLS-SEM) to test direct effects and human–robot synergies. Results reveal that all five main effects are positive and significant, indicating that both human abilities and robot capacities have significant contribution. Moreover, every hypothesized two-way interaction is supported, evidencing strong interaction effects. Three-way moderation analyses further reveal that task complexity significantly strengthened the interactions of human abilities with robot functionality, whereas its interactions with robot operability were not significant. The study contributes an integrated and theory-driven model of HRC team performance that accounts for human abilities and robot capacities under varying task complexity, and validated constructs that can be used to diagnose and predict performance. The findings offer actionable guidance for project managers by recommending that they prioritize user-friendly robot operability to translate worker expertise into performance across a wide range of tasks, invest in training to strengthen operators’ skills and decision-making, and, for complex tasks, pair highly skilled workers with high-functionality robots to maximize performance gains. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

28 pages, 4479 KB  
Article
Integrated Network Pharmacology and Molecular Dynamics Reveal Multi-Target Anticancer Mechanisms of Myrtus communis Essential Oils
by Ahmed Bayoudh, Nidhal Tarhouni, Riadh Ben Mansour, Saoussen Mekrazi, Raoudha Sadraoui, Karim Kriaa, Zakarya Ahmed, Ahlem Soussi, Imen Kallel and Bilel Hadrich
Pharmaceuticals 2025, 18(10), 1542; https://doi.org/10.3390/ph18101542 (registering DOI) - 13 Oct 2025
Abstract
Background: Cancer’s multifactorial complexity demands innovative polypharmacological strategies that can simultaneously target multiple oncogenic pathways. Natural products, with their inherent chemical diversity, offer promising multi-target therapeutic potential. This study comprehensively investigates the anticancer mechanisms of Tunisian Myrtus communis essential oils (McEOs) using an [...] Read more.
Background: Cancer’s multifactorial complexity demands innovative polypharmacological strategies that can simultaneously target multiple oncogenic pathways. Natural products, with their inherent chemical diversity, offer promising multi-target therapeutic potential. This study comprehensively investigates the anticancer mechanisms of Tunisian Myrtus communis essential oils (McEOs) using an integrated computational-experimental framework to elucidate their polypharmacological basis and therapeutic potential. Methods: McEO composition was characterized via GC-MS analysis. Antiproliferative activity was evaluated against HeLa (cervical), MCF-7 (breast), and Raji (lymphoma) cancer cell lines using MTT assays. A multi-scale computational pipeline integrated network pharmacology, molecular docking against eight key oncoproteins, and 100 ns all-atom molecular dynamics simulations to elucidate molecular mechanisms and target interactions. Results: GC-MS revealed a 1,8-cineole-rich chemotype (38.94%) containing significant sesquiterpenes. McEO demonstrated potent differential cytotoxicity: HeLa (IC50 = 8.12 μg/mL) > MCF-7 (IC50 = 19.59 μg/mL) > Raji cells (IC50 = 27.32 μg/mL). Network pharmacology quantitatively explained this differential sensitivity through target overlap analysis, showing higher associations with breast (23%) and cervical (18.3%) versus lymphoma (5.5%) cancer pathways. Molecular docking identified spathulenol as a high-affinity Androgen Receptor (AR) antagonist (XP GScore: −9.650 kcal/mol). Molecular dynamics simulations confirmed exceptional spathulenol-AR complex stability, maintaining critical hydrogen bonding with Asn705 for 96% of simulation time. Conclusions: McEO exerts sophisticated multi-target anticancer effects through synergistic constituent interactions, notably spathulenol’s potent AR antagonism. This integrated computational-experimental approach validates McEO’s polypharmacological basis and supports its therapeutic potential, particularly for hormone-dependent malignancies, while establishing a robust framework for natural product bioactivity deconvolution. Full article
(This article belongs to the Section Natural Products)
18 pages, 716 KB  
Article
Service Trade and New Energy Use: A Study of China’s Pilot Cities from the Perspective of Institutional Innovation
by Da Huo, Wenjia Gu, Tianying Sun and Zixuan Gao
Energies 2025, 18(20), 5392; https://doi.org/10.3390/en18205392 (registering DOI) - 13 Oct 2025
Abstract
As trade in services continues to play an increasingly important role in international trade, effectively integrating its advancement with green development has become a key issue for China in shaping a new development paradigm. This study treats the service trade pilot city policy [...] Read more.
As trade in services continues to play an increasingly important role in international trade, effectively integrating its advancement with green development has become a key issue for China in shaping a new development paradigm. This study treats the service trade pilot city policy as a quasi-natural experiment, employing the Difference-in-Differences (DID) method to investigate the policy’s impact on urban green energy use. The findings indicate that the policy significantly boosted green energy consumption in pilot cities. Heterogeneity analysis reveals more pronounced policy effects in eastern regions and provinces with smaller populations. Furthermore, synergistic effects emerge when this policy interacts with artificial intelligence (AI) technology policies and urban environmental policies, further amplifying green energy consumption outcomes. Consequently, this study proposes recommendations including strengthening institutional innovation in green services trade within pilot zones, establishing cross-regional green collaboration networks, and promoting multi-policy coordination. These findings offer valuable insights for developing countries seeking to achieve sustainable development through services trade liberalization. Full article
(This article belongs to the Section C: Energy Economics and Policy)
13 pages, 1313 KB  
Article
Interactions Between Soil Texture and Cover Crop Diversity Shape Carbon Dynamics and Aggregate Stability
by Vladimír Šimanský and Martin Lukac
Land 2025, 14(10), 2044; https://doi.org/10.3390/land14102044 (registering DOI) - 13 Oct 2025
Abstract
Increasing attention is being paid to the use of cover crops as a means of improving soil quality, particularly in relation to soil organic matter (SOM) accumulation and aggregate stability. This study evaluated the effects of soil texture, soil depth, and cover crop [...] Read more.
Increasing attention is being paid to the use of cover crops as a means of improving soil quality, particularly in relation to soil organic matter (SOM) accumulation and aggregate stability. This study evaluated the effects of soil texture, soil depth, and cover crop type on soil organic carbon (Corg), labile carbon (CL), and soil structure under field conditions in western Slovakia. A field experiment compared two texturally distinct Phaeozem soils—silty clay loam and sandy loam —and two cover cropping strategies: pea (Pisum sativum L.) monoculture and a four-species mixture of flax (Linum usitatissimum L.), camelina (Camelina sativa L.), white mustard (Sinapis alba L.), and Italian millet (Setaria italica L.). Fine-textured soil accumulated up to 50% more Corg and 1.5 times more CL than sandy soil, while aggregate stability was up to 90% higher. The surface layer (0–10 cm) contained more SOM, but the deeper layer (10–20 cm) showed greater aggregate stability. Pea cultivation increased total organic carbon, whereas the diverse mixture enhanced labile carbon content and promoted the formation of smaller yet more stable aggregates. Strong correlations between CL and aggregate stability confirmed the key role of labile organic matter fractions in soil structural stabilisation. Overall, the results demonstrate that the interaction between soil texture and cover crop diversity critically shapes SOM dynamics and soil structure. Combining diverse cover crops with fine-textured soils provides an effective strategy to enhance soil quality, carbon sequestration, and long-term agricultural sustainability. Full article
(This article belongs to the Section Land, Soil and Water)
19 pages, 20391 KB  
Article
Radar-Based Gesture Recognition Using Adaptive Top-K Selection and Multi-Stream CNNs
by Jiseop Park and Jaejin Jeong
Sensors 2025, 25(20), 6324; https://doi.org/10.3390/s25206324 (registering DOI) - 13 Oct 2025
Abstract
With the proliferation of the Internet of Things (IoT), gesture recognition has attracted attention as a core technology in human–computer interaction (HCI). In particular, mmWave frequency-modulated continuous-wave (FMCW) radar has emerged as an alternative to vision-based approaches due to its robustness to illumination [...] Read more.
With the proliferation of the Internet of Things (IoT), gesture recognition has attracted attention as a core technology in human–computer interaction (HCI). In particular, mmWave frequency-modulated continuous-wave (FMCW) radar has emerged as an alternative to vision-based approaches due to its robustness to illumination changes and advantages in privacy. However, in real-world human–machine interface (HMI) environments, hand gestures are inevitably accompanied by torso- and arm-related reflections, which can also contain gesture-relevant variations. To effectively capture these variations without discarding them, we propose a preprocessing method called Adaptive Top-K Selection, which leverages vector entropy to summarize and preserve informative signals from both hand and body reflections. In addition, we present a Multi-Stream EfficientNetV2 architecture that jointly exploits temporal range and Doppler trajectories, together with radar-specific data augmentation and a training optimization strategy. In experiments on the publicly available FMCW gesture dataset released by the Karlsruhe Institute of Technology, the proposed method achieved an average accuracy of 99.5%. These results show that the proposed approach enables accurate and reliable gesture recognition even in realistic HMI environments with co-existing body reflections. Full article
(This article belongs to the Special Issue Sensor Technologies for Radar Detection)
21 pages, 424 KB  
Article
Investigating the Effects of Soil Type and Potassium Fertiliser Timing on Potassium Leaching: A Five-Soil Lysimeter Study
by Thomas P. McCarthy, John B. Murphy and Patrick J. Forrestal
Soil Syst. 2025, 9(4), 110; https://doi.org/10.3390/soilsystems9040110 - 13 Oct 2025
Abstract
Potassium (K) is essential for grassland productivity, but soil K leaching can reduce fertiliser use efficiency, increasing environmental losses. International evidence suggests soil type and K fertiliser timing influence K leaching, yet limited data exist for Ireland’s diverse soil types. This study investigated [...] Read more.
Potassium (K) is essential for grassland productivity, but soil K leaching can reduce fertiliser use efficiency, increasing environmental losses. International evidence suggests soil type and K fertiliser timing influence K leaching, yet limited data exist for Ireland’s diverse soil types. This study investigated the effects of K fertiliser timing (autumn, winter, and spring) and soil type on K leaching using a controlled lysimeter facility with five representative Irish soils sown with perennial ryegrass. Potassium fertiliser (125 kg K ha−1) was applied in October, December, or February, with leachate collected from October to April. Soil type affected cumulative K leaching (1.4–9.8 kg ha−1; p ≤ 0.001), with the greatest losses observed in sandy soils. Potassium and nitrogen uptake in spring-harvested grass were also influenced by soil type (p ≤ 0.05), with strong positive correlation between the two nutrients (R2 = 0.78; p ≤ 0.001). Temporally, significant interactions (p ≤ 0.05) between K application timing and sampling date were found for K leachate in three of the five soils tested. Autumn and winter applications tended to increase cumulative leaching risk, especially on coarser-textured soils such as the Oakpark soil (p ≤ 0.05). The study indicates that applying K in early spring will tend to reduce leaching K losses, particularly on sandy soils. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
22 pages, 2661 KB  
Article
Population–Land–Industry–Facility System Coupling Coordination and Influencing Factors in Hebei Province
by Yichun Niu, Li Zhao, Jiaxi Xie, Haoyu Zhou, Junjie Zang and Chunxiu Zhao
Land 2025, 14(10), 2043; https://doi.org/10.3390/land14102043 - 13 Oct 2025
Abstract
Exploring the interactions and coupling effects in the Population–Land–Industry–Facility (PLIF) system can help maximize resource allocation and promote the synergistic development of systems. This study constructs an index system for the PLIF system in Hebei Province, employing coupling coordination degree and spatial autocorrelation [...] Read more.
Exploring the interactions and coupling effects in the Population–Land–Industry–Facility (PLIF) system can help maximize resource allocation and promote the synergistic development of systems. This study constructs an index system for the PLIF system in Hebei Province, employing coupling coordination degree and spatial autocorrelation methods to investigate the spatio-temporal evolution of the system’s coordination. Furthermore, grey relational analysis is employed to examine the key factors influencing the coordination degree of the system. The results show the following: (1) The development levels of each subsystem and the overall development level of the PLIF system in Hebei Province have generally increased, but the overall level remains relatively low. (2) The PLIF system in Hebei Province exhibits a pattern of “low in the north and high in the south, high in the east and low in the west”, with most counties in a barely coordinated state and a generally high degree of coupling. (3) The main factors affecting the coordinated development of the PLIF system include population density, the proportion of the tertiary industry, and the degree of non-agriculturalization of rural labor force. The research results of this paper provide a reference for promoting the coordinated development of population, land, industry, and facilities in Hebei Province and facilitating the sustainable development of the region. Full article
Show Figures

Figure 1

22 pages, 1595 KB  
Review
Ecological Functions of Microbes in Constructed Wetlands for Natural Water Purification
by Aradhna Kumari, Saurav Raj, Santosh Kumar Singh, Krishan K. Verma and Praveen Kumar Mishra
Water 2025, 17(20), 2947; https://doi.org/10.3390/w17202947 (registering DOI) - 13 Oct 2025
Abstract
Constructed wetlands (CWs) are sustainable and cost-effective systems that utilise plant–microbe interactions and natural processes for wastewater treatment. Microbial communities play a pivotal role in pollutant removal by crucial processes like nitrogen transformations, phosphorus cycling, organic matter degradation and the breakdown of emerging [...] Read more.
Constructed wetlands (CWs) are sustainable and cost-effective systems that utilise plant–microbe interactions and natural processes for wastewater treatment. Microbial communities play a pivotal role in pollutant removal by crucial processes like nitrogen transformations, phosphorus cycling, organic matter degradation and the breakdown of emerging contaminants. Dominant phyla, such as Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes, collectively orchestrate these biogeochemical functions. Advances in molecular tools, including high-throughput sequencing and metagenomics, have revealed the diversity and functional potential of wetland microbiomes, while environmental factors, i.e., temperature, pH and hydraulic retention time, strongly influence their performance. Phosphorus removal efficiency is often lower than nitrogen, and large land requirements and long start-up times restrict broader application. Microplastic accumulation, the spread of antibiotic resistance genes and greenhouse gas emissions (methane, nitrous oxide) present additional challenges. The possible persistence of pathogenic microbes further complicates system safety. Future research should integrate engineered substrates, biochar amendments, optimised plant–microbe interactions and hybrid CW designs to enhance treatment performance and resilience in the era of climate change. By acknowledging the potential and constraints, CWs can be further developed as next-generation, nature-based solutions for sustainable water management in the years to come. Full article
(This article belongs to the Special Issue Application of Environmental Microbiology in Water Treatment)
18 pages, 1472 KB  
Article
Influence of Surface Energy and Phase Composition on Electroadhesive Interactions
by Konstantin I. Sharov, Valentina Yu. Stepanenko, Ramil R. Khasbiullin, Vladimir V. Matveev, Uliana V. Nikulova and Aleksey V. Shapagin
Polymers 2025, 17(20), 2739; https://doi.org/10.3390/polym17202739 (registering DOI) - 13 Oct 2025
Abstract
The aim of the study is to investigate the influence of the physicochemical characteristics of the molecular and supramolecular structure of polymers on electroadhesive interactions and their change under the action of a constant electric field. Currently, this effect is modeled in electroadhesion [...] Read more.
The aim of the study is to investigate the influence of the physicochemical characteristics of the molecular and supramolecular structure of polymers on electroadhesive interactions and their change under the action of a constant electric field. Currently, this effect is modeled in electroadhesion studies, but the range of variable parameters is limited and includes permittivity, moisture content, and surface roughness. It is important to consider other physicochemical parameters, such as material crystallinity and surface characteristics, changes in which can affect the magnitude of electroadhesive forces. In this study, the electric field strength was varied by altering the constant voltage in the range of 3–8 kV. Polyethylene, ethylene-vinyl acetate copolymers, and polyvinyl acetate were used as substrates for adhesive systems. The influence of the concentration of vinyl acetate groups, which determine the energy characteristics of the surface, and the degree of crystallinity on electroadhesive interactions under conditions of an external constant electric field and without it was traced. The degree of crystallinity was varied both by the cooling rate and the orientation during drawing. It was shown that by changing the polar component of the surface energy and the proportion of the crystalline phase in the substrate, electroadhesive interactions can be increased by 4 times to 120 Pa compared to polyethylene. The obtained laws are explained by the local dipoles induced by polar functional groups, which enhance the polymer’s surface interactions with other materials and external fields. At the same time, the fixation of macromolecules in crystalline regions complicates polarization under the influence of an electric field. Full article
38 pages, 14720 KB  
Article
Ecological Comprehensive Efficiency and Driving Mechanisms of China’s Water–Energy–Food System and Climate Change System Based on the Carbon Nexus: Insights from the Integration of Network DEA and the Geographic Detector
by Fang-Rong Ren, Fang-Yi Sun, Xiao-Yan Liu and Hui-Lin Liu
Land 2025, 14(10), 2042; https://doi.org/10.3390/land14102042 - 13 Oct 2025
Abstract
As a major energy producer and consumer, China has witnessed rapid growth in carbon emissions, which are closely linked to changes in regional climate and the environment. Water, energy, and food (W-E-F) are the three most critical components of human production and daily [...] Read more.
As a major energy producer and consumer, China has witnessed rapid growth in carbon emissions, which are closely linked to changes in regional climate and the environment. Water, energy, and food (W-E-F) are the three most critical components of human production and daily life, and achieving the coordinated development of these three resources and connecting them with climate change through the carbon emissions generated during their utilization processes has become a key issue for realizing regional ecological sustainable development. This study constructs a dynamic two-stage network slack-based measure-data envelopment analysis (SBM-DEA) model, which integrates the water–energy–food (W-E-F) system with the climate change process to evaluate China’s comprehensive ecological efficiency from 2011 to 2022, and adopts the Dagum Gini coefficient decomposition, kernel density estimation, hierarchical clustering, and geographical detector model to analyze provincial panel data, thereby assessing efficiency patterns, regional differences, and driving mechanisms. The novelty and contributions of this study can be summarized in three aspects. First, it establishes a unified framework that incorporates the W-E-F nexus and climate change into a dynamic network SBM-DEA model, enabling a more systematic assessment of ecological efficiency. Second, it uncovers that interregional overlap effects and policy-driven factors are the dominant sources of spatial and temporal disparities in ecological efficiency. Third, it further quantifies the interactive effects among key driving factors using Geodetector, thus offering practical insights for regional coordination and policy design. The results show that China’s national ecological efficiency is at a medium level. Southern China has consistently maintained a leading position, while provinces in northwest and southwest China have remained relatively backward; the efficiency of the water–energy–food integration stage is relatively high, whereas the efficiency of the climate change stage is medium and exhibits significant temporal fluctuations. Interregional differences are the main source of efficiency gaps; ecological quality, environmental protection efforts, and population size are identified as the primary driving factors, and their interaction effects have intensified spatial heterogeneity. In addition, sub-indicator analysis reveals that the efficiency related to total wastewater, air pollutant emissions, and agricultural pollution shows good synergy, while the efficiency associated with sudden environmental change events is highly volatile and has weak correlations with other undesirable outputs. These findings deepen the understanding of the water–energy–food-climate system and provide policy implications for strengthening ecological governance and regional coordination. Full article
Back to TopTop