Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = ion-selective microelectrodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2839 KB  
Article
Adsorptive Stripping Voltammetric Quercetin Determination in Pharmaceuticals and Urine Samples Using a Long Service-Life Array of Carbon Composite Microelectrodes
by Iwona Gęca and Mieczyslaw Korolczuk
Molecules 2024, 29(18), 4464; https://doi.org/10.3390/molecules29184464 - 20 Sep 2024
Viewed by 987
Abstract
This article presents for the first time a new working electrode with a long service life— the bismuth-plated array of carbon composite microelectrodes for the simple, fast and sensitive determination of quercetin by adsorptive stripping voltammetry. The main experimental conditions were selected. The [...] Read more.
This article presents for the first time a new working electrode with a long service life— the bismuth-plated array of carbon composite microelectrodes for the simple, fast and sensitive determination of quercetin by adsorptive stripping voltammetry. The main experimental conditions were selected. The calibration graph was linear from 1 × 10−9 to 2 × 10−8 mol L−1 with an accumulation time of 60 s. The detection limit was equal to 4.8 × 10−10 mol L−1. The relative standard deviation for 2 × 10−8 mol L−1 of quercetin was 4.4% (n = 7). Possible interference effects resulting from the presence of other organic and surface active compounds and interfering ions were studied. The developed procedure was successfully applied to determine quercetin in pharmaceutical preparations and the spiked urine samples. Full article
Show Figures

Figure 1

3 pages, 1362 KB  
Abstract
Development of a Potentiometric Nitrate Ion Microsensor Improved Using Conductive Polymer Doped with Carbon Nanotubes as a Transducing Layer
by Camille Bene, Emmanuel Flahaut, Morgan Legnani, Pierre Temple-Boyer and Jérôme Launay
Proceedings 2024, 97(1), 111; https://doi.org/10.3390/proceedings2024097111 - 27 Mar 2024
Cited by 2 | Viewed by 934
Abstract
An all-integrated on-chip electrochemical microcell (10 × 11 mm2) is developed using silicon technology. The potentiometric nitrate ion detection is based on the functionalization of the working microelectrode array with a polymer membrane in fluoropolysiloxane (FPSX) containing ionophore tetradodecylammoniumnitrate (TDDAN) and [...] Read more.
An all-integrated on-chip electrochemical microcell (10 × 11 mm2) is developed using silicon technology. The potentiometric nitrate ion detection is based on the functionalization of the working microelectrode array with a polymer membrane in fluoropolysiloxane (FPSX) containing ionophore tetradodecylammoniumnitrate (TDDAN) and ionic additive potassium tetrakis[3,5-bis(trifuoromethyl)phenyl]borate (KTFPB) to form an all-solid-state ion selective electrode (ISE). The addition of an ion-to-electron transducing layer between the platinum working electrode and the polymer membrane helped to improve the sensor performances, especially the response time, the sensitivity, and the stability. Composites formed with two conductive polymers were compared: Polyethylenedioxythiophène (PEDOT) and Polypyrrole (PPy), doped with Poly(styrene sulfonate) or double-walled carbon nanotubes (DWCNTs). Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

12 pages, 2631 KB  
Article
Gold Nanoparticle-Modified Carbon-Fiber Microelectrodes for the Electrochemical Detection of Cd2+ via Fast-Scan Cyclic Voltammetry
by Noel Manring, Miriam Strini, Gene Koifman, Jessica L. Smeltz and Pavithra Pathirathna
Micromachines 2024, 15(3), 294; https://doi.org/10.3390/mi15030294 - 21 Feb 2024
Cited by 4 | Viewed by 3312
Abstract
Neurotoxic heavy metals, such as Cd2+, pose a significant global health concern due to their increased environmental contamination and subsequent detrimental health hazards they pose to human beings. These metal ions can breach the blood-brain barrierblood–brain barrier, leading to severe and [...] Read more.
Neurotoxic heavy metals, such as Cd2+, pose a significant global health concern due to their increased environmental contamination and subsequent detrimental health hazards they pose to human beings. These metal ions can breach the blood-brain barrierblood–brain barrier, leading to severe and often irreversible damage to the central nervous system and other vital organs. Therefore, developing a highly sensitive, robust, and rapid in vivo detection method for these hazardous heavy metal ions is of the utmost importance for early detection, thus initiating timely therapeutics. Detecting ultra-low levels of toxic metal ions in vivo and obtaining accurate speciation information remains a challenge with conventional analytical techniques. In this study, we fabricated a novel carbon carbon-fiber microelectrode (CFM)-based sensor that can detect Cd2+ ions using fast-scan cyclic voltammetry by electrodepositing gold nanoparticles (AuNP). We optimized electrochemical parameters that generate a unique cyclic voltammogram (CV) of Cd2+ at a temporal resolution of 100 ms with our novel sensor. All our experiments were performed in tris buffer that mimics the artificial cerebellum fluid. We established a calibration curve resulting in a limit of detection (LOD) of 0.01 µM with a corresponding sensitivity of 418.02 nA/ µM. The sensor’s selectivity was evaluated in the presence of other metal ions, and it was noteworthy to observe that the sensor retained its ability to produce the distinctive Cd2+ CV, even when the concentration of other metal ions was 200 times higher than that of Cd2+. We also found that our sensor could detect free Cd2+ ions in the presence of complexing agents. Furthermore, we analyzed the solution chemistry of each of those Cd2+–ligand solutions using a geochemical model, PHREEQC. The concentrations of free Cd2+ ions determined through our electrochemical data align well with geochemical modeling data, thus validating the response of our novel sensor. Furthermore, we reassessed our sensor’s LOD in tris buffer based on the concentration of free Cd2+ ions determined through PHREEQC analysis, revealing an LOD of 0.00132 µM. We also demonstrated the capability of our sensor to detect Cd2+ ions in artificial urine samples, showcasing its potential for application in actual biological samples. To the best of our knowledge, this is the first AuNP-modified, CFM-based Cd2+ sensor capable of detecting ultra-low concentrations of free Cd2+ ions in different complex matrices, including artificial urine at a temporal resolution of 100 ms, making it an excellent analytical tool for future real-time, in vivo detection, particularly in the brain. Full article
(This article belongs to the Special Issue Microelectrodes and Microdevices for Electrochemical Applications)
Show Figures

Figure 1

25 pages, 2624 KB  
Article
Inward Operation of Sodium-Bicarbonate Cotransporter 1 Promotes Astrocytic Na+ Loading and Loss of ATP in Mouse Neocortex during Brief Chemical Ischemia
by Katharina Everaerts, Pawan Thapaliya, Nils Pape, Simone Durry, Sara Eitelmann, Eleni Roussa, Ghanim Ullah and Christine R. Rose
Cells 2023, 12(23), 2675; https://doi.org/10.3390/cells12232675 - 21 Nov 2023
Cited by 7 | Viewed by 3559
Abstract
Ischemic conditions cause an increase in the sodium concentration of astrocytes, driving the breakdown of ionic homeostasis and exacerbating cellular damage. Astrocytes express high levels of the electrogenic sodium-bicarbonate cotransporter1 (NBCe1), which couples intracellular Na+ homeostasis to regulation of pH and operates [...] Read more.
Ischemic conditions cause an increase in the sodium concentration of astrocytes, driving the breakdown of ionic homeostasis and exacerbating cellular damage. Astrocytes express high levels of the electrogenic sodium-bicarbonate cotransporter1 (NBCe1), which couples intracellular Na+ homeostasis to regulation of pH and operates close to its reversal potential under physiological conditions. Here, we analyzed its mode of operation during transient energy deprivation via imaging astrocytic pH, Na+, and ATP in organotypic slice cultures of the mouse neocortex, complemented with patch-clamp and ion-selective microelectrode recordings and computational modeling. We found that a 2 min period of metabolic failure resulted in a transient acidosis accompanied by a Na+ increase in astrocytes. Inhibition of NBCe1 increased the acidosis while decreasing the Na+ load. Similar results were obtained when comparing ion changes in wild-type and Nbce1-deficient mice. Mathematical modeling replicated these findings and further predicted that NBCe1 activation contributes to the loss of cellular ATP under ischemic conditions, a result confirmed experimentally using FRET-based imaging of ATP. Altogether, our data demonstrate that transient energy failure stimulates the inward operation of NBCe1 in astrocytes. This causes a significant amelioration of ischemia-induced astrocytic acidification, albeit at the expense of increased Na+ influx and a decline in cellular ATP. Full article
(This article belongs to the Special Issue Astrocytes in CNS Disorders)
Show Figures

Graphical abstract

12 pages, 1697 KB  
Article
Comparing Essentiality of SOS1-Mediated Na+ Exclusion in Salinity Tolerance between Cultivated and Wild Rice Species
by Babar Shahzad, Lana Shabala, Meixue Zhou, Gayatri Venkataraman, Celymar Angela Solis, David Page, Zhong-Hua Chen and Sergey Shabala
Int. J. Mol. Sci. 2022, 23(17), 9900; https://doi.org/10.3390/ijms23179900 - 31 Aug 2022
Cited by 16 | Viewed by 3448
Abstract
Soil salinity is a major constraint that affects plant growth and development. Rice is a staple food for more than half of the human population but is extremely sensitive to salinity. Among the several known mechanisms, the ability of the plant to exclude [...] Read more.
Soil salinity is a major constraint that affects plant growth and development. Rice is a staple food for more than half of the human population but is extremely sensitive to salinity. Among the several known mechanisms, the ability of the plant to exclude cytosolic Na+ is strongly correlated with salinity stress tolerance in different plant species. This exclusion is mediated by the plasma membrane (PM) Na+/H+ antiporter encoded by Salt Overly Sensitive (SOS1) gene and driven by a PM H+-ATPase generated proton gradient. However, it is not clear to what extent this mechanism is operational in wild and cultivated rice species, given the unique rice root anatomy and the existence of the bypass flow for Na+. As wild rice species provide a rich source of genetic diversity for possible introgression of abiotic stress tolerance, we investigated physiological and molecular basis of salinity stress tolerance in Oryza species by using two contrasting pairs of cultivated (Oryza sativa) and wild rice species (Oryza alta and Oryza punctata). Accordingly, dose- and age-dependent Na+ and H+ fluxes were measured using a non-invasive ion selective vibrating microelectrode (the MIFE technique) to measure potential activity of SOS1-encoded Na+/H+ antiporter genes. Consistent with GUS staining data reported in the literature, rice accessions had (~4–6-fold) greater net Na+ efflux in the root elongation zone (EZ) compared to the mature root zone (MZ). Pharmacological experiments showed that Na+ efflux in root EZ is suppressed by more than 90% by amiloride, indicating the possible involvement of Na+/H+ exchanger activity in root EZ. Within each group (cultivated vs. wild) the magnitude of amiloride-sensitive Na+ efflux was higher in tolerant genotypes; however, the activity of Na+/H+ exchanger was 2–3-fold higher in the cultivated rice compared with their wild counterparts. Gene expression levels of SOS1, SOS2 and SOS3 were upregulated under 24 h salinity treatment in all the tested genotypes, with the highest level of SOS1 transcript detected in salt-tolerant wild rice genotype O. alta (~5–6-fold increased transcript level) followed by another wild rice, O. punctata. There was no significant difference in SOS1 expression observed for cultivated rice (IR1-tolerant and IR29-sensitive) under both 0 and 24 h salinity exposure. Our findings suggest that salt-tolerant cultivated rice relies on the cytosolic Na+ exclusion mechanism to deal with salt stress to a greater extent than wild rice, but its operation seems to be regulated at a post-translational rather than transcriptional level. Full article
(This article belongs to the Special Issue Molecular Regulation of Drought and Salinity Tolerance in Plants)
Show Figures

Figure 1

16 pages, 3714 KB  
Article
Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing
by Rino Nishimoto, Yuichi Sato, Jingxuan Wu, Tomoki Saizaki, Mahiro Kubo, Mengyun Wang, Hiroya Abe, Inès Richard, Tatsuo Yoshinobu, Fabien Sorin and Yuanyuan Guo
Biosensors 2022, 12(8), 559; https://doi.org/10.3390/bios12080559 - 24 Jul 2022
Cited by 11 | Viewed by 3855
Abstract
Nowadays, bioelectronic devices are evolving from rigid to flexible materials and substrates, among which thermally-drawn-fiber-based bioelectronics represent promising technologies thanks to their inherent flexibility and seamless integration of multi-functionalities. However, electrochemical sensing within fibers remains a poorly explored area, as it imposes new [...] Read more.
Nowadays, bioelectronic devices are evolving from rigid to flexible materials and substrates, among which thermally-drawn-fiber-based bioelectronics represent promising technologies thanks to their inherent flexibility and seamless integration of multi-functionalities. However, electrochemical sensing within fibers remains a poorly explored area, as it imposes new demands for material properties—both the electrochemical sensitivity and the thermomechanical compatibility with the fiber drawing process. Here, we designed and fabricated microelectrode fibers made of carbon nanotube (CNT)-based hybrid nanocomposites and further evaluated their detailed electrochemical sensing performances. Carbon-black-impregnated polyethylene (CB-CPE) was chosen as the base material, into which CNT was loaded homogeneously in a concentration range of 3.8 to 10 wt%. First, electrical impedance characterization of CNT nanocomposites showed a remarkable decrease of the resistance with the increase in CNT loading ratio, suggesting that CNTs notably increased the effective electrical current pathways inside the composites. In addition, the proof-of-principle performance of fiber-based microelectrodes was characterized for the detection of ferrocenemethanol (FcMeOH) and dopamine (DA), exhibiting an ultra-high sensitivity. Additionally, we further examined the long-term stability of such composite-based electrode in exposure to the aqueous environment, mimicking the in vivo or in vitro settings. Later, we functionalized the surface of the microelectrode fiber with ion-sensitive membranes (ISM) for the selective sensing of Na+ ions. The miniature fiber-based electrochemical sensor developed here holds great potential for standalone point-of-care sensing applications. In the future, taking full advantage of the thermal drawing process, the electrical, optical, chemical, and electrochemical modalities can be all integrated together within a thin strand of fiber. This single fiber can be useful for fundamental multi-mechanistic studies for biological applications and the weaved fibers can be further applied for daily health monitoring as functional textiles. Full article
(This article belongs to the Special Issue Self-Powered Flexible Biosensors and Electronic Skin)
Show Figures

Figure 1

15 pages, 3286 KB  
Article
Ultrasensitive Diamond Microelectrode Application in the Detection of Ca2+ Transport by AnnexinA5-Containing Nanostructured Liposomes
by Alberto Pasquarelli, Luiz Henrique Silva Andrilli, Maytê Bolean, Claudio Reis Ferreira, Marcos Antônio Eufrásio Cruz, Flavia Amadeu de Oliveira, Ana Paula Ramos, José Luis Millán, Massimo Bottini and Pietro Ciancaglini
Biosensors 2022, 12(7), 525; https://doi.org/10.3390/bios12070525 - 14 Jul 2022
Cited by 8 | Viewed by 2544
Abstract
This report describes the innovative application of high sensitivity Boron-doped nanocrystalline diamond microelectrodes for tracking small changes in Ca2+ concentration due to binding to Annexin-A5 inserted into the lipid bilayer of liposomes (proteoliposomes), which could not be assessed using common Ca2+ [...] Read more.
This report describes the innovative application of high sensitivity Boron-doped nanocrystalline diamond microelectrodes for tracking small changes in Ca2+ concentration due to binding to Annexin-A5 inserted into the lipid bilayer of liposomes (proteoliposomes), which could not be assessed using common Ca2+ selective electrodes. Dispensing proteoliposomes to an electrolyte containing 1 mM Ca2+ resulted in a potential jump that decreased with time, reaching the baseline level after ~300 s, suggesting that Ca2+ ions were incorporated into the vesicle compartment and were no longer detected by the microelectrode. This behavior was not observed when liposomes (vesicles without AnxA5) were dispensed in the presence of Ca2+. The ion transport appears Ca2+-selective, since dispensing proteoliposomes in the presence of Mg2+ did not result in potential drop. The experimental conditions were adjusted to ensure an excess of Ca2+, thus confirming that the potential reduction was not only due to the binding of Ca2+ to AnxA5 but to the transfer of ions to the lumen of the proteoliposomes. Ca2+ uptake stopped immediately after the addition of EDTA. Therefore, our data provide evidence of selective Ca2+ transport into the proteoliposomes and support the possible function of AnxA5 as a hydrophilic pore once incorporated into lipid membrane, mediating the mineralization initiation process occurring in matrix vesicles. Full article
(This article belongs to the Special Issue Diamond Technology for Biosensing and Quantum Sensing)
Show Figures

Graphical abstract

10 pages, 1506 KB  
Article
H2S in Horticultural Plants: Endogenous Detection by an Electrochemical Sensor, Emission by a Gas Detector, and Its Correlation with L-Cysteine Desulfhydrase (LCD) Activity
by María A. Muñoz-Vargas, Salvador González-Gordo, José M. Palma and Francisco J. Corpas
Int. J. Mol. Sci. 2022, 23(10), 5648; https://doi.org/10.3390/ijms23105648 - 18 May 2022
Cited by 18 | Viewed by 3097
Abstract
H2S has acquired great attention in plant research because it has signaling functions under physiological and stress conditions. However, the direct detection of endogenous H2S and its potential emission is still a challenge in higher plants. In order to [...] Read more.
H2S has acquired great attention in plant research because it has signaling functions under physiological and stress conditions. However, the direct detection of endogenous H2S and its potential emission is still a challenge in higher plants. In order to achieve a comparative analysis of the content of H2S among different plants with agronomical and nutritional interest including pepper fruits, broccoli, ginger, and different members of the genus Allium such as garlic, leek, Welsh and purple onion, the endogenous H2S and its emission was determined using an ion-selective microelectrode and a specific gas detector, respectively. The data show that endogenous H2S content range from pmol to μmol H2S · g−1 fresh weight whereas the H2S emission of fresh-cut vegetables was only detected in the different species of the genus Allium with a maximum of 9 ppm in garlic cloves. Additionally, the activity and isozymes of the L-cysteine desulfhydrase (LCD) were analyzed, which is one of the main enzymatic sources of H2S, where the different species of the genus Allium showed the highest activities. Using non-denaturing gel electrophoresis, the data indicated the presence of up to nine different LCD isozymes from one in ginger to four in onion, leek, and broccoli. In summary, the data indicate a correlation between higher LCD activity with the endogenous H2S content and its emission in the analyzed horticultural species. Furthermore, the high content of endogenous H2S in the Allium species supports the recognized benefits for human health, which are associated with its consumption. Full article
Show Figures

Figure 1

18 pages, 2247 KB  
Article
Changes in Astroglial K+ upon Brief Periods of Energy Deprivation in the Mouse Neocortex
by Sara Eitelmann, Jonathan Stephan, Katharina Everaerts, Simone Durry, Nils Pape, Niklas J. Gerkau and Christine R. Rose
Int. J. Mol. Sci. 2022, 23(9), 4836; https://doi.org/10.3390/ijms23094836 - 27 Apr 2022
Cited by 10 | Viewed by 2975
Abstract
Malfunction of astrocytic K+ regulation contributes to the breakdown of extracellular K+ homeostasis during ischemia and spreading depolarization events. Studying astroglial K+ changes is, however, hampered by a lack of suitable techniques. Here, we combined results from fluorescence imaging, ion-selective [...] Read more.
Malfunction of astrocytic K+ regulation contributes to the breakdown of extracellular K+ homeostasis during ischemia and spreading depolarization events. Studying astroglial K+ changes is, however, hampered by a lack of suitable techniques. Here, we combined results from fluorescence imaging, ion-selective microelectrodes, and patch-clamp recordings in murine neocortical slices with the calculation of astrocytic [K+]. Brief chemical ischemia caused a reversible ATP reduction and a transient depolarization of astrocytes. Moreover, astrocytic [Na+] increased by 24 mM and extracellular [Na+] decreased. Extracellular [K+] increased, followed by an undershoot during recovery. Feeding these data into the Goldman–Hodgkin–Katz equation revealed a baseline astroglial [K+] of 146 mM, an initial K+ loss by 43 mM upon chemical ischemia, and a transient K+ overshoot of 16 mM during recovery. It also disclosed a biphasic mismatch in astrocytic Na+/K+ balance, which was initially ameliorated, but later aggravated by accompanying changes in pH and bicarbonate, respectively. Altogether, our study predicts a loss of K+ from astrocytes upon chemical ischemia followed by a net gain. The overshooting K+ uptake will promote low extracellular K+ during recovery, likely exerting a neuroprotective effect. The resulting late cation/anion imbalance requires additional efflux of cations and/or influx of anions, the latter eventually driving delayed astrocyte swelling. Full article
(This article belongs to the Special Issue Role of Astrocytes in Neurological Diseases)
Show Figures

Figure 1

11 pages, 988 KB  
Article
The Use of a Solid Bismuth Microelectrode for Vanadium Quantification by Adsorptive Stripping Voltammetry in Environmental Water Samples
by Malgorzata Grabarczyk, Marzena Adamczyk and Edyta Wlazlowska
Molecules 2022, 27(7), 2168; https://doi.org/10.3390/molecules27072168 - 27 Mar 2022
Cited by 3 | Viewed by 2302
Abstract
This paper presents for the first time the use of an environmentally friendly solid bismuth microelectrode for the voltammetric quantification of V(V) in natural water samples. These studies were designed to replace the film bismuth electrode that had been introduced to eliminate the [...] Read more.
This paper presents for the first time the use of an environmentally friendly solid bismuth microelectrode for the voltammetric quantification of V(V) in natural water samples. These studies were designed to replace the film bismuth electrode that had been introduced to eliminate the conventional sensors based on highly toxic mercury. In the proposed procedure, V(V) is preconcentrated at the solid bismuth microelectrode surface via the formation of electroactive complexes with cupferron from a solution of 0.1-mol L−1 acetate buffer, pH = 4.6 at a potential of −0.4 V. The linearity of the calibration graph is in the V(V) concentration range from 8 × 10−10 to 1 × 10−7 mol L−1 with a preconcentration time of 1 min. The limit of detection (calculated as 3 σ) is 2.5 × 10−10 mol L−1 for a preconcentration time of 1 min. It was also demonstrated that significant improvement in analytical parameters was achieved as a result of the activation of the solid electrode surface at a potential of −2.5 V for 2 s. The developed procedure is highly selective for the presence of foreign ions and organic compounds in tested samples. The accuracy of the recommended procedure was checked using SPS-WW1 waste water-certified reference materials of a complex composition, in which the concentration of V(V) determined by the proposed method was 95.1 ± 1.6 ng mL−1. Moreover, in keeping with the outlined procedure, river, tap and rain water samples were analyzed without any pretreatment, and recovery values from 96% to 106% were obtained. Full article
(This article belongs to the Special Issue Frontiers in Analytical Methods for Water Analysis)
Show Figures

Figure 1

17 pages, 4364 KB  
Article
Contributions of Microelectrochemical Scanning Techniques for the Efficient Detection of Localized Corrosion Processes at the Cut Edges of Polymer-Coated Galvanized Steel
by Dániel Filotás, Javier Izquierdo, Bibiana M. Fernández-Pérez, Lívia Nagy, Géza Nagy and Ricardo M. Souto
Molecules 2022, 27(7), 2167; https://doi.org/10.3390/molecules27072167 - 27 Mar 2022
Cited by 6 | Viewed by 2930
Abstract
Spatially resolved information on corrosion reactions operating at the cut edges of coated metals can be obtained using microelectrochemical scanning techniques using a suitable selection of operation modes and scanning probes. The scanning vibrating electrode technique (SVET) provides current density maps with a [...] Read more.
Spatially resolved information on corrosion reactions operating at the cut edges of coated metals can be obtained using microelectrochemical scanning techniques using a suitable selection of operation modes and scanning probes. The scanning vibrating electrode technique (SVET) provides current density maps with a spatial resolution of the order of the dimensions of the sample, which allows the temporal evolution of the corrosion reactions to be followed over time. This leads to the identification and localization of cathodic and anodic sites, although the technique lacks chemical specificity for the unequivocal identification of the reactive species. The application of scanning electrochemical microscopy (SECM) was previously limited to image cathodic reaction sites, either due to oxygen consumption in the amperometric operation or by the alkalinisation of the electrolyte in potentiometric operation. However, it is shown that anodic sites can be effectively monitored using an ion-selective microelectrode (ISME) as a probe. The ISME probes detected differences in the local concentrations of Zn2+ and OH ions from the cut edges of a complete coil coating system compared to the same system after the polymeric layers were removed. In this way, it has been shown that the inhibitor loading in the polymer layers effectively contributes to reducing the corrosion rates at the cut edge, thus helping to extend the useful life of the sacrificial galvanized layer bonded directly to the steel matrix. Additionally, these two probe configurations can be integrated into a multi-electrode tip for potentiometric operation to simultaneously monitor localized changes in pH values and metal ion dissolution in a single scan. Spatial and temporal distributions were further investigated using different rastering procedures, and the potential of constructing pseudomaps for 2D-imaging is described. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion Protection of Metallic Materials)
Show Figures

Graphical abstract

11 pages, 1544 KB  
Article
Long-Term Stability of Redox Mediators in Carbonate Solvents
by Felix M. Weber, Ina Kohlhaas and Egbert Figgemeier
Molecules 2022, 27(5), 1737; https://doi.org/10.3390/molecules27051737 - 7 Mar 2022
Cited by 4 | Viewed by 2718
Abstract
Scanning electrochemical microscopy (SECM) used in the feedback mode is one of the most powerful versatile analytical tools used in the field of battery research. However, the application of SECM in the field of lithium-ion batteries (LIBs) faces challenges associated with the selection [...] Read more.
Scanning electrochemical microscopy (SECM) used in the feedback mode is one of the most powerful versatile analytical tools used in the field of battery research. However, the application of SECM in the field of lithium-ion batteries (LIBs) faces challenges associated with the selection of a suitable redox mediator due to its high reactivity at low potentials at lithium metal or lithiated graphite electrodes. In this regard, the electrochemical/chemical stability of 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB) is evaluated and benchmarked with ferrocene. This investigation is systematically carried out in both linear and cyclic carbonates of the electrolyte recipe. Measurements of the bulk current with a microelectrode prove that while DBDMB decomposes in ethyl methyl carbonate (EMC)-containing electrolyte, bulk current remains stable in cyclic carbonates, ethylene carbonate (EC) and propylene carbonate (PC). Ferrocene was studied as an alternative redox mediator, showing superior electrochemical performance in ethyl methyl carbonate-containing electrolytes in terms of degradation. The resulting robustness of ferrocene with SECM is essential for a quantitative analysis of battery materials over extended periods. SECM approach curves depict practical problems when using the decomposing DBDMB for data acquisition and interpretation. This study sheds light towards the use of SECM as a probing tool enabled by redox mediators. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

1 pages, 205 KB  
Abstract
Multisensing Wearable Technology for Sweat Biomonitoring
by Meritxell Rovira, César Fernández-Sánchez, Silvia Demuru, Paul Kunnel Brince, Danick Briand and Cecilia Jimenez-Jorquera
Eng. Proc. 2021, 6(1), 78; https://doi.org/10.3390/I3S2021Dresden-10113 - 17 May 2021
Cited by 1 | Viewed by 1533
Abstract
This work describes a multisensing wearable platform for monitoring biomarkers in sweat during the practice of exercise. Five electrochemical sensors for pH, potassium, sodium, chloride, and lactate were implemented in a flexible patch approach, together with a paper microfluidic component, to continuously measure [...] Read more.
This work describes a multisensing wearable platform for monitoring biomarkers in sweat during the practice of exercise. Five electrochemical sensors for pH, potassium, sodium, chloride, and lactate were implemented in a flexible patch approach, together with a paper microfluidic component, to continuously measure sweat composition. The sensors are fabricated with silicon technologies: ion selective field effect transistors (ISFETs) for pH and ionic species; and a gold thin-film microelectrode for lactate. The latter includes a polymeric membrane based on an electropolymerized polypyrroled structure, where all the biocomponents required for carrying out the lactate analyses are entrapped. The flexible patch is fabricated using hybrid integration technologies, including printed pads defined on a polyimide (Kapton®) substrate and wire bonding encapsulation of silicon chips. To fix and align the sensors to the flexible substrate, different laminated materials, such as polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), and silicone-based adhesive, were used. The first results show good performance of the sensors—ISFETS sensitivity between 54–59 mV dec−1 for ion ranges in sweat from 2 to 100 mM and lactate sensor sensitivity of −135 × 102 µA M−1 cm−2 for the range of 2–50 mM. The microfluidic platform has been tested in terms of adequate sensor wettability and rapid response during the time span of exercise activity (2 h) showing excellent results. Full article
(This article belongs to the Proceedings of The 8th International Symposium on Sensor Science)
19 pages, 4322 KB  
Article
Experimental Study and Mathematical Modeling of a Glyphosate Impedimetric Microsensor Based on Molecularly Imprinted Chitosan Film
by Fares Zouaoui, Saliha Bourouina-Bacha, Mustapha Bourouina, Albert Alcacer, Joan Bausells, Nicole Jaffrezic-Renault, Nadia Zine and Abdelhamid Errachid
Chemosensors 2020, 8(4), 104; https://doi.org/10.3390/chemosensors8040104 - 20 Oct 2020
Cited by 15 | Viewed by 4996
Abstract
A novel impedimetric microsensor based on a double-layered imprinted polymer film has been constructed for the sensitive detection of the herbicide, glyphosate (GLY), in water. It is based on electropolymerized polypyrrole films, doped with cobaltabis(dicarbollide) ions ([3,3′-Co(1,2-C2B9H11) [...] Read more.
A novel impedimetric microsensor based on a double-layered imprinted polymer film has been constructed for the sensitive detection of the herbicide, glyphosate (GLY), in water. It is based on electropolymerized polypyrrole films, doped with cobaltabis(dicarbollide) ions ([3,3′-Co(1,2-C2B9H11)2]), as a solid contact layer between the gold microelectrode surface and the molecularly imprinted chitosan film (CS-MIPs/PPy/Au). Electrochemical Impedance Spectroscopy (EIS) was used for the characterization of the CS-molecular imprinted polymers (MIPs)/PPy/Au in the presence of GLY concentrations between 0.31 pg/mL and 50 ng/mL. Experimental responses of CS-MIPs/PPy/Au are modeled for the first time using an exact mathematical model based on physical theories. From the developed model, it was possible to define the optimal range of the parameters that will impact the quality of impedance spectra and then the analytical performance of the obtained microsensor. The obtained microsensor shows a low detection limit of 1 fg/mL (S/N = 3), a good selectivity, a good reproducibility, and it is regenerable. Full article
(This article belongs to the Special Issue Chitosan for Sensors and Electrochemical Applications)
Show Figures

Graphical abstract

15 pages, 5971 KB  
Article
A MEMS-Based Multi-Parameter Integrated Chip and Its Portable System for Water Quality Detection
by Ziyue Wu, Jiaqi Wang, Chao Bian, Jianhua Tong and Shanhong Xia
Micromachines 2020, 11(1), 63; https://doi.org/10.3390/mi11010063 - 5 Jan 2020
Cited by 27 | Viewed by 6455
Abstract
As an important means to protect water resources, water quality detection is of great social and economic significance. Water quality detection sensors processed by micro-electro-mechanical system (MEMS) technology have the advantages of low-cost, small size, and high sensitivity. In this paper, a multi-parameter [...] Read more.
As an important means to protect water resources, water quality detection is of great social and economic significance. Water quality detection sensors processed by micro-electro-mechanical system (MEMS) technology have the advantages of low-cost, small size, and high sensitivity. In this paper, a multi-parameter water quality detection integrated sensor chip is further studied, and a portable detection system using this chip is developed. Temperature, pH, oxidation-reduction potential (ORP), conductivity and concentration of copper ions (Cu2+) are selected as typical water quality parameters. Experiments of sensor calibrations using this portable detection system were performed in standard solutions. The sensor has a sensitivity of −57.34 mV/pH in pH detection and 5.95 Ω/°C in temperature response. ORP is directly detected by Pt microelectrode on the chip and the relative error is less than 3%. The electrode constant of the sensor is 1.416 cm−1 and the linearity is 0.9995 in conductivity detection. With the gold nanoparticles deposited on the electrode, the detection peak of Cu2+ appears at 280 mV and the sensor shows good linearity to the concentration of Cu2+ in the range of 0–0.6 mg/L. The detection limit of Cu2+ concentration is 2.33 μg/L. Through measurement and calculation, the accuracy of the portable system is within 4%. This portable multi-parameter water quality detection system with the MEMS-based integrated chip shows great potential in the field and fast detection. Full article
Show Figures

Figure 1

Back to TopTop