Legume Proportion and Litter Deposition Rate in Signal Grass–Forage Peanut Mixed Pastures at Varying Planting Spacings
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Treatments
2.3. Existing and Deposited Litter and Litter Deposition Rate
2.4. Sheep Feces Samples
2.5. Chemical Composition of Litter and Isotopic Characterization of Litter and Feces
2.6. Statistical Analysis
3. Results
3.1. Biomass of Existing and Deposited Litter and Litter Deposition Rate
3.2. Chemical Composition of Litter
3.3. Nitrogen Concentration, Carbon/Nitrogen Ratio, Carbon Isotopic Signature, and C3:C4 Contribution in Litter
3.4. Carbon Isotopic Signature and C3:C4 Contribution in Sheep Feces
4. Discussion
4.1. Biomass of Existing and Deposited Litter and Litter Deposition Rate (Discussion)
4.2. Chemical Composition of Litter (Discussion)
4.3. Nitrogen Concentration, Carbon/Nitrogen Ratio, Carbon Isotopic Signature, and C3:C4 Contribution in Litter (Discussion)
4.4. Carbon Isotopic Signature and C3:C4 Contribution in Sheep Feces (Discussion)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, L.E.T.; Herling, V.R.; Tech, A.R.B. Current Scenario and Perspectives for Nitrogen Fertilization Strategies on Tropical Perennial Grass Pastures: A Review. Agronomy 2022, 12, 2079. [Google Scholar] [CrossRef]
- Boddey, R.M.; Casagrande, D.R.; Homem, B.G.C.; Alves, B.J.R. Forage Legumes in Grass Pastures in Tropical Brazil and Likely Impacts on Greenhouse Gas Emissions: A Review. Grass Forage Sci. 2020, 75, 357–371. [Google Scholar] [CrossRef]
- de Sousa, C.E.S.; Júnior, F.P.A.; da Silva Cardoso, A.; Ruggieri, A.C.; van Cleef, F.D.O.S.; de Pádua, F.T.; de Carvalho Almeida, J.C. Effects of Integrating Legumes or Trees on Soil C Stock and Organic Matter Dynamics in Tropical Grasslands. Appl. Soil Ecol. 2024, 202, 105560. [Google Scholar] [CrossRef]
- Abd-Alla, M.H.; Al-Amri, S.M.; El-Enany, A.W.E. Enhancing Rhizobium–Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change. Agriculture 2023, 13, 2092. [Google Scholar] [CrossRef]
- Borré, J.G.; Ramalho, I.O.; Monteiro, R.C.; dos S. Souza, W.; da C. Soares, S.; de Souza, L.F.; Alves, B.J.R.; Casagrande, D.R.; Homem, B.G.C.; Boddey, R.M.; et al. Legume Integration or N Fertilisation Enhances the N Cycling in the Soil-Plant-Animal System. Nutr. Cycl. Agroecosyst. 2024, 130, 177–196. [Google Scholar] [CrossRef]
- Guimarães, B.C.; de Kássia Gomes, F.; Homem, B.G.C.; de Lima, I.B.G.; Spasiani, P.P.; Boddey, R.M.; Alves, B.J.R.; Casagrande, D.R. Emissions of N2O and NH3 from Cattle Excreta in Grass Pastures Fertilized with N or Mixed with a Forage Legume. Nutr. Cycl. Agroecosyst. 2022, 122, 325–346. [Google Scholar] [CrossRef]
- Carpinelli, S.; Da Fonseca, A.F.; Neto, P.H.W.; Dias, S.H.B.; Da Silveira Pontes, L. Spatial and Temporal Distribution of Cattle Dung and Nutrient Cycling in Integrated Crop-Livestock Systems. Agronomy 2020, 10, 672. [Google Scholar] [CrossRef]
- Silveira, M.L.; Kohmann, M.M. Chapter 3—Maintaining soil fertility and health for sustainable pastures. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Rouquette, M., Aiken, G.E., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 35–58. ISBN 978-0-12-814474-9. [Google Scholar]
- Sarabia, L.; Solorio, F.J.; Ramírez, L.; Ayala, A.; Aguilar, C.; Ku, J.; Almeida, C.; Cassador, R.; Alves, B.J.; Boddey, R.M. Improving the Nitrogen Cycling in Livestock Systems through Silvopastoral Systems. In Nutrient Dynamics for Sustainable Crop Production; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Kohmann, M.M.; Sollenberger, L.E.; Dubeux, J.C.B.; Silveira, M.L.; Moreno, L.S.B.; da Silva, L.S.; Aryal, P. Nitrogen Fertilization and Proportion of Legume Affect Litter Decomposition and Nutrient Return in Grass Pastures. Crop Sci. 2018, 58, 2138–2148. [Google Scholar] [CrossRef]
- Aljazairi, S.; Ribas, A.; Llurba, R.; Ferrio, J.P.; Voltas, J.; Nogués, S.; Sebastiá, M.T. Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization. Agronomy 2025, 15, 287. [Google Scholar] [CrossRef]
- Erdenebileg, E.; Wang, C.; Yu, W.; Ye, X.; Pan, X.; Huang, Z.; Liu, G.; Cornelissen, J.H.C. Carbon versus Nitrogen Release from Root and Leaf Litter Is Modulated by Litter Position and Plant Functional Type. J. Ecol. 2023, 111, 198–213. [Google Scholar] [CrossRef]
- Kumar, R.; Yadav, M.R.; Arif, M.; Mahala, D.M.; Kumar, D.; Ghasal, P.C.; Yadav, K.C.; Verma, R.K. Multiple Agroecosystem Services of Forage Legumes towards Agriculture Sustainability: An Overview. Indian J. Agric. Sci. 2020, 90, 1367–1377. [Google Scholar] [CrossRef]
- Capstaff, N.M.; Miller, A.J. Improving the Yield and Nutritional Quality of Forage Crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef]
- Dhakal, D.; Anowarul Islam, M. Grass-Legume Mixtures for Improved Soil Health in Cultivated Agroecosystem. Sustainability 2018, 10, 2718. [Google Scholar] [CrossRef]
- Denardin, L.G.d.O.; Moraes, J.M.A.S.; Tavares, D.S.; Pires, G.C.; Silva, L.S.; Pacheco, L.P.; Wruck, F.J.; Carneiro, M.A.C.; Souza, E.D. Mixed Grass–Legume Pastures in Integrated Crop-Livestock Systems: A Strategy to Improve Soil Health and Soybean Yield in the Brazilian Cerrado. Plant Soil 2025. [Google Scholar] [CrossRef]
- Gou, X.; Reich, P.B.; Qiu, L.; Shao, M.; Wei, G.; Wang, J.; Wei, X. Leguminous Plants Significantly Increase Soil Nitrogen Cycling across Global Climates and Ecosystem Types. Glob. Change Biol. 2023, 29, 4028–4043. [Google Scholar] [CrossRef]
- Dubeux, J.C.B.; Jaramillo, D.M.; Santos, E.R.S.; Garcia, L.; Queiroz, L.M.D.; Trumpp, K.R. Sustainable Intensification of Livestock Systems Using Forage Legumes in the Anthropocene. In Proceedings of the XXV International Grassland Congress (IGC 2023), Covington, KY, USA, 14–19 May 2023. [Google Scholar] [CrossRef]
- dos Anjos, A.J.; de Souza, I.A.; Coutinho, D.N.; da Silveira, T.C.; Macêdo, A.J.d.S.; Alves, W.S.; Pereira, O.G.; Dubeux, J.C.B.; Ribeiro, K.G. Carbon and Nitrogen Accumulation in Roots of Signal Grass–Forage Peanut Intercropped Pastures at Varying Planting Spacings. Agronomy 2024, 14, 3023. [Google Scholar] [CrossRef]
- dos Santos, A.M.G.; Dubeux, J.C.B., Jr.; dos Santos, M.V.F.; de Miranda Costa, S.B.; de Lima Côelho, D.; da Silva Santos, E.R.; Silva, N.G.M.; Oliveira, B.M.M.; Apolinário, V.X.O.; Coelho, J.J. The distance from tree legumes in silvopastoral systems modifies the litter in grass-composed pastures. J. Agric. Sci. 2024, 162, 59–66. [Google Scholar] [CrossRef]
- Scheer, C.; Rütting, T. Use of 15N Tracers to Study Nitrogen Flows in Agro-Ecosystems: Transformation, Losses and Plant Uptake. Nutr. Cycl. Agroecosyst. 2023, 125, 89–93. [Google Scholar] [CrossRef]
- Chalk, P.M. From Production to Consumption: Tracing C, N, and S Dynamics in Brazilian Agroecosystems Using Stable Isotopes. Pesqui. Agropecu. Bras. 2016, 51, 1039–1050. [Google Scholar] [CrossRef]
- Cantarutti, R.B.; Martins, C.E.; Carvalho, M.M.; Fonseca, D.M.; Arruda, M.L.; Vilela, H.; Oliveira, F.T.T. Pastagens. In 5a APROXIMAÇÃO. Recomendações para o uso de Corretivos e Fertilizantes em Minas Gerais; Comissão de Fertilizantes do Solo do Estado de Minas Gerais: Viçosa, Brazil, 1999; 332p. [Google Scholar]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An International Terminology for Grazing Lands and Grazing Animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Rezende, C.D.P.; Cantarutti, R.B.; Braga, J.M.; Gomide, J.A.; Pereira, J.M.; Ferreira, E.; Tarré, R.; Macedo, R.; Alves, B.J.R.; Urquiaga, S.; et al. Litter Deposition and Disappearance in Brachiaria Pastures in the Atlantic Forest Region of the South of Bahia, Brazil. Nutr. Cycl. Agroecosyst. 1999, 54, 99–112. [Google Scholar] [CrossRef]
- Freitas, C.A.S. Consórcio de Capim-Braquiária e Amendoim Forrageiro: Estabelecimento, Composição e Decomposição da Serrapilheira. Master’s Thesis, Curso de Zootecnia, Universidade Federal de Viçosa, Viçosa, Brazil, 2015; 60p. [Google Scholar]
- AOAC. The Association of Official Analytical Chemists International. Official Methods of Analysis; AOAC Inc.: Washington, DC, USA, 2016; Volume 38. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed. Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Mertens, D.R.; Allen, M.; Carmany, J.; Clegg, J.; Davidowicz, A.; Drouches, M.; Frank, K.; Gambin, D.; Garkie, M.; Gildemeister, B.; et al. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef] [PubMed]
- Michener, R.; Lajtha, K. Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- SAEG: Sistema de Análises Estatísticas e Genética, Versão 9.1; Universidade Federal de Viçosa: Viçosa, Brazil, 1997.
- Martínez-García, L.B.; Korthals, G.W.; Brussaard, L.; Mainardi, G.; De Deyn, G.B. Litter Quality Drives Nitrogen Release, and Agricultural Management (Organic vs. Conventional) Drives Carbon Loss during Litter Decomposition in Agro-Ecosystems. Soil Biol. Biochem. 2021, 153, 108115. [Google Scholar] [CrossRef]
- Jena, J.; Maitra, S.; Hossain, A.; Pramanick, B.; Gitari, H.I.; Praharaj, S.; Shankar, T.; Palai, J.B.; Rathore, A.; Mandal, T.K.; et al. Role of Legumes in Cropping Systems for Soil Ecosystem Improvement. In Ecosystem Services: Types, Management and Benefits; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022. [Google Scholar]
- Borase, D.N.; Murugeasn, S.; Nath, C.P.; Hazra, K.K.; Singh, S.S.; Kumar, N.; Singh, U.; Praharaj, C.S. Long-Term Impact of Grain Legumes and Nutrient Management Practices on Soil Microbial Activity and Biochemical Properties. Arch. Agron. Soil Sci. 2021, 67, 2015–2032. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) Framework Integrates Plant Litter Decomposition with Soil Organic Matter Stabilization: Do Labile Plant Inputs Form Stable Soil Organic Matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Chen, Z.X.; Elrys, A.S.; Zhang, H.M.; Tu, X.S.; Wang, J.; Cheng, Y.; Zhang, J.B.; Cai, Z.C. How Does Organic Amendment Affect Soil Microbial Nitrate Immobilization Rate? Soil Biol. Biochem. 2022, 173, 108784. [Google Scholar] [CrossRef]
- Hassen, A.; Talore, D.G.; Tesfamariam, E.H.; Friend, M.A.; Mpanza, T.D.E. Potential Use of Forage-Legume Intercropping Technologies to Adapt to Climate-Change Impacts on Mixed Crop-Livestock Systems in Africa: A Review. Reg. Environ. Change 2017, 17, 1713–1724. [Google Scholar] [CrossRef]
- Mahama, G.Y.; Prasad, P.V.V.; Roozeboom, K.L.; Nippert, J.B.; Rice, C.W. Cover Crops, Fertilizer Nitrogen Rates, and Economic Return of Grain Sorghum. Agron. J. 2016, 108, 1–16. [Google Scholar] [CrossRef]
- Oliveira, C.A.G.d.; Monteiro, E.d.C.; Souza, W.d.S.; Pio, P.V.A.; Machado, J.C.; Alves, B.J.R.; Boddey, R.M.; Urquiaga, S. Contribution of Biological Nitrogen Fixation to the Biomass Productivity of Elephant Grass Grown in Low-Fertility Soil for Energy Purposes. Agronomy 2025, 15, 605. [Google Scholar] [CrossRef]
- Distel, R.A.; Arroquy, J.I.; Lagrange, S.; Villalba, J.J. Designing Diverse Agricultural Pastures for Improving Ruminant Production Systems. Front. Sustain. Food Syst. 2020, 4, 596869. [Google Scholar] [CrossRef]
Block | pH | P | K | Ca2+ | Mg2+ | Al3+ | SB | T | V | m | P-rem |
---|---|---|---|---|---|---|---|---|---|---|---|
H2O | mg·dm−3 | cmolc·dm−3 | % | mg·L−1 | |||||||
1 | 5.5 | 18.2 | 35 | 2.2 | 0.6 | 0 | 2.9 | 7.0 | 41 | 0 | 12.6 |
2 | 4.4 | 5.4 | 24 | 1.2 | 0.5 | 0.4 | 2.2 | 7.9 | 22 | 19 | 11 |
3 | 5.4 | 62.4 | 34 | 2.9 | 1 | 0.1 | 4.1 | 8.4 | 47 | 2 | 19.4 |
4 | 5.5 | 62.4 | 23 | 2.4 | 0.7 | 0 | 3.2 | 7.3 | 43 | 0 | 13.3 |
Period | EL Biomass (kg ha−1) | |
---|---|---|
Year 1 | Year 2 | |
Dry season | 1316 Aa | 1090 Ab |
Rainy season | 1104 Ba | 1240 Aa |
SEM | 33.03 | |
Spacing (m) | LDR (kg ha−1 d−1 OM) | |
Monoculture | 34.1 Aa | 48.1 Ba |
0.40 | 44.0 Ab | 72.6 Aa |
0.50 | 29.5 Ab | 64.6 ABa |
0.60 | 39.2 Aa | 46.7 Ba |
0.70 | 40.2 Ab | 77.2 Aa |
0.80 | 37.6 Ab | 63.5 ABa |
SEM | 5.18 |
Spacing (m) | ADIN (g kg−1 OM) | Lignin/ADIN | |
---|---|---|---|
Year 1 | Year 2 | ||
Monoculture | 1.7 B | 104 Aa | 119 ABa |
0.40 | 3.1 A | 77.5 Aa | 82.2 Ba |
0.50 | 2.9 A | 70.6 Aa | 84.5 Ba |
0.60 | 2.3 AB | 64.4 Ab | 145 Aa |
0.70 | 2.5 AB | 81.2 Aa | 77.5 Ba |
0.80 | 2.2 AB | 90.4 Aa | 102 ABa |
SEM | 0.002 | 7.77 |
Spacing | N (g kg−1) | C/N | δ13C (‰) | C3 (%) | C4 (%) |
---|---|---|---|---|---|
Monoculture | 8.34 B | 43.85 A | −15.91 A | 9.99 B | 90.01 A |
0.40 | 12.35 A | 32.16 B | −19.11 B | 31.41 A | 68.59 B |
0.50 | 12.86 A | 30.48 B | −20.24 B | 39.01 A | 60.99 B |
0.60 | 10.48 AB | 36.79 AB | −18.29 AB | 25.95 AB | 74.05 AB |
0.70 | 11.21 A | 34.10 B | −18.73 B | 28.89 A | 71.11 B |
0.80 | 10.47 AB | 36.91 AB | −17.67 AB | 21.79 AB | 78.21 AB |
SEM | 1.01 | 8.03 | 0.79 | 4.78 | 4.78 |
Spacing | δ13C (‰) | C3 (%) | C4 (%) |
---|---|---|---|
0 (monoculture) | −16.44 A | 7.25 B | 92.75 A |
0.40 | −17.66 AB | 15.74 AB | 84.26 AB |
0.50 | −18.95 B | 24.68 A | 75.32 B |
0.60 | −16.80 A | 9.72 B | 90.28 A |
0.70 | −17.55 AB | 14.95 AB | 85.05 AB |
0.80 | −16.58 A | 8.18 B | 91.82 A |
SEM | 0.74 | 5.16 | 5.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, L.L.; de Souza, I.A.; Pereira, O.G.; Cecon, P.R.; Gomide, C.A.d.M.; Dubeux, J.C.B., Jr.; Ribeiro, K.G. Legume Proportion and Litter Deposition Rate in Signal Grass–Forage Peanut Mixed Pastures at Varying Planting Spacings. Sustainability 2025, 17, 7562. https://doi.org/10.3390/su17167562
Cardoso LL, de Souza IA, Pereira OG, Cecon PR, Gomide CAdM, Dubeux JCB Jr., Ribeiro KG. Legume Proportion and Litter Deposition Rate in Signal Grass–Forage Peanut Mixed Pastures at Varying Planting Spacings. Sustainability. 2025; 17(16):7562. https://doi.org/10.3390/su17167562
Chicago/Turabian StyleCardoso, Lucas Ladeira, Igor Alexandre de Souza, Odilon Gomes Pereira, Paulo Roberto Cecon, Carlos Augusto de Miranda Gomide, José Carlos Batista Dubeux, Jr., and Karina Guimarães Ribeiro. 2025. "Legume Proportion and Litter Deposition Rate in Signal Grass–Forage Peanut Mixed Pastures at Varying Planting Spacings" Sustainability 17, no. 16: 7562. https://doi.org/10.3390/su17167562
APA StyleCardoso, L. L., de Souza, I. A., Pereira, O. G., Cecon, P. R., Gomide, C. A. d. M., Dubeux, J. C. B., Jr., & Ribeiro, K. G. (2025). Legume Proportion and Litter Deposition Rate in Signal Grass–Forage Peanut Mixed Pastures at Varying Planting Spacings. Sustainability, 17(16), 7562. https://doi.org/10.3390/su17167562