Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (935)

Search Parameters:
Keywords = intercropping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1821 KB  
Article
Verification of Agricultural Practices for Winter Pea–Cereals Intercropping
by Agnieszka Klimek-Kopyra, Ewa Hanus-Fajerska, Iwona Kamińska, Tomasz Głąb, Reinhard W. Neugschwandtner and Wiktor Chudzik
Agronomy 2025, 15(9), 2017; https://doi.org/10.3390/agronomy15092017 - 22 Aug 2025
Viewed by 146
Abstract
Recently, an urgent need has been identified to increase the biodiversity of the cereal crops that dominate European farmlands. In this aspect, the addition of pea as a component of winter cereals seems justified, but the appropriate selection of the cultivars to create [...] Read more.
Recently, an urgent need has been identified to increase the biodiversity of the cereal crops that dominate European farmlands. In this aspect, the addition of pea as a component of winter cereals seems justified, but the appropriate selection of the cultivars to create a mixture suitable for agricultural practice is probably essential. Therefore, arbitrarily selected winter pea cultivars were intercropped with some chosen cereals in order to assess certain yield parameters using a two-factorial field experiment conducted on brown soil. The studied factors were the cultivar of pea (Pisum sativum), ‘Pandora’ and ‘E.F.B. 33′ respectively, and the cropping system: single crop vs. cereal/legume intercropping mixture. Cereals used were rye (Secale cereale L.) ‘Amber’ and triticale (× Triticosecale) ‘Borwo’. To assess the potential of winter pea in this cultivation system, the yield level, some plant parameters (above- and belowground), and LER and CR indices were applied. Additionally, to demonstrate the effect of intercropping on pea, the root system, root nodulation, and nitrogen uptake efficiency were assessed. It was shown that yield and plant indices were closely related to the intercropping variant used. The key element determining the potential of the cultivated crops was the selection of cultivars. The most productive one was proved pea ‘E.F.B. 33’, which formed the largest number of nodules when intercropped with triticale. Moreover, it was ascertained that the drought period during the formation of nodules negatively affected their structure, which had a rather negative impact on the pea yield. Full article
Show Figures

Figure 1

13 pages, 375 KB  
Article
Legume Proportion and Litter Deposition Rate in Signal Grass–Forage Peanut Mixed Pastures at Varying Planting Spacings
by Lucas Ladeira Cardoso, Igor Alexandre de Souza, Odilon Gomes Pereira, Paulo Roberto Cecon, Carlos Augusto de Miranda Gomide, José Carlos Batista Dubeux and Karina Guimarães Ribeiro
Sustainability 2025, 17(16), 7562; https://doi.org/10.3390/su17167562 - 21 Aug 2025
Viewed by 177
Abstract
Mixed legume–grass pastures may enhance nitrogen recycling via litter and excreta compared to unfertilized grass monocultures. This study evaluated litter biomass, litter deposition rate, and the chemical and isotopic composition of Urochloa decumbens litter in monoculture and mixed pasture intercropped with Arachis pintoi [...] Read more.
Mixed legume–grass pastures may enhance nitrogen recycling via litter and excreta compared to unfertilized grass monocultures. This study evaluated litter biomass, litter deposition rate, and the chemical and isotopic composition of Urochloa decumbens litter in monoculture and mixed pasture intercropped with Arachis pintoi cv. Belmonte at five planting spacings (0.40, 0.50, 0.60, 0.70, and 0.80 m) in a Ferralsol. Additionally, isotopic analysis of sheep feces under grazing was conducted across the dry season. The experiment was conducted according to a split-plot scheme, with spacings in the plots and the periods or years in the subplots, in a randomized block design, with four replications. Litter biomass was not significantly influenced by planting spacing; however, the litter deposition rate was substantially greater in mixed pastures, reaching up to 77.2 kg ha−1 day−1 in the second year. Isotopic analysis revealed that up to 39% of the litter carbon was derived from C3 plants (Arachis pintoi), while nitrogen concentration ranged from 8.3 g kg−1 in monoculture to 12.9 g kg−1 at 0.40 m spacing. Spatial arrangement was critical for optimizing nutrients dynamic. Narrower planting spacings (0.40–0.50 m) increased the proportion of Arachis pintoi and enhanced litter deposition rates, improving nitrogen inputs and cycling within mixed Urochloa decumbens. Full article
Show Figures

Figure 1

22 pages, 1640 KB  
Review
Advances in Water and Nitrogen Management for Intercropping Systems: Crop Growth and Soil Environment
by Yan Qiu, Zhenye Wang, Debin Sun, Yuanlan Lei, Zhangyong Li and Yi Zheng
Agronomy 2025, 15(8), 2000; https://doi.org/10.3390/agronomy15082000 - 20 Aug 2025
Viewed by 257
Abstract
Intercropping is an eco-friendly, sustainable agricultural model that significantly improves yield stability, nutrient use efficiency, and soil health through spatiotemporal niche complementarity, increases biodiversity, and improves soil health. Water and nitrogen play crucial roles in limiting and regulating efficient resource utilization and ecological [...] Read more.
Intercropping is an eco-friendly, sustainable agricultural model that significantly improves yield stability, nutrient use efficiency, and soil health through spatiotemporal niche complementarity, increases biodiversity, and improves soil health. Water and nitrogen play crucial roles in limiting and regulating efficient resource utilization and ecological sustainability in intercropping systems. Synchronizing water and nitrogen inputs to match crop demands optimizes the spatiotemporal distribution of these resources, alleviates interspecific competition, and promotes mutualistic interactions, which significantly impacts crop growth, yield, and soil environment. This paper reviews the mechanisms of intercropping and water–nitrogen coupling regulation, aligning water and nitrogen supply with crop growth patterns, spatial configuration parameters, irrigation management techniques, and environmental climate change, and explores the response mechanisms of water–nitrogen coupling on crop growth, yield, and soil environmental adaptation. It can provide some references for researchers, extension agents, and policymakers. Research indicates that water–nitrogen coupling can enhance photosynthetic efficiency, promote root development, optimize nutrient uptake, and improve soil water dynamics, nitrogen cycling, and microbial community structures. Intercropping enhances the climate resilience of agricultural systems by leveraging species complementarity for resource utilization, strengthening ecosystem stability, and improving buffering capacity against climate change impacts such as extreme precipitation and temperature fluctuations. Future studies should further elucidate the differential effect of water–nitrogen coupling across regions and climatic conditions, focusing on multidimensional integrated administration strategies. Combining precision agriculture technologies and climate change predictions facilitates the development of more adaptive water–nitrogen coupling models to provide theoretical support and technical guarantees for sustainable agriculture. Full article
Show Figures

Figure 1

15 pages, 2026 KB  
Article
Planting Diversification Enhances Phosphorus Availability and Reshapes Fungal Community Structure in the Maize Rhizosphere
by Yannan Li, Yuming Zhang, Xiaoxin Li, Hongjun Li, Wenxu Dong, Shuping Qin, Xiuping Liu, Lijuan Zhang, Chunsheng Hu, Hongbo He, Pushan Zheng and Jingyun Zhao
Agronomy 2025, 15(8), 1993; https://doi.org/10.3390/agronomy15081993 - 19 Aug 2025
Viewed by 212
Abstract
Intercropping with green manures is an effective practice for increasing agricultural production and reducing environmental issues. However, the effects of green manure type and intercropping patten on soil nutrient availability and microbial communities remains underexplored. In the present study, the impacts of three [...] Read more.
Intercropping with green manures is an effective practice for increasing agricultural production and reducing environmental issues. However, the effects of green manure type and intercropping patten on soil nutrient availability and microbial communities remains underexplored. In the present study, the impacts of three green manure–maize intercropping patterns on maize yield, rhizosphere nutrient availability, and soil fungal community were evaluated. Four treatments (three replicate plots for each) were involved, including a monoculture treatment (MC) as a control and three intercropping patterns as follows: maize–ryegrass (Lolium perenne L.) (IntL), maize–forage soybean (Fen Dou mulv 2, a hybrid soybean cultivar) (IntF), and maize–ryegrass–forage soybean (IntLF) intercropping. The results showed that all three intercropping patterns significantly increased maize yield and rhizosphere available phosphorus (AP) compared with MC. Intercropping shifted the dominant assembly process of the maize rhizosphere fungal community from stochastic to deterministic processes, shaping a community rich in arbuscular mycorrhizal fungi (AMF) and limited in plant pathogens, primarily Exserohilum turcicum. AP showed significant correlations with fungal community and AMF, while maize yield was negatively correlated with plant pathogens. In addition, the dual-species green manure intercropping pattern (IntLF) had the strongest positive effects on maize yield, AP content, and fungal community compared with single-species patterns (IntL and IntF). These results illustrate the advantages of planting diversification in boosting crop production by improving nutrient availability and soil health in the rhizosphere and suggest that the maize–ryegrass–forage soybean intercropping system is a potential strategy for improving soil fertility and health. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

22 pages, 2058 KB  
Article
Effects of Water-Nitrogen Management on the Growth and Nitrogen Uptake and Utilization of Intercropped Alfalfa
by Huile Lv, Yuanbo Jiang, Guangping Qi, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Feng Xiao, Jianqing Peng, Haiyan Li, Chongqin Luo, Junxian Chen, Yanbiao Wang and Mingzhu Wang
Plants 2025, 14(16), 2572; https://doi.org/10.3390/plants14162572 - 19 Aug 2025
Viewed by 324
Abstract
Agroforestry is an ecological agricultural model that promotes the coordinated development of agriculture and animal husbandry. Exploring appropriate water and nitrogen management strategies for forage grasses in agroforestry systems is of great significance for improving productivity. This study aims to investigate the effects [...] Read more.
Agroforestry is an ecological agricultural model that promotes the coordinated development of agriculture and animal husbandry. Exploring appropriate water and nitrogen management strategies for forage grasses in agroforestry systems is of great significance for improving productivity. This study aims to investigate the effects of different water and nitrogen management practices on the growth, nitrogen uptake, and utilization efficiency of intercropped alfalfa in a goji berry-alfalfa system. It is assumed that moderate water deficiency combined with appropriate nitrogen fertilizer can optimize the growth of alfalfa in the intercropping of wolfberry and alfalfa. This study was based on a 2-year (2021 and 2022) field trial, focusing on alfalfa in a goji berry||alfalfa system. Four irrigation levels [full irrigation (W0, 75–85% θfc), mild water deficit (W1, 65–75% θfc), moderate water deficit (W2, 55–65% θfc), and severe water deficit (W3, 45–55% θfc)] and four nitrogen application levels [no nitrogen (N0, 0 kg·hm−2), low nitrogen (N1, 150 kg·hm−2), medium nitrogen (N2, 300 kg·hm−2), and high nitrogen (N3, 450 kg·hm−2)] were set up to systematically analyze the effects of water and nitrogen regulation on biomass allocation, nitrogen translocation, hay yield, and nitrogen use efficiency of alfalfa. The results showed that (1) irrigation and nitrogen application levels significantly affected the stem-to-leaf and root-to-shoot ratios of alfalfa (p < 0.01). The smallest stem-to-leaf ratio (0.758) was observed under W1N2, while the smallest root-to-shoot ratio (0.595) was observed under W0N2. (2) Irrigation and nitrogen application levels significantly affected nitrogen accumulation and nitrogen translocation in alfalfa (p < 0.05). The maximum nitrogen accumulation was observed under W0N2, which was 43.39% higher than that under W0N0. The maximum nitrogen translocation was observed under W1N2, which was 15.1% and 33.4% higher on average than that under W0N0 and W3N0, respectively. (3) Irrigation and nitrogen application had highly significant effects on alfalfa hay yield (p < 0.01). The highest hay yield (8325 kg·hm−2 and 12,872 kg·hm−2) was achieved under W0N2. The nitrogen productivity of alfalfa increased with increasing water deficit and initially increased, then decreased with increasing nitrogen application. The nitrogen use efficiency of alfalfa followed the order N2 > N1 > N3 and W1 > W0 > W2 > W3, with the highest value of 9.26 under W1N2. Based on the comprehensive evaluation of alfalfa in agroforestry systems under water and nitrogen regulation using the entropy weight-TOPSIS method, mild water deficit combined with medium nitrogen application (W1N2) can optimize the stem-to-leaf ratio, root-to-shoot ratio, and nitrogen use efficiency of alfalfa without significantly reducing yield and nitrogen production efficiency. This water-nitrogen combination is suitable for use in goji berry||alfalfa systems in the Yellow River irrigation area of Gansu Province and similar ecological zones. Full article
Show Figures

Graphical abstract

28 pages, 1896 KB  
Review
Enhancing Sustainability in Sugarcane Production Through Effective Nitrogen Management: A Comprehensive Review
by Gunaratnam Abhiram, Thibiha Gopalasingam and Jeyarethinam Inthujan
Nitrogen 2025, 6(3), 69; https://doi.org/10.3390/nitrogen6030069 - 18 Aug 2025
Viewed by 168
Abstract
The nitrogen (N) requirement of sugarcane (Saccharum spp.) is very high due to the extensive growth of biomass. N fertilisers are applied excessively to ensure the optimum growth of the sugarcane crop. Improper N management causes a decrease in nitrogen utilisation efficiency [...] Read more.
The nitrogen (N) requirement of sugarcane (Saccharum spp.) is very high due to the extensive growth of biomass. N fertilisers are applied excessively to ensure the optimum growth of the sugarcane crop. Improper N management causes a decrease in nitrogen utilisation efficiency (NUE) and contributes to N losses via leaching and gaseous emissions in the form of ammonia (NH3) and nitrous oxide (N2O), leading to unintended negative consequences. Asynchronous timing between the sugarcane N demand and supply by the N sources exacerbates these losses. Therefore, proper N management strategies need to be implemented to mitigate losses and enhance NUE. This review provides an overview of global sugarcane cultivation and discusses the N requirements for sugarcane crops. Additionally, it summarises the various strategies utilised in N management for sugarcane cultivation and evaluates their effectiveness. Furthermore, it identifies research gaps and outlines future research directions. Full article
Show Figures

Figure 1

14 pages, 1252 KB  
Article
Rubber-Ficus hirta Vahl. Agroforestry System Enhances Productivity and Resource Utilization Efficiency and Reduces Carbon Footprint
by Jian Pan, Xiu Zeng, Zhengfan Tian, Yan Zhang, Yuanran Xian, Hanqi Tu, Jianxiong Huang and Xiuquan Wang
Agriculture 2025, 15(16), 1750; https://doi.org/10.3390/agriculture15161750 - 15 Aug 2025
Viewed by 327
Abstract
Developing a more productive, resource-efficient, and climate-smart rubber agroforestry model is essential for the sustainable growth of natural rubber cultivation. In this study, we evaluated whether a double-row rubber plantation intercropped with the medicinal crop Ficus hirta Vahl. (DR-F) could achieve this goal, [...] Read more.
Developing a more productive, resource-efficient, and climate-smart rubber agroforestry model is essential for the sustainable growth of natural rubber cultivation. In this study, we evaluated whether a double-row rubber plantation intercropped with the medicinal crop Ficus hirta Vahl. (DR-F) could achieve this goal, using a single-row rubber plantation (SR) as the control. We assessed the feasibility of the DR-F system based on productivity, solar utilization efficiency (SUE), partial factor productivity of applied nitrogen (PFPN), carbon efficiency (CE), net ecosystem carbon balance (NECB), and carbon footprint (CF). No significant difference was observed in rubber tree biomass between the DR-F (10.49 t·ha−1) and SR (8.49 t·ha−1) systems. However, the DR-F system exhibited significantly higher total biomass productivity (23.34 t·ha−1) than the SR systems due to the substantial contribution from intercropped Ficus hirta Vahl., which yielded 12.84 t·ha−1(p < 0.05). The root fresh weight yield of Ficus hirta Vahl. reached 17.55 t·ha−1, generating an additional profit of 20,417 CNY ha−1. The DR-F system also exhibited higher solar radiation interception and greater availability of soil nutrients. Notably, the roots of rubber trees and Ficus hirta Vahl. did not overlap at a 4 m distance from the rubber trees. The DR-F system achieved higher SUE (0.64%), PFPN (51.40 kg·kg−1 N), and CE (6.93 kg·kg−1 C) than the SR system, with the SUE and PFPN differences being statistically significant (p < 0.05). Although the NECB remained unaffected, the DR-F system demonstrated significantly higher productivity and a substantially lower CF (0.33 kg CO2·kg−1, a 56% reduction; p < 0.05). In conclusion, the DR-F system represents a more sustainable and beneficial agroforestry approach, offering improved productivity, greater resource use efficiency, and reduced environmental impact. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

36 pages, 3552 KB  
Review
Milpa, a Long-Standing Polyculture for Sustainable Agriculture
by Cecilio Mota-Cruz, Alejandro Casas, Rafael Ortega-Paczka, Hugo Perales, Ernesto Vega-Peña and Robert Bye
Agriculture 2025, 15(16), 1737; https://doi.org/10.3390/agriculture15161737 - 13 Aug 2025
Viewed by 1456
Abstract
Polyculture, or intercropping, is the practice of growing two or more crops simultaneously in time and space. The milpa is a systematic polyculture involving the simultaneous cultivation of maize (Zea mays), beans (Phaseolus spp.), squash (Cucurbita spp.), and other [...] Read more.
Polyculture, or intercropping, is the practice of growing two or more crops simultaneously in time and space. The milpa is a systematic polyculture involving the simultaneous cultivation of maize (Zea mays), beans (Phaseolus spp.), squash (Cucurbita spp.), and other crops. Milpa polyculture initially emerged in the Mesoamerican region (Mexico and Central America) through the concurrent processes of managing, utilizing, and domesticating its constituent crops. It subsequently spread throughout the Americas via the diffusion of maize and the convergence of its domestication with that of its companion crops and other domesticated plants in the continent. Mesoamerican farmers made an outstanding contribution by domesticating and bringing together crops with contrasting morphological and physiological traits that are ecologically, agronomically, and nutritionally complementary. Despite its importance, few quantitative evaluations of this polyculture exist. However, these evaluations indicate that its productivity and land efficiency use (Land equivalent ratio = 1.34) are comparable to those of other intercrops studied on a global scale. We emphasize the importance of transdisciplinary efforts to study this polyculture and highlight its potential applications related to ecological interactions, plant microbiomes and breeding in order to reach sustainable production goals. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

35 pages, 6385 KB  
Article
Intelligent Optimization-Based Decision-Making Framework for Crop Planting Strategy with Total Profit Prediction
by Chongyuan Wang, Jinjuan Zhang, Ting Wang, Bowen Zeng, Bi Wang, Yishan Chen and Yang Chen
Agriculture 2025, 15(16), 1736; https://doi.org/10.3390/agriculture15161736 - 12 Aug 2025
Viewed by 449
Abstract
Optimizing agricultural structure serves as a crucial pathway to promote sustainable rural economic development. This study focuses on a representative village in the mountainous region of North China, where agricultural production is constrained by perennial low-temperature conditions, resulting in widespread adoption of single-cropping [...] Read more.
Optimizing agricultural structure serves as a crucial pathway to promote sustainable rural economic development. This study focuses on a representative village in the mountainous region of North China, where agricultural production is constrained by perennial low-temperature conditions, resulting in widespread adoption of single-cropping systems. There exists an urgent need to enhance both economic returns and risk resilience of limited arable land through refined cultivation planning. However, traditional planting strategies face difficulties in synergistically optimizing long-term benefits from multi-crop combinations, while remaining vulnerable to climate fluctuations, market volatility, and complex inter-crop relationships. These limitations lead to constrained land productivity and inadequate economic resilience. To address these challenges, we propose an integrated decision-making approach combining stochastic programming, robust optimization, and data-driven modeling. The methodology unfolds in three phases: First, we construct a stochastic programming model targeting seven-year total profit maximization, which quantitatively analyzes relationships between decision variables (crop planting areas) and stochastic variables (climate/market factors), with optimal planting solutions derived through robust optimization algorithms. Second, to address natural uncertainties, we develop an integer programming model for ideal scenarios, obtaining deterministic optimization solutions via genetic algorithms. Furthermore, this study conducts correlation analyses between expected sales volumes and cost/unit price for three crop categories (staples, vegetables, and edible fungi), establishing both linear and nonlinear regression models to quantify how crop complementarity–substitution effects influence profitability. Experimental results demonstrate that the optimized strategy significantly improves land-use efficiency, achieving a 16.93% increase in projected total revenue. Moreover, the multi-scenario collaborative optimization enhances production system resilience, effectively mitigating market and environmental risks. Our proposal provides a replicable decision-making framework for sustainable intensification of agriculture in cold-region rural areas. Full article
(This article belongs to the Special Issue Strategies for Resilient and Sustainable Agri-Food Systems)
Show Figures

Figure 1

22 pages, 867 KB  
Review
Regenerative Agriculture: Insights and Challenges in Farmer Adoption
by Cristiano Moisés, Margarida Arrobas, Dimitrios Tsitos, Diogo Pinho, Raiza Figueiredo Rezende and Manuel Ângelo Rodrigues
Sustainability 2025, 17(16), 7235; https://doi.org/10.3390/su17167235 - 11 Aug 2025
Viewed by 433
Abstract
Regenerative agriculture has emerged as a new organic farming movement, initially difficult to distinguish from similar approaches. Its core concerns, such as ecosystem degradation caused by intensive farming, align with those of many other organic systems. However, regenerative agriculture prioritizes soil health, biodiversity, [...] Read more.
Regenerative agriculture has emerged as a new organic farming movement, initially difficult to distinguish from similar approaches. Its core concerns, such as ecosystem degradation caused by intensive farming, align with those of many other organic systems. However, regenerative agriculture prioritizes soil health, biodiversity, and social equity, setting itself apart through its scalability and flexibility. Unlike other ecological farming methods, often limited to smaller scales, regenerative agriculture aims to be implemented on large farms, typically major contributors to pollution due to reliance on external inputs like fertilizers and pesticides. Notably, regenerative certification standards are more flexible, allowing the use of industrially synthesized inputs under specific conditions, provided that regenerative principles are upheld. This review systematically examines seven core regenerative practices: no-tillage farming, crop rotation, cover cropping, green manures, intercropping, perennial cover systems, and integrated crop-livestock systems. It outlines the practical advantages and ecological benefits of each, while identifying key adoption challenges, including costs, farm size, and institutional barriers. The paper argues that addressing these issues, particularly concerning scale and socio-economic constraints, is essential for broader adoption. By synthesizing recent evidence, this review clarifies the distinctiveness of regenerative agriculture and highlights pathways for its scalable implementation. Full article
Show Figures

Figure 1

10 pages, 246 KB  
Article
Milk Production and Enteric Methane Emissions in Dairy Cows Grazing Annual Ryegrass Alone or Intercropped with Forage Legumes
by Larissa Godeski Moreira, Tiago Celso Baldissera, Chrystian Jassanã Cazarotto, Maria Isabel Martini, Renata da Rosa Dornelles and Henrique M. N. Ribeiro-Filho
Animals 2025, 15(16), 2329; https://doi.org/10.3390/ani15162329 - 8 Aug 2025
Viewed by 216
Abstract
This study evaluated the effects of reduced nitrogen fertilization and the intercropping of annual ryegrass (Lolium multiflorum Lam.) with forage legumes—common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.)—on milk production and enteric methane emissions in grazing dairy [...] Read more.
This study evaluated the effects of reduced nitrogen fertilization and the intercropping of annual ryegrass (Lolium multiflorum Lam.) with forage legumes—common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.)—on milk production and enteric methane emissions in grazing dairy cows. Twelve Holstein × Jersey cows were assigned to a crossover design involving two treatments: ryegrass monoculture (RG) or ryegrass—legume mixture (RG + Leg). Methane emissions were measured using GreenFeed systems; grazing behavior, milk yield and composition, and organic matter digestibility were also assessed. Legume inclusion contributed ~9% of the pre-grazing biomass, and cows grazing RG + Leg pastures had lower herbage mass (−214 kg DM/ha) and lower herbage allowance (−6 kg DM/cow/day) than cows on monoculture ryegrass. Energy-corrected milk (ECM), methane emissions (g/day and g/kg ECM), and grazing behavior were not significantly affected by treatment. These results suggest that, under subtropical grazing conditions, reducing nitrogen fertilization combined with the modest inclusion of vetch and red clover does not mitigate enteric methane emissions nor enhance animal performance. Enhanced strategies to increase legume proportion in mixed swards are needed to unlock their potential for sustainable intensification of pasture-based dairy systems. Full article
(This article belongs to the Section Animal System and Management)
11 pages, 2555 KB  
Article
Differential Gene Expression in Fusarium Head Blight Pathogens Facilitates Root Infection of Wheat, Maize, and Soybean
by Rukun Li, Huahao Sun, Huilin He, Xinyao Cheng, Mei Deng, Qiantao Jiang, Qiang Xu, Yuming Wei and Yazhou Zhang
Plants 2025, 14(16), 2458; https://doi.org/10.3390/plants14162458 - 8 Aug 2025
Viewed by 293
Abstract
Global food security relies on wheat, maize, and soybean, yet their cultivation faces escalating threats from Fusarium head blight (FHB) pathogens. We demonstrate that agricultural intensification enables cross-kingdom root infections by Fusarium graminearum and F. asiaticum across these crops. Screening of 180 Fusarium [...] Read more.
Global food security relies on wheat, maize, and soybean, yet their cultivation faces escalating threats from Fusarium head blight (FHB) pathogens. We demonstrate that agricultural intensification enables cross-kingdom root infections by Fusarium graminearum and F. asiaticum across these crops. Screening of 180 Fusarium strains revealed tripartite host infectivity, with transcriptomics uncovering host-adapted virulence strategies. Transcriptome analysis identified distinct gene expression patterns during the infection of each crop, with F. graminearum employing host-specific genes, such as FgPPDT1 (a pyridoxal phosphate-dependent transferase), for maize root infection. The FgPPDT1 knockout mutant (Δfgppdt1) exhibited severely impaired root colonization. Our findings establish differential gene expression as a regulatory axis for cross-host adaptation, directly linking FHB transmission risks to wheat–maize intercropping and wheat-soybean rotations. Full article
(This article belongs to the Special Issue Wheat Breeding for Disease Resistance)
Show Figures

Figure 1

13 pages, 2843 KB  
Article
Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic
by Indrajit Pal, Sreejita Banerjee, Oulavanh Sinsamphanh, Jeeten Kumar and Puvadol Doydee
Sustainability 2025, 17(15), 7162; https://doi.org/10.3390/su17157162 - 7 Aug 2025
Viewed by 371
Abstract
This study assesses the projected impacts of climate change on sediment retention and soil loss in Savannakhet Province, Lao PDR, through the application of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Sediment Delivery Ratio (SDR) model. Using climate projections under SSP2-4.5 [...] Read more.
This study assesses the projected impacts of climate change on sediment retention and soil loss in Savannakhet Province, Lao PDR, through the application of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Sediment Delivery Ratio (SDR) model. Using climate projections under SSP2-4.5 and SSP5-8.5 scenarios for the mid- and late-21st century (2050 and 2080), compared against a 2015 baseline, the analysis quantifies changes in sediment dynamics and ecosystem service provision. Results reveal a substantial increase in sediment retention, particularly in forested and flooded vegetation areas, under moderate and high-emission pathways. However, an overall rise in soil loss is observed across croplands and urbanized zones, driven by intensified high-risk areas, which requires conservative management. This study advocates for ecosystem-based adaptation (EbA) strategies—including afforestation, intercropping, and riparian restoration—to enhance watershed resilience. These nature-based solutions align with national adaptation goals and offer co-benefits for biodiversity, climate regulation, and rural livelihoods. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

17 pages, 3308 KB  
Article
Exogenous Melatonin Application Improves Shade Tolerance and Growth Performance of Soybean Under Maize–Soybean Intercropping Systems
by Dan Jia, Ziqing Meng, Shiqiang Hu, Jamal Nasar, Zeqiang Shao, Xiuzhi Zhang, Bakht Amin, Muhammad Arif and Harun Gitari
Plants 2025, 14(15), 2359; https://doi.org/10.3390/plants14152359 - 1 Aug 2025
Viewed by 371
Abstract
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study [...] Read more.
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study investigated the efficacy of applying foliar melatonin (MT) to enhance shade tolerance and yield performance of soybean under intercropping. Four melatonin concentrations (0, 50, 100, and 150 µM) were applied to soybean grown under mono- and intercropping systems. The results showed that intercropping significantly reduced growth, photosynthetic activity, and yield-related traits. However, the MT application, particularly at 100 µM (MT100), effectively mitigated these declines. MT100 improved plant height (by up to 32%), leaf area (8%), internode length (up to 41%), grain yield (32%), and biomass dry matter (30%) compared to untreated intercropped plants. It also enhanced SPAD chlorophyll values, photosynthetic rate, stomatal conductance, chlorophyll fluorescence parameters such as Photosystem II efficiency (ɸPSII), maximum PSII quantum yield (Fv/Fm), photochemical quenching (qp), electron transport rate (ETR), Rubisco activity, and soluble protein content. These findings suggest that foliar application of melatonin, especially at 100 µM, can improve shade resilience in soybean by enhancing physiological and biochemical performance, offering a practical strategy for optimizing productivity in intercropping systems. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

25 pages, 2465 KB  
Article
Co-Designing Sustainable and Resilient Rubber Cultivation Systems Through Participatory Research with Stakeholders in Indonesia
by Pascal Montoro, Sophia Alami, Uhendi Haris, Charloq Rosa Nababan, Fetrina Oktavia, Eric Penot, Yekti Purwestri, Suroso Rahutomo, Sabaruddin Kadir, Siti Subandiyah, Lina Fatayati Syarifa and Taryono
Sustainability 2025, 17(15), 6884; https://doi.org/10.3390/su17156884 - 29 Jul 2025
Viewed by 615
Abstract
The rubber industry is facing major socio-economic and environmental constraints. Rubber-based agroforestry systems represent a more sustainable solution through the diversification of income and the provision of greater ecosystem services than monoculture plantations. Participative approaches are known for their ability to co-construct solutions [...] Read more.
The rubber industry is facing major socio-economic and environmental constraints. Rubber-based agroforestry systems represent a more sustainable solution through the diversification of income and the provision of greater ecosystem services than monoculture plantations. Participative approaches are known for their ability to co-construct solutions with stakeholders and to promote a positive impact on smallholders. This study therefore implemented a participatory research process with stakeholders in the natural rubber sector for the purpose of improving inclusion, relevance and impact. Facilitation training sessions were first organised with academic actors to prepare participatory workshops. A working group of stakeholder representatives was set up and participated in these workshops to share a common representation of the value chain and to identify problems and solutions for the sector in Indonesia. By fostering collective intelligence and systems thinking, the process is aimed at enabling the development of adaptive technical solutions and building capacity across the sector for future government replanting programmes. The resulting adaptive technical packages were then detailed and objectified by the academic consortium and are part of a participatory plant breeding approach adapted to the natural rubber industry. On-station and on-farm experimental plans have been set up to facilitate the drafting of projects for setting up field trials based on these outcomes. Research played a dual role as both knowledge provider and facilitator, guiding a co-learning process rooted in social inclusion, equity and ecological resilience. The initiative highlighted the potential of rubber cultivation to contribute to climate change mitigation and food sovereignty, provided that it can adapt through sustainable practices like agroforestry. Continued political and financial support is essential to sustain and scale these innovations. Full article
Show Figures

Figure 1

Back to TopTop