Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = internal detector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2258 KB  
Article
Assessing the Reliability of 3D-Printed Custom Silicone Boluses in Radiotherapy: Thickness and Air Bubble Considerations
by Yun Sung Shin, Sang Jun Byun, Byungyong Kim and Myeongsoo Kim
Appl. Sci. 2025, 15(19), 10486; https://doi.org/10.3390/app151910486 - 28 Sep 2025
Viewed by 176
Abstract
This study aimed to evaluate the scientific reliability of 3D-printed silicone boluses fabricated with patient-specific molds, focusing on fabrication-related uncertainties such as internal air bubbles, thickness variations, and density differences, thereby providing evidence for clinical quality assurance. Custom silicone boluses were fabricated using [...] Read more.
This study aimed to evaluate the scientific reliability of 3D-printed silicone boluses fabricated with patient-specific molds, focusing on fabrication-related uncertainties such as internal air bubbles, thickness variations, and density differences, thereby providing evidence for clinical quality assurance. Custom silicone boluses were fabricated using 3D-printed molds with varying vacuum degassing times (1, 5, and 10 min). Air bubble size and depth were quantified using scanner image analysis, while density and Hounsfield unit (HU) values were compared with a commercial bolus. Dosimetric evaluation was performed using a VitalBeam linear accelerator (6 MV photons, Varian Medical Systems, Palo Alto, CA, USA) and a MatriXX 2D detector (IBA Dosimetry, Schwarzenbruck, Germany), comparing treatment planning system (TPS) calculated doses with measured doses across a 3 × 3 grid. Surface dose distributions were further analyzed using EBT3 film. Results showed that bubble size increased with longer vacuum times, interpreted as coalescence due to limited degassing and silicone viscosity. The density of 3D boluses ranged from 0.980 to 1.104 g/cm3 (commercial: 0.988 g/cm3), with HU values of +240 to +250 (commercial: −110). In point-wise comparisons, mean dose differences were less than 1% for 1- and 5 min samples and approximately 1% for 10 min, with all conditions within |Δ| ≤ 3%. Film analysis confirmed equivalent surface dose distributions. These findings demonstrate, for the first time, that microscopic bubbles in 3D-printed silicone boluses have negligible clinical impact, supporting their safe adoption without requiring complex degassing procedures. Full article
Show Figures

Figure 1

12 pages, 1247 KB  
Review
Imaging Flow Cytometry as a Molecular Biology Tool: From Cell Morphology to Molecular Mechanisms
by Yoshikazu Matsuoka
Int. J. Mol. Sci. 2025, 26(19), 9261; https://doi.org/10.3390/ijms26199261 - 23 Sep 2025
Viewed by 416
Abstract
Insights into the state of individual cells within a living organism are essential for identifying diseases and abnormalities. The internal state of a cell is reflected in its morphological features and changes in the localization of intracellular molecules. Using this information, it is [...] Read more.
Insights into the state of individual cells within a living organism are essential for identifying diseases and abnormalities. The internal state of a cell is reflected in its morphological features and changes in the localization of intracellular molecules. Using this information, it is possible to infer the state of the cells with high precision. In recent years, technological advancements and improvements in instrument specifications have made large-scale analyses, such as single-cell analysis, more widely accessible. Among these technologies, imaging flow cytometry (IFC) is a high-throughput imaging platform that can simultaneously acquire information from flow cytometry (FCM) and cellular images. While conventional FCM can only obtain fluorescence intensity information corresponding to each detector, IFC can acquire multidimensional information, including cellular morphology and the spatial arrangement of proteins, nucleic acids, and organelles for each imaging channel. This enables the discrimination of cell types and states based on the localization of proteins and organelles, which is difficult to assess accurately using conventional FCM. Because IFC can acquire a large number of single-cell morphological images in a short time, it is well suited for automated classification using machine learning. Furthermore, commercial instruments that combine integrated imaging and cell sorting capabilities have recently become available, enabling the sorting of cells based on their image information. In this review, we specifically highlight practical applications of IFC in four representative areas: cell cycle analysis, protein localization analysis, immunological synapse formation, and the detection of leukemic cells. In addition, particular emphasis is placed on applications that directly contribute to elucidating molecular mechanisms, thereby distinguishing this review from previous general overviews of IFC. IFC enables the estimation of cell cycle phases from large numbers of acquired cellular images using machine learning, thereby allowing more precise cell cycle analysis. Moreover, IFC has been applied to investigate intracellular survival and differentiation signals triggered by external stimuli, to monitor DNA damage responses such as γH2AX foci formation, and more recently, to detect immune synapse formation among interacting cells within large populations and to analyze these interactions at the molecular level. In hematological malignancies, IFC combined with fluorescence in situ hybridization (FISH) enables high-throughput detection of chromosomal abnormalities, such as BCR-ABL1 translocations. These advances demonstrate that IFC provides not only morphological and functional insights but also clinically relevant genomic information at the single-cell level. By summarizing these unique applications, this review aims to complement existing publications and provide researchers with practical insights into how IFC can be implemented in both basic and translational research. Full article
Show Figures

Figure 1

4 pages, 329 KB  
Abstract
Development of Far-Infrared Detectors for Nondestructive Inspection of Infrastructure Buildings
by Kazuma Iwasaki, Seishi Abe and Tadao Tanabe
Proceedings 2025, 129(1), 16; https://doi.org/10.3390/proceedings2025129016 - 12 Sep 2025
Viewed by 222
Abstract
In nondestructive evaluation of concrete structures, the far-infrared region, including terahertz waves, which can penetrate concrete and measure the amount of corrosion in the internal steel, has attracted much attention. Magnetite has the potential to be used as a far-infrared detection device that [...] Read more.
In nondestructive evaluation of concrete structures, the far-infrared region, including terahertz waves, which can penetrate concrete and measure the amount of corrosion in the internal steel, has attracted much attention. Magnetite has the potential to be used as a far-infrared detection device that meets the requirements for nondestructive evaluation devices, such as room temperature operation and portability, while also having a low environmental impact. In this study, the sensitivity of magnetite thin films with different concentrations of Pt to electromagnetic waves at a wavelength of 10.6 μm was evaluated and compared: a nanocomposite with Pt nanocrystals dispersed in magnetite thin films was prepared by radio frequency sputtering, electrodes were prepared by a photoresist process, and the resistance variation was recorded after irradiation with 10.6 μm pulse electromagnetic waves. As a result, it was experimentally confirmed that the peak of response was the maximum at the amount of Pt added, where the electrical resistivity reached 12,000 µΩcm, and the S/N ratio was the maximum at the amount of Pt added, where the electrical resistivity reached 14,000 µΩcm. This indicates that Pt-doped magnetite with a Pt content of 14,000 µΩcm electrical resistivity is suitable as a far-infrared detector element material. Full article
Show Figures

Figure 1

29 pages, 2759 KB  
Article
Exploring the Coordinated Development of Water-Land-Energy-Food System in the North China Plain: Spatio-Temporal Evolution and Influential Determinants
by Zihong Dai, Jie Wang, Wei Fu, Juanru Yang and Xiaoxi Xia
Land 2025, 14(9), 1782; https://doi.org/10.3390/land14091782 - 2 Sep 2025
Viewed by 555
Abstract
Water, land, energy, and food are fundamental resources for human survival and ecological stability, yet they face intensifying pressure from surging demands and spatial mismatches. Integrated governance of their interconnected nexus is pivotal to achieving sustainable development. In this study, we analyze the [...] Read more.
Water, land, energy, and food are fundamental resources for human survival and ecological stability, yet they face intensifying pressure from surging demands and spatial mismatches. Integrated governance of their interconnected nexus is pivotal to achieving sustainable development. In this study, we analyze the water-land-energy-food (WLEF) nexus synergies in China’s North China Plain, a vital grain base for China’s food security. We develop a city-level WLEF evaluation framework and employ a coupling coordination model to assess spatiotemporal patterns of the WLEF system from 2010 to 2022. Additionally, we diagnose critical internal and external influencing factors of the WLEF coupling system, using obstacle degree modeling and geographical detectors. The results indicate that during this period, the most critical internal factor was per capita water resource availability. The impact of the external factor—urbanization level—was characterized by fluctuation and a general upward trend, and by 2022, it had become the dominant influencing factor. Results indicated that the overall development of the WLEF system exhibited a fluctuating trend of initial increasing then decreasing during the study period, peaking at 0.426 in 2016. The coupling coordination level of the WLEF system averaged around 0.5, with the highest value (0.526) in 2016, indicating a marginally coordinated state. Regionally, a higher degree of coordination was presented in the southern regions of the North China Plain compared with the northern areas. Anhui province achieved the optimal coordination, while Beijing consistently ranked lowest. The primary difference lies in the abundant water resources in Anhui, in contrast to the water scarcity in Beijing. Internal diagnostic analysis identified per capita water availability as the primary constraint on system coordination. External factors, including urbanization rate, primary industry’s added value, regional population, and rural residents’ disposable income, exhibited growing influence on the system over time. This study provides a theoretical framework for WLEF system coordination and offers decision-making support for optimizing resource allocation and promoting sustainable development in comparable regions. Full article
(This article belongs to the Special Issue Connections Between Land Use, Land Policies, and Food Systems)
Show Figures

Figure 1

5 pages, 2987 KB  
Interesting Images
Aberrant ICA and Associated Skull Base Foramina Visualized on Photon Counting Detector CT: Interesting Images
by Ahmed O. El Sadaney, John C. Benson, Felix E. Diehn, John I. Lane and Paul J. Farnsworth
Diagnostics 2025, 15(17), 2213; https://doi.org/10.3390/diagnostics15172213 - 31 Aug 2025
Viewed by 573
Abstract
Aberrant internal carotid arteries (ICA) are congenital vascular anomalies that occur from involution of the cervical portion of the ICA, which leads to enlargement of the normally small collateral inferior tympanic and caroticotympanic arteries. The inferior tympanic artery is a branch of the [...] Read more.
Aberrant internal carotid arteries (ICA) are congenital vascular anomalies that occur from involution of the cervical portion of the ICA, which leads to enlargement of the normally small collateral inferior tympanic and caroticotympanic arteries. The inferior tympanic artery is a branch of the external carotid artery, usually the ascending pharyngeal artery, which extends through the inferior tympanic canaliculus (ITC), a small foramen located along the cochlea promontory. Aberrant ICAs can also be associated with a persistent stapedial artery (PSA), which is an abnormal vessel that arises from the petrous ICA and passes through the obturator foramen of the stapes. An aberrant ICA is a very important anomaly to recognize on imaging. Accurately describing its presence is important to help prevent iatrogenic injury during intervention. It is also important to distinguish an aberrant ICA from a lateralized ICA. The improvement of spatial resolution with photon counting detector (PCD)-CT has been proven to provide higher performance in detection of sub-centimeter vascular lesions compared to conventional energy-integrated detector (EID)-CT. PCD-CT also provides superior visualization of small skull-based foramina such as the inferior tympanic canaliculus, which can aid in more accurately characterizing an aberrant ICA (variant course without ITC involvement). Full article
(This article belongs to the Special Issue Photon-Counting CT in Clinical Application)
Show Figures

Figure 1

25 pages, 3282 KB  
Review
Linear-Mode Gain HgCdTe Avalanche Photodiodes for Weak-Target Spaceborne Photonic System
by Hui Yu, Zhichao Zhang, Ming Liu, Weirong Xing, Qing Wu, Yi Zhang, Weiting Zhang, Jialin Xu and Qiguang Tan
Photonics 2025, 12(8), 829; https://doi.org/10.3390/photonics12080829 - 20 Aug 2025
Viewed by 1755
Abstract
Spectroscopic observations of Earth-like exoplanets and ultra-faint galaxies–top scientific priorities for the coming decades–involve measuring broadband signals at rates of only a few photons per square meter per hour. This imposes exceptional requirements on the detector performance, necessitating dark currents below 1 e [...] Read more.
Spectroscopic observations of Earth-like exoplanets and ultra-faint galaxies–top scientific priorities for the coming decades–involve measuring broadband signals at rates of only a few photons per square meter per hour. This imposes exceptional requirements on the detector performance, necessitating dark currents below 1 e/pixel/kilo second, read noise under 1 e/pixel/frame, and the ability to handle large-format arrays–capabilities that are not yet met by most existing infrared detectors. In addition, spaceborne LiDAR systems require photodetectors with exceptional sensitivity, compact size, low power consumption, and multi-channel capability to facilitate long-range range finding, topographic mapping, and active spectroscopy without increasing the instrument burden. MCT Avalanche photodiodes arrays offer high internal gain, pixelation, and photon-counting performance across SW to MW wavelengths needed for multi-beam and multi-wavelength measurements, marking them as a critical enabling technology for next-generation planetary and Earth science LiDAR missions. This work reports the latest progress in developing Hg1−xCdxTe linear-mode e-APDs at premier industrial research institutions, including relevant experimental data, simulations and major project planning. Related studies are summarized to demonstrate the practical and iterative approach for device fabrication, which have a transformative impact on the evolution of this discipline. Full article
(This article belongs to the Special Issue Emerging Trends in Photodetector Technologies)
Show Figures

Figure 1

16 pages, 5796 KB  
Article
Microstructural Evolution and Mechanical Properties of an Additively Manufactured AlSi10Mg Alloy Post-Processed by Twist Equal Channel Angular Pressing
by Przemysław Snopiński, Augustine Appiah, Ondřej Hilšer and Jiři Hajnyš
Symmetry 2025, 17(8), 1289; https://doi.org/10.3390/sym17081289 - 11 Aug 2025
Viewed by 620
Abstract
This study investigates the microstructural evolution and mechanical response of an additively manufactured (PBF-LB/M) AlSi10Mg alloy subjected to severe plastic deformation via two passes of twist channel angular pressing (TCAP). Processing was conducted using Route Bc, with the first pass at 150 °C [...] Read more.
This study investigates the microstructural evolution and mechanical response of an additively manufactured (PBF-LB/M) AlSi10Mg alloy subjected to severe plastic deformation via two passes of twist channel angular pressing (TCAP). Processing was conducted using Route Bc, with the first pass at 150 °C and the second at 250 °C. For the first time, the evolution from the initial hierarchical AM structure to a refined state was characterized in high-fidelity detail using a novel EBSD detector. The two-pass process transformed the initial structure into a heterogeneous, bimodal microstructure existing in a non-equilibrium state, characterized by a high fraction of low-angle grain boundaries (63%) and significant internal lattice distortion. The mechanical properties were dictated by the processing temperature: a single pass at 150 °C induced work hardening, increasing the yield strength from 450 MPa to 482 MPa. Conversely, the second pass at an elevated temperature of 250 °C promoted significant dynamic recovery. This led to a decrease in yield strength to 422 MPa but concurrently resulted in a substantial increase in ultimate compressive strength to 731 MPa. Full article
Show Figures

Figure 1

11 pages, 223 KB  
Essay
Beyond Space and Time: Quantum Superposition as a Real-Mental State About Choices
by Antoine Suarez
Condens. Matter 2025, 10(3), 43; https://doi.org/10.3390/condmat10030043 - 6 Aug 2025
Viewed by 1813
Abstract
This contribution aims to honour Guido Barbiellini’s profound interest in the interpretation and impact of quantum mechanics by examining the implications of the so-called before–before Experiment on quantum entanglement. This experiment was inspired by talks and discussions with John Bell at CERN. This [...] Read more.
This contribution aims to honour Guido Barbiellini’s profound interest in the interpretation and impact of quantum mechanics by examining the implications of the so-called before–before Experiment on quantum entanglement. This experiment was inspired by talks and discussions with John Bell at CERN. This was during the years when John and Guido co-worked, promoting the mission of the laboratory: “to advance the boundaries of human knowledge”. As the experiment uses measuring devices in motion, it can be considered a complement to entanglement experiments using stationary measuring devices, which have meanwhile been awarded the 2022 Nobel Prize in Physics. The before–before Experiment supports the idea that the quantum realm exists beyond space and time and that the quantum state is a real mental entity concerning choices. As it also leads us to a better understanding of the ‘quantum collapse’ and the measurement process, we pay homage to Guido’s work on detectors, such as his collaborations on the DELPHI experiment at CERN, on cosmic ray detection at the International Space Station, and gamma-ray astrophysics during a large NASA space mission. Full article
19 pages, 5031 KB  
Article
Measurement, Differences, and Driving Factors of Land Use Environmental Efficiency in the Context of Energy Utilization
by Lingyao Wang, Huilin Liu, Xiaoyan Liu and Fangrong Ren
Land 2025, 14(8), 1573; https://doi.org/10.3390/land14081573 - 31 Jul 2025
Viewed by 421
Abstract
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to [...] Read more.
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to 2021 by using the EBM-DEA model in China. The geographical detector model is used to examine the driving factors of land use environmental efficiency. The results show the following: (1) China’s LUEE is high in general but shows a clear pattern of spatial differentiation internally, with the highest values in the eastern region represented by Beijing, Jiangsu, and Zhejiang, while the central and western regions show lower LUEE because of their irrational industrial structure and lagging green development. (2) Energy consumption, economic development, industrial upgrading, population size, and urban expansion are the driving factors. Their explanatory power for the spatial stratification heterogeneity of land use environmental impacts varies. (3) Urban expansion has the greatest impact on the spatial differentiation of land use environmental effects, while energy consumption also shows significant explanatory strength. In contrast, economic development and population size exhibit relatively weaker explanatory effects. (4) The interaction of the two driving factors has a greater impact on LUEE than their individual effects, and the interaction is a two-factor enhancement. Finally, we make targeted recommendations to help improve land use environmental efficiency. Full article
Show Figures

Figure 1

20 pages, 8458 KB  
Article
Characterization of Defects by Non-Destructive Impulse Excitation Technique for 3D Printing FDM Polyamide Materials in Bending Mode
by Fatima-Ezzahrae Jabri, Imi Ochana, François Ducobu, Rachid El Alaiji and Anthonin Demarbaix
Appl. Sci. 2025, 15(15), 8266; https://doi.org/10.3390/app15158266 - 25 Jul 2025
Viewed by 542
Abstract
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were [...] Read more.
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were measured via an acoustic and a vibration sensor, using impulse excitation and fast Fourier transform (FFT) analysis. Modal properties include peak frequency, damping and amplitude. Non-defective samples show lower peak frequency and stronger amplitude for both detectors. Moreover, defects larger than 3 mm have minimal impact on peak frequency. The vibration detector is more sensitive to delamination presented at 7 and 10 mm defects. In addition, elevated peak frequency at 3 mm is the result of local hardening at the defect edge. Moreover, a neutral line position reduces damping when the defect size approaches 5 mm. Conversely, acoustic detectors ignore delamination and reveal lower damping and amplitude at 7 and 10 mm defects. Furthermore, internal sound diffusion from 3 and 5 mm defects enhances air losses and damping. Acoustic detectors only evaluate fault size and position, whereas vibrational detectors may detect local reinforcement and delamination more easily. These results highlight the importance of choosing the right detector according to the location, size, and specific modal characteristics of defects. Full article
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Study of Online Testing of Void Defects in AM Components with Grating Laser Ultrasonic Spectrum Method
by Hengtao Li, Yan Liu, Jinfeng Yang, Qinghua Guo, Zhichao Gan and Cuixiang Pei
Appl. Sci. 2025, 15(14), 7995; https://doi.org/10.3390/app15147995 - 17 Jul 2025
Viewed by 512
Abstract
Void defects, manifested as distributed porosity, are common in metal additive manufacturing (AM) and can significantly degrade the mechanical performance and reliability of fabricated components. To enable real-time quality control during fabrication, this study proposes a grating laser ultrasonic method for the online [...] Read more.
Void defects, manifested as distributed porosity, are common in metal additive manufacturing (AM) and can significantly degrade the mechanical performance and reliability of fabricated components. To enable real-time quality control during fabrication, this study proposes a grating laser ultrasonic method for the online evaluation of porosity in AM parts. Based on the theoretical relationship between surface acoustic wave (SAW) velocity and material porosity, a non-contact detection approach is developed, allowing the direct inference of porosity from the measured SAW velocities without requiring knowledge of the exact source–detector distance. Numerical simulations are conducted to analyze SAW propagation under varying porosity conditions and to validate the inversion model. Experimental measurements on aluminum alloy specimens with different porosity levels further confirm the sensitivity of SAW signals to internal voids. The results show consistent waveform and spectral trends between the simulation and experiment, supporting the feasibility of the proposed method for practical applications. Overall, the findings demonstrate the potential of this approach for the accurate online monitoring of void defects in metal AM components. Full article
(This article belongs to the Special Issue Industrial Applications of Laser Ultrasonics)
Show Figures

Figure 1

25 pages, 1429 KB  
Article
A Contrastive Semantic Watermarking Framework for Large Language Models
by Jianxin Wang, Xiangze Chang, Chaoen Xiao and Lei Zhang
Symmetry 2025, 17(7), 1124; https://doi.org/10.3390/sym17071124 - 14 Jul 2025
Viewed by 1425
Abstract
The widespread deployment of large language models (LLMs) has raised urgent demands for verifiable content attribution and misuse mitigation. Existing text watermarking techniques often struggle in black-box or sampling-based scenarios due to limitations in robustness, imperceptibility, and detection generality. These challenges are particularly [...] Read more.
The widespread deployment of large language models (LLMs) has raised urgent demands for verifiable content attribution and misuse mitigation. Existing text watermarking techniques often struggle in black-box or sampling-based scenarios due to limitations in robustness, imperceptibility, and detection generality. These challenges are particularly critical in open-access settings, where model internals and generation logits are unavailable for attribution. To address these limitations, we propose CWS (Contrastive Watermarking with Semantic Modeling)—a novel keyless watermarking framework that integrates contrastive semantic token selection and shared embedding space alignment. CWS enables context-aware, fluent watermark embedding while supporting robust detection via a dual-branch mechanism: a lightweight z-score statistical test for public verification and a GRU-based semantic decoder for black-box adversarial robustness. Experiments on GPT-2, OPT-1.3B, and LLaMA-7B over C4 and DBpedia datasets demonstrate that CWS achieves F1 scores up to 99.9% and maintains F1 ≥ 93% under semantic rewriting, token substitution, and lossy compression (ε ≤ 0.25, δ ≤ 0.2). The GRU-based detector offers a superior speed–accuracy trade-off (0.42 s/sample) over LSTM and Transformer baselines. These results highlight CWS as a lightweight, black-box-compatible, and semantically robust watermarking method suitable for practical content attribution across LLM architectures and decoding strategies. Furthermore, CWS maintains a symmetrical architecture between embedding and detection stages via shared semantic representations, ensuring structural consistency and robustness. This semantic symmetry helps preserve detection reliability across diverse decoding strategies and adversarial conditions. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

30 pages, 4582 KB  
Review
Review on Rail Damage Detection Technologies for High-Speed Trains
by Yu Wang, Bingrong Miao, Ying Zhang, Zhong Huang and Songyuan Xu
Appl. Sci. 2025, 15(14), 7725; https://doi.org/10.3390/app15147725 - 10 Jul 2025
Viewed by 2020
Abstract
From the point of view of the intelligent operation and maintenance of high-speed train tracks, this paper examines the research status of high-speed train rail damage detection technology in the field of high-speed train track operation and maintenance detection in recent years, summarizes [...] Read more.
From the point of view of the intelligent operation and maintenance of high-speed train tracks, this paper examines the research status of high-speed train rail damage detection technology in the field of high-speed train track operation and maintenance detection in recent years, summarizes the damage detection methods for high-speed trains, and compares and analyzes different detection technologies and application research results. The analysis results show that the detection methods for high-speed train rail damage mainly focus on the research and application of non-destructive testing technology and methods, as well as testing platform equipment. Detection platforms and equipment include a new type of vortex meter, integrated track recording vehicles, laser rangefinders, thermal sensors, laser vision systems, LiDAR, new ultrasonic detectors, rail detection vehicles, rail detection robots, laser on-board rail detection systems, track recorders, self-moving trolleys, etc. The main research and application methods include electromagnetic detection, optical detection, ultrasonic guided wave detection, acoustic emission detection, ray detection, vortex detection, and vibration detection. In recent years, the most widely studied and applied methods have been rail detection based on LiDAR detection, ultrasonic detection, eddy current detection, and optical detection. The most important optical detection method is machine vision detection. Ultrasonic detection can detect internal damage of the rail. LiDAR detection can detect dirt around the rail and the surface, but the cost of this kind of equipment is very high. And the application cost is also very high. In the future, for high-speed railway rail damage detection, the damage standards must be followed first. In terms of rail geometric parameters, the domestic standard (TB 10754-2018) requires a gauge deviation of ±1 mm, a track direction deviation of 0.3 mm/10 m, and a height deviation of 0.5 mm/10 m, and some indicators are stricter than European standard EN-13848. In terms of damage detection, domestic flaw detection vehicles have achieved millimeter-level accuracy in crack detection in rail heads, rail waists, and other parts, with a damage detection rate of over 85%. The accuracy of identifying track components by the drone detection system is 93.6%, and the identification rate of potential safety hazards is 81.8%. There is a certain gap with international standards, and standards such as EN 13848 have stricter requirements for testing cycles and data storage, especially in quantifying damage detection requirements, real-time damage data, and safety, which will be the key research and development contents and directions in the future. Full article
Show Figures

Figure 1

17 pages, 1027 KB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Viewed by 1885
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

13 pages, 1677 KB  
Article
Comparative Analysis of Ion Mobility Spectrometry-Based Explosive Trace Detectors
by Hyun Su Sim, Jaeseong Lee, Chanhwi Kim and Wonjoo Lee
Electronics 2025, 14(13), 2689; https://doi.org/10.3390/electronics14132689 - 3 Jul 2025
Viewed by 1079
Abstract
Aviation security increasingly relies on explosive trace detectors (ETDs), particularly those employing ion mobility spectrometry (IMS). However, few studies have systematically compared the performance of IMS-based ETDs, especially in terms of measurement uncertainty and stability under repeated operation. This study evaluated two commercially [...] Read more.
Aviation security increasingly relies on explosive trace detectors (ETDs), particularly those employing ion mobility spectrometry (IMS). However, few studies have systematically compared the performance of IMS-based ETDs, especially in terms of measurement uncertainty and stability under repeated operation. This study evaluated two commercially available IMS-based ETDs using statistical analysis and data visualization. Repeated TNT (2,4,6-trinitrotoluene) detection tests were conducted to assess performance over consecutive operations. The results revealed significant differences in measurement uncertainty between the two devices. One ETD exhibited stable measurements throughout, while the other showed variance fluctuations that stabilized only after extended use. Despite using the same detection principle, the two devices responded differently to operational conditions, suggesting that internal specifications and design choices significantly affect reliability. This study offers a methodological framework for ETD comparison and provides insights to support more rigorous evaluation and certification practices in aviation security. Full article
Show Figures

Figure 1

Back to TopTop