Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,506)

Search Parameters:
Keywords = interferon response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 19901 KB  
Article
CP91110P: A Computationally Designed Multi-Epitope Vaccine Candidate for Tuberculosis via TLR-2/4 Synergistic Immunomodulation
by Yajing An, Syed Luqman Ali, Yanhua Liu, Aigul Abduldayeva, Ruizi Ni, Yufeng Li, Mingming Zhang, Yuan Tian, Lina Jiang and Wenping Gong
Biology 2025, 14(9), 1196; https://doi.org/10.3390/biology14091196 - 5 Sep 2025
Abstract
Background: Tuberculosis (TB) remains a global health priority, with current interventions like the Bacille Calmette–Guérin (BCG) vaccine lacking efficacy against latent infection and drug-resistant strains. Novel vaccines targeting both latent and active TB are urgently needed. Objective: This study aims to [...] Read more.
Background: Tuberculosis (TB) remains a global health priority, with current interventions like the Bacille Calmette–Guérin (BCG) vaccine lacking efficacy against latent infection and drug-resistant strains. Novel vaccines targeting both latent and active TB are urgently needed. Objective: This study aims to design a multi-epitope vaccine (MEV) and evaluate its immunogenicity, structural stability, and interactions with toll-like receptor 2/4 (TLR-2/4) via computational biology approaches. Methods: We designed MEV using bioinformatics tools, prioritizing immunodominant epitopes from Mycobacterium tuberculosis antigens. Structural stability was optimized through disulfide engineering, and molecular docking/dynamics simulations were used to analyze interactions and conformational dynamics with TLR-2/4. Antigenicity, immunogenicity, population coverage, and immune responses were computationally assessed. Results: The MEV candidate, CP91110P, exhibited 86.18% predicted global human leukocyte antigen (HLA)-I/II coverage, high antigenicity (VaxiJen: 0.8789), and immunogenicity (IEDB: 4.40091), with favorable stability (instability index: 33.48) and solubility (0.485). Tertiary structure analysis indicated that 98.34% residues were located in favored regions. Molecular docking suggested strong TLR-2 (−1535.9 kcal/mol) and TLR-4 (−1672.5 kcal/mol) binding. Molecular dynamics simulations indicated stable TLR-2 interactions (RMSD: 6–8 Å; Rg: 38.50–39.50 Å) and flexible TLR-4 binding (RMSD: 2–6 Å; Rg: 33–36 Å). Principal component analysis, free energy landscapes, and dynamic cross-correlation matrix analyses highlighted TLR-2’s structural coherence versus TLR-4’s adaptive flexibility. Immune simulations predicted potential robust natural killer cell activation, T helper 1 polarization (interferon-gamma/interleukin-2 dominance), and elevated IgM/IgG levels. Conclusions: CP91110P is predicted to stably bind to TLR-2 and flexibly interact with TLR-4, with prediction of its high antigenicity and broad coverage across immune populations. However, this conclusion requires confirmation through experimental validation. Therefore, it may provide a promising candidate for experimental validation in the development of tuberculosis vaccines. Full article
Show Figures

Figure 1

14 pages, 636 KB  
Review
Innate Immune Surveillance and Recognition of Epigenetic Marks
by Yalong Wang
Epigenomes 2025, 9(3), 33; https://doi.org/10.3390/epigenomes9030033 - 5 Sep 2025
Abstract
The innate immune system protects against infection and cellular damage by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Emerging evidence suggests that aberrant epigenetic modifications—such as altered DNA methylation and histone marks—can serve as immunogenic signals that activate pattern [...] Read more.
The innate immune system protects against infection and cellular damage by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Emerging evidence suggests that aberrant epigenetic modifications—such as altered DNA methylation and histone marks—can serve as immunogenic signals that activate pattern recognition receptor (PRR)-mediated immune surveillance. This review explores the concept that epigenetic marks may function as DAMPs or even mimic PAMPs. I highlight how unmethylated CpG motifs, which are typically suppressed using host methylation, are recognized as foreign via Toll-like receptor 9 (TLR9). I also examine how cytosolic DNA sensors, including cGAS, detect mislocalized or hypomethylated self-DNA resulting from genomic instability. In addition, I discuss how extracellular histones and nucleosomes released during cell death or stress can act as DAMPs that engage TLRs and activate inflammasomes. In the context of cancer, I review how epigenetic dysregulation can induce a “viral mimicry” state, where reactivation of endogenous retroelements produces double-stranded RNA sensed by RIG-I and MDA5, triggering type I interferon responses. Finally, I address open questions and future directions, including how immune recognition of epigenetic alterations might be leveraged for cancer immunotherapy or regulated to prevent autoimmunity. By integrating recent findings, this review underscores the emerging concept of the epigenome as a target of innate immune recognition, bridging the fields of immunology, epigenetics, and cancer biology. Full article
Show Figures

Figure 1

17 pages, 1575 KB  
Review
The Role of IL28B Polymorphism in Regulating Innate and Adaptive Immunity Against Viral Infection Among Allogenic Stem Cells Transplant Recipients
by Mohamed A. Eltokhy, Bhaumik Patel, Marina Curcic, Faizah Alabi, Shadan Modaresahmadi, Omar Eltoukhy, Esraa G. Abdelmageed and Sahar Radwan
Immuno 2025, 5(3), 38; https://doi.org/10.3390/immuno5030038 - 3 Sep 2025
Viewed by 187
Abstract
Viral infection is a significant cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (Allo-HSCT), largely due to its impact on and interaction with immune reconstitution. Both innate and adaptive immunity are essential for effective viral control, yet their recovery post-transplant [...] Read more.
Viral infection is a significant cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (Allo-HSCT), largely due to its impact on and interaction with immune reconstitution. Both innate and adaptive immunity are essential for effective viral control, yet their recovery post-transplant is often delayed or functionally impaired. Emerging evidence suggests genetic variation, particularly polymorphisms in the IL28B gene (encoding IFN-λ3), as a critical factor influencing the quality and timing of immune responses during the early post-transplant period. This review explores the role of IL28B polymorphisms in shaping antiviral immunity, in general, as well as after Allo-HSCT. IL28B variants have been implicated in modulating interferon-stimulated gene (ISG) expression, natural killer (NK) cell activity, and type I/III interferon signaling, all central components of innate immune defense against viral infections. Furthermore, IL28B polymorphisms, particularly rs12979860, have been shown in both general populations and limited HSCT cohorts to alter T cell response and interferon production, affecting reactivation and clearance of multiple viruses such as cytomegalovirus (CMV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus (EBV), COVID-19, and BK polyomavirus (BKPyV) as well as Graft vs. Host disease, thereby affecting adaptive immune reconstitution and long-term viral control. Understanding how IL28B genotype alters immune dynamics in transplant recipients could enhance risk stratification for CMV and other diseases and inform personalized prophylactic or therapeutic strategies. Therefore, this review highlights IL28B as a promising biomarker and potential immunoregulatory target in the management of viral infection post-Allo-HSCT. Full article
Show Figures

Figure 1

14 pages, 10998 KB  
Article
NONO Protein Regulates the Immune Response in Human Triple-Negative Breast Cancer Cells
by Carmelina Antonella Iannuzzi, Iris Maria Forte, Marianna Tomeo, Anna Sfera, Francesco Pagano, Riziero Esposito Abate, Michelino De Laurentiis, Antonio Giordano and Luigi Alfano
Int. J. Mol. Sci. 2025, 26(17), 8542; https://doi.org/10.3390/ijms26178542 - 2 Sep 2025
Viewed by 208
Abstract
Breast cancer (BC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options for triple-negative breast cancer (TNBC). The RNA-binding protein non-POU domain-containing octamer-binding protein (NONO) has emerged as a critical regulator of tumorigenesis, but its role in immune signaling remains [...] Read more.
Breast cancer (BC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options for triple-negative breast cancer (TNBC). The RNA-binding protein non-POU domain-containing octamer-binding protein (NONO) has emerged as a critical regulator of tumorigenesis, but its role in immune signaling remains unexplored. We analyzed the effect of NONO protein by modulating its expression using short hairpin RNA (shRNA) and a chemical inhibitor (R)-SKBG-1. We demonstrate that NONO depletion in MDA-MB-231 TNBC cells leads to cytoplasmic DNA accumulation, micronuclei formation, and activation of the cyclic GMP-AMP synthase—stimulator of interferon genes (cGAS/STING) pathway, resulting in enhanced modulation of the immune response. NONO-deficient cells showed increased cGAS and STING activation, Tank-binding kinase 1 (TBK1) phosphorylation, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear localization, and transcription of pro-inflammatory genes such as CC Motif Chemokine Ligand 5 (CCL5). These effects were recapitulated by pharmacological inhibition using (R)-SKBG-1, confirming NONO’s immunosuppressive function. Our findings establish NONO as a key modulator of immune activation in TNBC and suggest that its inhibition may enhance anti-tumor immunity. This work paves the way for potential combination strategies involving NONO inhibitors and immune checkpoint blockade, particularly in tumors with homologous recombination deficiencies or limited immune infiltration. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

11 pages, 480 KB  
Article
Fetal Bovine Serum Supplementation Enhances Functional Consistency of IGRA Results in Bovine Tuberculosis Diagnostics
by Jae-Kyo Jeong, Mi-Na Lim and Ki-Joo Kim
Animals 2025, 15(17), 2580; https://doi.org/10.3390/ani15172580 - 2 Sep 2025
Viewed by 177
Abstract
The interferon-gamma release assay (IGRA) is a reliable diagnostic tool for bovine tuberculosis (bTB) due to its high sensitivity and specificity. However, the assay relies on viable T-cell function, making it susceptible to functionally undetectable responses during sample storage. This study aimed to [...] Read more.
The interferon-gamma release assay (IGRA) is a reliable diagnostic tool for bovine tuberculosis (bTB) due to its high sensitivity and specificity. However, the assay relies on viable T-cell function, making it susceptible to functionally undetectable responses during sample storage. This study aimed to evaluate whether fetal bovine serum (FBS) supplementation could mitigate functional deterioration and stabilize immune responses in stored blood samples. The IGRA was conducted on blood samples from 91 cattle under three conditions: fresh (Day 0), stored without FBS (FBS X), and stored with 10% FBS (FBS O). A dual stimulation using bovine PPD (bovis) and mitogen revealed that the FBS O condition significantly preserved IFN-γ responses, with a higher frequency of simultaneous bovis and mitogen recovery (dual recovery). Additional correlation analysis between MTT cell viability and mitogen response further suggested that FBS contributes to T-cell functionality beyond survival. These findings suggest that FBS supplementation improves the functional consistency of IGRA results and reduces the risk of functionally undetectable responses in delayed testing scenarios. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

15 pages, 1575 KB  
Article
Morpho-Functional Responsiveness of Caco-2 Enterocyte-like Monolayers to Insulin in a Pro-Inflammatory Environment
by Aurora Mazzei, Marina Damato, Ilenia Iaia, Michele Maffia, Roberta Schiavone, Tiziano Verri and Amilcare Barca
Cells 2025, 14(17), 1358; https://doi.org/10.3390/cells14171358 - 31 Aug 2025
Viewed by 320
Abstract
In exerting its actions on the utilization and storage of nutrients, the hormonal effects of insulin (INS) on target cells include important changes in terms of cell morphology involving cytoskeletal actin. Sensitivity to INS affects intestinal epithelial cells, which express receptors through which [...] Read more.
In exerting its actions on the utilization and storage of nutrients, the hormonal effects of insulin (INS) on target cells include important changes in terms of cell morphology involving cytoskeletal actin. Sensitivity to INS affects intestinal epithelial cells, which express receptors through which tight junctions and barrier permeability are also modulated. Nevertheless, the impact of INS on physiological rather than pathophysiological processes along gastrointestinal epithelia is not fully established. Here, we investigate INS effects on differentiated Caco-2 monolayers challenged by inflammatory stimuli, i.e., interleukin 1 beta (IL-1β) and interferon gamma (IFN-γ), aiming to identify morpho-functional variations potentially associated with INS-dependent responses in intestinal epithelia differentially driven by different inflammation mediators. By observing the actin cytoskeleton, we characterized the impact of INS on actin structures’ organization, both in the absence and presence of pro-inflammatory treatments. Coherently, we observed altered expression of proteins interrelated to cytoskeletal dynamics (FAK, ITGB1), particularly evident in the synergistic action of IFN-γ and INS, also confirmed by the impact on INS-mediated regulation of the MAPK signalling pathway. Overall, the results describe a modular responsiveness of enterocyte-like monolayers to INS, depending on different inflammatory mediators, hinting at the interplay between INS signalling and morpho-functional remodelling in intestinal epithelial cells. Full article
Show Figures

Graphical abstract

19 pages, 2263 KB  
Article
T-Cell Epitope-Based SARS-CoV-2 DNA Vaccine Encoding an Antigen Fused with Type 1 Herpes Simplex Virus Glycoprotein D (gD)
by Luana Raposo de Melo Moraes Aps, Aléxia Adrianne Venceslau-Carvalho, Carla Longo de Freitas, Bruna Felício Milazzotto Maldonado Porchia, Mariângela de Oliveira Silva, Lennon Ramos Pereira, Natiely Silva Sales, Guilherme Formoso Pelegrin, Ethiane Segabinazi, Karine Bitencourt Rodrigues, Jamile Ramos da Silva, Bianca da Silva Almeida, Jéssica Pires Farias, Maria Fernanda Castro-Amarante, Paola Marcella Camargo Minoprio, Luís Carlos de Souza Ferreira and Rúbens Prince dos Santos Alves
Viruses 2025, 17(9), 1191; https://doi.org/10.3390/v17091191 - 30 Aug 2025
Viewed by 403
Abstract
Authorized SARS-CoV-2 vaccines elicit both antibody and T-cell responses; however, benchmark correlates and update decisions have largely emphasized neutralizing antibodies. Motivated by the complementary role of cellular immunity, we designed a prototype polyepitope DNA vaccine encoding conserved human and mouse T-cell epitopes from [...] Read more.
Authorized SARS-CoV-2 vaccines elicit both antibody and T-cell responses; however, benchmark correlates and update decisions have largely emphasized neutralizing antibodies. Motivated by the complementary role of cellular immunity, we designed a prototype polyepitope DNA vaccine encoding conserved human and mouse T-cell epitopes from non-structural proteins of the original strain SARS-CoV-2 lineage. Epitope selection was guided by in silico predictions for common HLA class I alleles in the Brazilian population and the mouse H-2Kb haplotype. To enhance immunogenicity, the polyepitope sequences were fused to glycoprotein D (gD) from Herpes Simplex Virus 1 (HSV-1), an immune activator of dendritic cells (DCs), leading to enhanced activation of antigen-specific T-cell responses. Mice were immunized with two doses of the electroporated DNA vaccine encoding the gD-fused polyepitope, which induced robust interferon-gamma– and tumor necrosis factor-alpha–producing T cell responses compared to control mice. In addition, K18-hACE2 transgenic mice showed protection against intranasal challenge with the original SARS-CoV-2 strain, with reduced clinical symptoms, less weight loss, and decreased viral burden in both lung and brain tissues. The results experimentally confirm the protective role of T cells in vaccine-induced protection against SARS-CoV-2 and open perspectives for the development of universal anti-coronavirus vaccines. Full article
(This article belongs to the Special Issue SARS-CoV-2, COVID-19 Pathologies, Long COVID, and Anti-COVID Vaccines)
Show Figures

Graphical abstract

14 pages, 2079 KB  
Article
γδ T Cells Mediate Protective Immunity Following Vaccination with an Insect-Based Chikungunya Fever Vaccine in Mice
by Leslie Rodriguez, Awadalkareem Adam, Huanle Luo, Samantha R. Osman, Kenneth Plante, Shannan L. Rossi, Scott C. Weaver and Tian Wang
Pathogens 2025, 14(9), 863; https://doi.org/10.3390/pathogens14090863 - 30 Aug 2025
Viewed by 529
Abstract
Eilat (EILV)/chikungunya virus (CHIKV) is a chimeric virus that contains the nonstructural proteins and cis-acting sequences of EILV and the structural proteins of CHIKV. EILV/CHIKV vaccination is known to protect with a single dose against wild-type (WT) CHIKV challenge in mice and non-human [...] Read more.
Eilat (EILV)/chikungunya virus (CHIKV) is a chimeric virus that contains the nonstructural proteins and cis-acting sequences of EILV and the structural proteins of CHIKV. EILV/CHIKV vaccination is known to protect with a single dose against wild-type (WT) CHIKV challenge in mice and non-human primates. The underlying immune mechanism of the vaccine-induced host protection remains unknown. γδ T cells react to WT CHIKV infection by controlling the virus-induced tissue inflammation and damage. Here, we found that γδ T cells contribute to EILV/CHIKV-induced host protection against WT CHIKV infection. TCRδ−/− mice, which are deficient of γδ T cells, had impaired CHIKV-specific CD8+ T cell responses, antibody production and memory B cell responses following vaccination. Both antibody and CD8+ T cells of EILV/CHIKV-vaccinated mice were required for protection type I interferon receptor deficient mice from lethal WT CHIKV infection. Moreover, γδ T cells expanded quickly in response to EILV/CHIKV vaccination. TCRδ−/− mice, had lower levels of innate immune cytokines and impaired activation of antigen presenting cell (APCs). Overall, γδ T cells contribute to EILV/CHIKV-induced host protection by promoting APC maturation, T cell priming and the induction of humoral immune responses upon EILV/CHIKV vaccination. Full article
Show Figures

Figure 1

17 pages, 3072 KB  
Article
Proinflammatory Cytokines, Type I Interferons, and Specialized Proresolving Mediators Hallmark the Influence of Vaccination and Marketing on Backgrounded Beef Cattle
by Hudson R. McAllister, Sarah F. Capik, Kelsey M. Harvey, Bradly I. Ramirez, Robert J. Valeris-Chacin, Amelia R. Woolums, Brandi B. Karisch, Paul S. Morley and Matthew A. Scott
Vet. Sci. 2025, 12(9), 834; https://doi.org/10.3390/vetsci12090834 - 30 Aug 2025
Viewed by 314
Abstract
Cattle marketed through auction market systems and/or that remain unvaccinated are considered higher risk for BRD, but impacts on host response remain unclear. We sought to identify specific genomic patterns of beef calves vaccinated against BRD viruses or not and commercially marketed or [...] Read more.
Cattle marketed through auction market systems and/or that remain unvaccinated are considered higher risk for BRD, but impacts on host response remain unclear. We sought to identify specific genomic patterns of beef calves vaccinated against BRD viruses or not and commercially marketed or directly transported in a split-plot randomized controlled trial. Forty-one calves who remained clinically healthy from birth through backgrounding were selected (randomly stratified) from a larger cohort of cattle (n = 81). Treatment groups included VAX/DIRECT (n = 12), VAX/AUCTION (n = 11), NOVAX/DIRECT (n = 7), and NOVAX/AUCTION (n = 11). Blood RNA was acquired across five time points, sequenced, and bioinformatically processed via HISAT2 and StringTie2. Significant transcriptional changes (FDR < 0.05) were observed at backgrounding entry (T5) in NOVAX/AUCTION cattle exhibiting 2809 uniquely differentially expressed genes and relative activation of immune, inflammatory, and metabolic pathways with upregulation of interferon-stimulated genes (e.g., IFIT3, MX2, and TRIM25) and downregulation of specialized proresolving mediator (SPM) enzymes (ALOX5 and ALOX15). VAX/AUCTION cattle exhibited modulated immune activation and preserved expression of SPM-associated genes when compared to NOVAX/AUCTION cattle. Both marketing route and vaccination shape the molecular immune landscape during high-stress transitions, with preweaning vaccination potentially modulating this response. This study provides mechanistic insight into how management practices influence immunological resilience and highlights the value of integrating transcriptomics into BRD risk mitigation. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

30 pages, 58453 KB  
Article
Time- and Dose-Dependent Effects of Irradiation on Endothelial and Tumor Endothelial Cells: Transcriptional, Molecular, and Functional Changes Driving Activation In Vitro and In Vivo
by Iva Santek, Gregor Sersa and Bostjan Markelc
Cancers 2025, 17(17), 2842; https://doi.org/10.3390/cancers17172842 - 29 Aug 2025
Viewed by 258
Abstract
Background: Irradiation (IR) targets cancer cells, but also the tumor microenvironment, including the tumor’s blood vessels. In addition to tumor endothelial cell (TEC) apoptosis, IR can lead to TEC activation, potentially increasing immune cell infiltration. However, the changes underlying the IR-induced activation of [...] Read more.
Background: Irradiation (IR) targets cancer cells, but also the tumor microenvironment, including the tumor’s blood vessels. In addition to tumor endothelial cell (TEC) apoptosis, IR can lead to TEC activation, potentially increasing immune cell infiltration. However, the changes underlying the IR-induced activation of endothelial cells (ECs) are poorly understood. This study investigated dose- and time-dependent molecular and functional responses of murine and human EC lines to IR in vitro and TECs in vivo in murine tumor models of colorectal carcinoma. Methods: HUVEC, EA.hy926, and Hulec5a, as well as murine bEND.3, 2H11, and SVEC4-10 EC lines, were irradiated with single doses of 2–10 Gy. EC proliferation and survival after IR were assessed by staining all nuclei (Hoechst 33342) and dead cells (propidium iodide) every 24 h for 5 days using the Cytation 1 Cell Imaging Multi-Mode Reader. RNA sequencing analysis of HUVECs irradiated with 2 Gy and 5 Gy at 24 h and 72 h after IR was conducted, focusing on processes related to EC activation. To validate the RNA sequencing results, immunofluorescence staining for proteins related to EC activation, including Stimulator of Interferon Response cGAMP Interactor 1 (STING), Nuclear factor kappa B (NF-κβ), and Vascular cell adhesion molecule 1 (VCAM-1), was performed. To validate the in vitro results, the response of TEC in vivo was analyzed using publicly available RNA sequencing data of TECs isolated from MC38 colon carcinoma irradiated with a single dose of 15 Gy. Finally, murine CT26 colon carcinoma tumors were immunofluorescently stained for STING and NF-κβ 24 and 48 h after IR with a clinically relevant fractionated regimen of 5 × 5 Gy. Results: Doses of 2, 4, 6, 8, and 10 Gy led to a dose-dependent decrease in proliferation and increased death of ECs. RNA sequencing analysis showed that the effects on the transcriptome of HUVECs were most pronounced 72 h after IR with 5 Gy, with 1014 genes (661 down-regulated and 353 up-regulated) being significantly differentially expressed. Irradiation with 5 Gy resulted in HUVEC activation, with up-regulation of the immune system and extracellular matrix genes, such as STING1 (log2FC = 0.81) and SELE (log2FC = 1.09), respectively; and down-regulation of cell cycle markers. Furthermore, IR led to the up-regulation of immune response- and extracellular matrix (ECM)-associated signaling pathways, including NF-κβ signaling and ECM–receptor interaction, which was also observed in the transcriptome of irradiated murine TECs in vivo. This was confirmed at the protein level with higher expressions of the EC activation-associated proteins STING, NF-κβ, and VCAM-1 in irradiated HUVECs and irradiated TECs in vivo. Conclusions: IR induces changes in ECs and TECs, supporting their activation in dose- and time-dependent manners, potentially contributing to the anti-tumor immune response, which may potentially increase the infiltration of immune cells into the tumor and thus, improve the overall efficacy of RT, especially in combination with immune checkpoint inhibitors. Full article
(This article belongs to the Special Issue Radiosensitivity and Radiotoxicity in Cancer)
Show Figures

Graphical abstract

15 pages, 1769 KB  
Article
Evaluation of T-Cell Responses Following Sequential Vaccination with PCV13 and PPSV23 Against Streptococcus pneumoniae in Patients with Psoriasis
by Thea Wojtakowski, Lukas van de Sand, Lorena Helmer, Mona Mokanis, Oliver Witzke, Peter A. Horn, Adalbert Krawczyk, Wiebke Sondermann and Monika Lindemann
Vaccines 2025, 13(9), 920; https://doi.org/10.3390/vaccines13090920 - 29 Aug 2025
Viewed by 440
Abstract
Background: Characterization of cellular responses to vaccinations in immunocompromised patients remains an evolving area of research. This particularly applies for pneumococcal vaccination in diseases such as psoriasis and in the setting of immunosuppressive therapy. Methods: This prospective study included 42 patients with moderate-to-severe [...] Read more.
Background: Characterization of cellular responses to vaccinations in immunocompromised patients remains an evolving area of research. This particularly applies for pneumococcal vaccination in diseases such as psoriasis and in the setting of immunosuppressive therapy. Methods: This prospective study included 42 patients with moderate-to-severe psoriasis. Following German guidelines at the time, patients underwent a sequential vaccination protocol against Streptococcus pneumoniae, consisting of Prevenar 13 (PCV13) and Pneumovax 23 (PPSV23). Over a 7-month period, we analyzed T-cell responses to common serotypes of Streptococcus pneumoniae using an interferon-γ ELISpot assay. For comparison, we performed an ELISA to measure pneumococcus-specific antibody production. Results: Patients undergoing anti-TNF-α blocker therapy, monoclonal antibody therapy (specifically anti-IL-12/23, IL-23, and IL-17), and methotrexate therapy showed significantly different responses to the pneumococcal serotype PS14 at onset (p = 0.02). T-cell responses ranged from strong (PS9N, PS14, PS25F) and intermediate (PS2) to weak (PS6A and PS11A). We did not observe a significant correlation of IgG antibodies with the magnitude of cellular immune responses. Conclusions: Immunosuppressive therapy alters vaccination-induced cellular immunity in psoriasis patients. Further research is needed to clarify the mechanisms involved. Full article
Show Figures

Figure 1

15 pages, 6859 KB  
Article
Dose-Dependent Porcine Deltacoronavirus Infection Reveals Linkage Between Infectious Dose and Immune Response
by Xiaocheng Bao, Liangxin Xia, Wenbin Bao, Ming’an Sun and Shuai Zhang
Animals 2025, 15(17), 2536; https://doi.org/10.3390/ani15172536 - 28 Aug 2025
Viewed by 341
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, has inflicted substantial economic losses on the global swine industry. While the severity of infectious disease depends on the dynamic interplay between inoculum dose and host response, the molecular mechanism by which PDCoV dose modulates host [...] Read more.
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, has inflicted substantial economic losses on the global swine industry. While the severity of infectious disease depends on the dynamic interplay between inoculum dose and host response, the molecular mechanism by which PDCoV dose modulates host immunity remains unclear. Hence, we systematically compared the transcriptomic changes in intestinal epithelial cells infected with different doses of PDCoV, and investigated the relationships between inoculum dose, host immune responses, and disease progression. PDCoV replication peaked at 24 h post-infection, and host responses showed a distinct dose-dependent pattern, with high-dose infection inducing more extensive transcriptional remodeling than low-dose infection. Both doses significantly activated the transcription of STAT1 and its downstream interferon-stimulated genes, while high-dose infection additionally triggered a cytokine storm characterized by excessive IL-6 and TNF-α expression. Functional validation demonstrated that STAT1 overexpression markedly inhibited PDCoV infection by enhancing ISRE promoter activity, and overexpression of its downstream ISG15 and MX2 also exerted independent and significant antiviral effects. These findings reveal the biphasic nature of PDCoV dose-dependent regulation of immunopathological mechanisms and identify STAT1 and specific ISGs (ISG15, MX2) as potent antiviral effectors, providing crucial insights into PDCoV pathogenicity and offering promising targets for developing immunomodulatory therapeutics or vaccines to control PDCoV outbreaks in swine. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 7630 KB  
Article
African Swine Fever Virus MGF 360-2L Disrupts Host Antiviral Immunity Based on Transcriptomic Analysis
by Taoqing Zhang, Xiaodong Qin, Sujie Dong, Yuanshu Wu, Xiaolan Qi, Jingjing Ren, Yuan Wen, Zhengwang Shi, Tao Feng, Bingjie Sun, Changying Wang and Haixue Zheng
Vaccines 2025, 13(9), 918; https://doi.org/10.3390/vaccines13090918 - 28 Aug 2025
Viewed by 289
Abstract
Background/Objectives: The African swine fever virus (ASFV) multi-gene family (MGF) 360 proteins play critical roles in immune evasion, replication regulation, and virulence determination. Despite substantial advances in this field, the functional roles of many members within this gene family remain to be fully [...] Read more.
Background/Objectives: The African swine fever virus (ASFV) multi-gene family (MGF) 360 proteins play critical roles in immune evasion, replication regulation, and virulence determination. Despite substantial advances in this field, the functional roles of many members within this gene family remain to be fully characterized. Methods: In this study, Transcriptional kinetics analysis indicated that the expression profile of MGF 360-2L was consistent with that of the late marker gene B646L (p72). Transcriptomic profiling identified 13 and 171 differentially expressed genes (DEGs) at 12 and 24 h post-infection (hpi) with ΔMGF 360-2L, respectively. Results: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that these DEGs were predominantly enriched in Type I interferon (IFN-I) signaling pathways. It is noteworthy that transcriptome analysis further demonstrates that the absence of MGF 360-2L specifically results in the dysregulation of expression of the replication-essential genes E199L and E301R. These findings indicate that MG F360-2L is essential for maintaining the stable expression of these proteins. Conclusions:MGF 360-2L is a late gene that contributes to the precise regulation of viral protein expression and modulates the host immune response during infection. Full article
(This article belongs to the Special Issue African Swine Fever Virus Immunotherapies and Vaccine Development)
Show Figures

Figure 1

19 pages, 968 KB  
Review
Beyond TLR4 and Its Alternative Lipopolysaccharide (LPS) Sensing Pathways in Zebrafish
by Dara V. Grebennikova, Umesh K. Shandilya and Niel A. Karrow
Genes 2025, 16(9), 1014; https://doi.org/10.3390/genes16091014 - 27 Aug 2025
Viewed by 410
Abstract
Due to their evolutionary divergence from mammals, zebrafish (Zf, Danio rerio), which are frequently employed in biomedical research, provide a distinctive viewpoint on innate immune systems. The Toll-like receptor 4/myeloid differentiation factor 2/cluster of differentiation 14 (TLR4/MD-2/CD14) complex in mammals detects lipopolysaccharide [...] Read more.
Due to their evolutionary divergence from mammals, zebrafish (Zf, Danio rerio), which are frequently employed in biomedical research, provide a distinctive viewpoint on innate immune systems. The Toll-like receptor 4/myeloid differentiation factor 2/cluster of differentiation 14 (TLR4/MD-2/CD14) complex in mammals detects lipopolysaccharide (LPS), a crucial component of Gram-negative bacteria, and it causes potent inflammatory reactions through a Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β (TRIF)-dependent and myeloid differentiation primary response 88 (MyD88)-dependent pathways. However, key components of this system, such as a responsive TLR4 axis and a functional CD14 ortholog, are absent in Zf. The Zf species nevertheless reacts to LPS, which leads to research into other recognition systems. This review looks at a number of TLR4-independent processes in Zf, such as scavenger receptors (SRs) including scavenger receptor class B type 1 (SR-BI) and cluster of differentiation 36 (CD36), nucleotide-binding oligomerization domain-containing protein 1 (NOD1)-dependent cytosolic sensing, peptidoglycan recognition proteins (PGRPs), Complement Component 3 (C3), and caspase-1-like protein 2 (Caspy2)-mediated inflammasome activation. An alternative and flexible immune system that makes up for the lack of canonical TLR4 signaling is revealed by these mechanisms. Additionally, the discovery of lymphocyte antigen 96 (ly96), an ortholog of MD-2 found in Zf, suggests evolutionary similarity; however, as it is only functional in artificial systems, it demonstrates minimal overlap with mammalian MD-2 activity. Knowing these pathways provides important information for studying inflammation, infection, and immunological modulation in vertebrates using Zf as a model. It also clarifies the evolutionary flexibility of innate immune recognition. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

13 pages, 803 KB  
Communication
Sex-Specific Differences in Adipose IRF5 Expression and Its Association with Inflammation and Insulin Resistance in Obesity
by Shihab Kochumon, Noelle Benobaid, Ashraf Al Madhoun, Shaima Albeloushi, Nourah Almansour, Fatema Al-Rashed, Sardar Sindhu, Fahd Al-Mulla and Rasheed Ahmad
Int. J. Mol. Sci. 2025, 26(17), 8229; https://doi.org/10.3390/ijms26178229 - 25 Aug 2025
Viewed by 620
Abstract
Interferon regulatory factor 5 (IRF5) plays a pivotal role in innate immune responses and macrophage polarization. Although its role in obesity-associated inflammation has been described, sex-specific differences in adipose IRF5 expression and its association with immune and metabolic markers remain poorly defined. To [...] Read more.
Interferon regulatory factor 5 (IRF5) plays a pivotal role in innate immune responses and macrophage polarization. Although its role in obesity-associated inflammation has been described, sex-specific differences in adipose IRF5 expression and its association with immune and metabolic markers remain poorly defined. To evaluate sex-specific associations between adipose tissue (AT) IRF5 expression and key inflammatory and metabolic markers in overweight and obese individuals. Subcutaneous AT samples from overweight/obese male and female subjects were analyzed for IRF5 expression using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Correlation and multiple linear regression analyses were performed to identify its associations with inflammatory gene expression and metabolic parameters including insulin, glucose, HOMA-IR, and adipokines. RF5 gene and protein levels were significantly elevated in the AT of overweight/obese females compared to males (p < 0.0001), with expression increasing progressively with BMI in females but not in males. Despite these sex-dependent expression levels, IRF5 demonstrated consistent, sex-independent positive correlations with several core immune and inflammatory markers, including CCR5, CD11c, CD16, CD163, FOXP3, RUNX1, and MyD88. However, distinct sex-specific patterns emerged: in males, IRF5 correlated positively with classical pro-inflammatory markers such as IL-2, IL-6, IL-8, TNF-α, and IRAK1; whereas in females, IRF5 was associated with a broader array of immune markers, including chemokines (CCL7, CXCL11), pattern recognition receptors (TLR2, TLR8, TLR9), and macrophage markers (CD68, CD86), along with anti-inflammatory mediators such as IL-10 and IRF4. Notably, IRF5 expression in overweight/obese males, but not females, was significantly associated with metabolic dysfunction, showing positive correlations with fasting blood glucose, HbA1c, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) levels. Multiple regression analyses revealed sex-specific predictors of IRF5 expression, with metabolic (HOMA-IR) and inflammatory (IRAK1, MyD88) markers emerging in males, while immune-related genes (RUNX1, CD68, CCL7, MyD88) predominated in females. These findings underscore a sex-divergent role of IRF5 in AT, with implications for differential regulation of immune-metabolic pathways in obesity and its complications. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop