Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = iridium(III)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3748 KB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Cited by 1 | Viewed by 810
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

8 pages, 882 KB  
Short Note
bis(2-Phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]-iridium(III) Hexafluorophosphate
by Patrick Endres, Nishi Singh, Andreas Winter, Helmar Görls and Ulrich S. Schubert
Molbank 2025, 2025(2), M2024; https://doi.org/10.3390/M2024 - 18 Jun 2025
Viewed by 775
Abstract
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding [...] Read more.
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding (X-bonding). The synthesis of bis(2-phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]iridium(III) hexafluorophosphate, (2)(PF6), is straightforward and involves post-complexation iodination, thus expanding the already rich toolbox for performing “chemistry on the complex”. The formation of the iodoethynyl moieties was unequivocally proven by 1H-NMR spectroscopy, ESI-TOF mass spectrometry, and single-crystal XRD analysis. Full article
Show Figures

Figure 1

7 pages, 446 KB  
Article
Photophysical Properties of a Chiral Iridium-Based Photosensitizer as an Efficient Photodynamic Therapy Agent: A Theoretical Investigation
by Maciej Spiegel
Int. J. Mol. Sci. 2025, 26(11), 5062; https://doi.org/10.3390/ijms26115062 - 24 May 2025
Cited by 1 | Viewed by 777
Abstract
This study employs time-dependent density functional theory to explore the photophysical properties of a chiral iridium(III) complex designed as a photosensitizer for photodynamic therapy. Key properties analyzed include one-photon absorption energies, singlet–triplet energy gaps, spin–orbit coupling constants, and intersystem crossing rate constants. The [...] Read more.
This study employs time-dependent density functional theory to explore the photophysical properties of a chiral iridium(III) complex designed as a photosensitizer for photodynamic therapy. Key properties analyzed include one-photon absorption energies, singlet–triplet energy gaps, spin–orbit coupling constants, and intersystem crossing rate constants. The potential for operation in a Type I PDT mechanism was assessed through ionization potential and electron affinity calculations. The results demonstrate that the complex is a promising PDT candidate, primarily operating in a Type II mechanism, while offering conditional viability for Type I photoreactivity under specific electronic and environmental conditions. Full article
Show Figures

Figure 1

35 pages, 4708 KB  
Review
Homo- and Hetero-Multinuclear Iridium(III) Complexes with Cytotoxic Activity
by Irena Kostova
Inorganics 2025, 13(5), 156; https://doi.org/10.3390/inorganics13050156 - 8 May 2025
Cited by 1 | Viewed by 1381
Abstract
Towards the efforts to expand the bioactivity and to reduce toxic and adverse properties of known metal-based drugs, various multinuclear complexes have recently been studied. They have shown enhancement of target specificity and selectivity. Different from small organic compounds and traditional metal-based complexes [...] Read more.
Towards the efforts to expand the bioactivity and to reduce toxic and adverse properties of known metal-based drugs, various multinuclear complexes have recently been studied. They have shown enhancement of target specificity and selectivity. Different from small organic compounds and traditional metal-based complexes with anticancer activity, iridium(III) multinuclear or heteronuclear metallodrugs have confirmed potential advantages due to their unique biological and chemical diversities, better activity and different anticancer mechanisms. Ir(III) coordination compounds, similar to most Pt group compounds, are of excessive interest because of their potential cytotoxic activity, effective cellular uptake and tolerance by healthy cells. Although mononuclear Ir(III) complex compounds have been extensively studied as promising candidates for antitumor application, the research on the antineoplastic potential of homo- or hetero-multinuclear iridium(III) complexes is not as abundant; nevertheless, intensive investigations have been conducted in the recent years towards developing complexes that are anticipated to have improved therapeutic potential and biotarget selectivity. Multimetallic iridium(III) frameworks have offered interesting possibilities for designing new antitumor agents by exploiting the action of different metal cations at the same time. This method was very successful in the design of homo- and hetero-multinuclear cyclometalated and half-sandwich organometallic Ir(III) compounds. In the described background, many homonuclear and heteronuclear Ir(III) complexes have been estimated and have exposed promising advantages in cancer therapy. This review intends to summarize newly reported innovative and promising multinuclear Ir(III)-based complexes and to afford a wide-ranging overview of current development and perspectives for the practical impact of these complexes in the tumor therapy field. It is anticipated that this analysis will provide significant direction for the further progress of active homonuclear and heteronuclear iridium-based anticancer agents. Full article
(This article belongs to the Special Issue Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity)
Show Figures

Figure 1

16 pages, 2471 KB  
Article
Carbazolyl Electron Donor and Pyridinyl Electron Acceptor Containing Derivatives as Potential Host Materials for Green Organic Light-Emitting Diodes
by Raminta Beresneviciute, Anil Kumar, Dovydas Blazevicius, Sushanta Lenka, Song-Ting Hsieh, Ming-Feng Tsai, Gintare Krucaite, Daiva Tavgeniene, Jwo-Huei Jou and Saulius Grigalevicius
Molecules 2025, 30(9), 1911; https://doi.org/10.3390/molecules30091911 - 25 Apr 2025
Viewed by 898
Abstract
Here, we present two series of new electroactive compounds containing electron donors (carbazolyl) and electron acceptor (pyridinyl) fragments as potential host materials. The objective compounds 9-(2-ethylhexyl)-3,6-di [3-(methoxypyridin-3-yl)carbazol-9-yl]carbazoles RB71 and RB74 were synthesized by an Ullmann coupling reaction between the intermediate derivatives: 9-(2-ethylhexyl)-3,6-diiodocarbazole and [...] Read more.
Here, we present two series of new electroactive compounds containing electron donors (carbazolyl) and electron acceptor (pyridinyl) fragments as potential host materials. The objective compounds 9-(2-ethylhexyl)-3,6-di [3-(methoxypyridin-3-yl)carbazol-9-yl]carbazoles RB71 and RB74 were synthesized by an Ullmann coupling reaction between the intermediate derivatives: 9-(2-ethylhexyl)-3,6-diiodocarbazole and corresponding 3-(methoxypyridin-3-yl)-9H-carbazole. Other target derivatives, 9-alkyl-3-[N-(9-alkylcarbazol-3-yl)-N-(4-methylpyridin-2-yl)amino]carbazoles RB70 and RB75, were also prepared, according to the Ullmann reaction method, from 2-amino-4-methylpyridine and the corresponding 3-iodo-9-alkylcarbazole. Thermogravimetric analysis confirmed that the new derivatives are highly thermally stable compounds, with 5% weight loss in the temperature range of 349 °C to 488 °C. According to differential scanning calorimetry results, some amorphous materials exhibit very high glass transition temperatures exceeding 150 °C in some cases, which is a significant advantage for compounds with potential applications in organic light-emitting devices. The electroluminescent properties of devices utilizing the new hosts RB71 or RB70 with 5.0, 10.0, 15.0, and 20.0 wt.% concentrations of the dopant tris(2-phenylpyridine)iridium(III), Ir(ppy)3, were demonstrated. All the PhOLEDs emitted light at approximately 515 nm with CIE coordinates of (0.30, 0.61) due to Ir(ppy)3 emissions. The most efficient device with RB71 host demonstrated a maximum power efficacy of 8.0 lm/W, maximum current efficiency of 12.7 cd/A, and maximal external quantum efficiency of 5.4% with a relatively low turn-on voltage of 4.3 eV, as well as luminance exceeding 4000 cd/m2. Additionally, 15 wt.% Ir(ppy)3 emitter-based PhOLED with RB70 host outperformed the other devices by displaying a maximum power efficacy of 9.6 lm/W, maximum current efficiency of 16.0 cd/A, and maximal external quantum efficiency of 6.7% with a relatively low turn-on voltage of 3.7 eV, as well as luminance reaching 11,200 cd/m2. Some devices seem to exhibit higher efficiencies than those previously reported for OLEDs that utilize a 4,4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3799 KB  
Article
Sol-Gel Heterogeneization of an Ir(III) Complex for Sustainable Visible-Light Redox Photocatalysis
by Janira Herce, Mónica Martínez-Aguirre, Javier Gómez-Benito, Miguel A. Rodríguez and Jesús R. Berenguer
Molecules 2025, 30(8), 1680; https://doi.org/10.3390/molecules30081680 - 9 Apr 2025
Viewed by 656
Abstract
Photocatalysis is a key strategy for the development of sustainable solar-driven chemical processes. In this work, we report the synthesis and characterization of a novel organometallo–ionosilica material derived from the self-condensation of an alcoxysilane functionalized Ir(III) complex. In acetonitrile suspension, the material retains [...] Read more.
Photocatalysis is a key strategy for the development of sustainable solar-driven chemical processes. In this work, we report the synthesis and characterization of a novel organometallo–ionosilica material derived from the self-condensation of an alcoxysilane functionalized Ir(III) complex. In acetonitrile suspension, the material retains the photophysical properties of its precursor in solution in the same solvent, together with a significant absorption in the visible between 400 and 500 nm. As a heterogeneous photocatalyst, the material showed high efficiency in the reductive dehalogenation of 2-bromoacetophenone under blue light irradiation, achieving high yields of conversion of about 90%, and excellent recyclability in seven catalytic cycles, retaining more than 70% of the catalytic efficiency. All these properties of the self-condensed material highlight its potential as an efficient and sustainable heterogeneous photocatalyst for applications in organic synthesis and solar-driven redox processes. Full article
Show Figures

Graphical abstract

15 pages, 3388 KB  
Article
Synthesis, Photo-Physical Properties, and Electroluminescence Characteristics of Iridium Phosphorescent Materials Based on Different β-Diketonate Ancillary Ligands
by Qiaowen Chang, Ke Zhang, Caixian Yan, Liming Xie, Yuanqiuqiang Yi, Wenming Su and Weiping Liu
Molecules 2025, 30(4), 861; https://doi.org/10.3390/molecules30040861 - 13 Feb 2025
Cited by 1 | Viewed by 954
Abstract
Organic light-emitting diodes (OLEDs) based on phosphorescent materials are among the most promising technologies for displays and lightings. For red-emitting heteroleptic iridium complexes (HICs), vast and major research has been focused on the design and synthesis of cyclometalated ligands, while relatively little attention [...] Read more.
Organic light-emitting diodes (OLEDs) based on phosphorescent materials are among the most promising technologies for displays and lightings. For red-emitting heteroleptic iridium complexes (HICs), vast and major research has been focused on the design and synthesis of cyclometalated ligands, while relatively little attention has been given to ancillary ligands which also play important roles in manipulating the optoelectronic and electroluminescent properties of HICs. Seven deep red-emitting HICs were designed and synthesized by systematically modifying the alkyl groups in β-diketone-type ancillary ligands. These HICs exhibited similar physical and optoelectronic properties, with OLED devices based on these materials achieving consistent emission peaks at 624 nm and CIE coordinates of (0.68, 0.32). Among the synthesized HICs, Ir(dmippiq)₂(dmeacac), featuring 3,7-dimethyl-4,6-nonanedione as the ancillary ligand, demonstrated the best OLED performance, achieving a champion external quantum efficiency (EQE) of 18.26%. This result highlights that engineering the alkyl groups in β-diketone ancillary ligands can significantly enhance device performance. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

45 pages, 7420 KB  
Review
Cytotoxic Organometallic Iridium(III) Complexes
by Irena Kostova
Molecules 2025, 30(4), 801; https://doi.org/10.3390/molecules30040801 - 9 Feb 2025
Cited by 5 | Viewed by 1765
Abstract
Iridium complexes attract a lot of attention as highly promising antitumor agents due to their various structures, which offer the modification of their physicochemical and biological effects. Compared to conventional platinum-based drugs, iridium complexes are commonly thought to be more active in tumors, [...] Read more.
Iridium complexes attract a lot of attention as highly promising antitumor agents due to their various structures, which offer the modification of their physicochemical and biological effects. Compared to conventional platinum-based drugs, iridium complexes are commonly thought to be more active in tumors, resistant to platinum agents and more stable in air and moisture conditions. Chloridoiridium complexes offer a range of advantages facilitating their rational design, reactivity and photochemical activity, leading to different cytotoxic profiles, diverse mechanisms of action and specific intracellular organelles as targets. They are also known as good light-mediated chemotherapeutics, serving as bioimaging and biosensing agents. The potential biological and photophysical properties of chloridoiridium(III) complexes can be readily controlled by suitable ligand modifications and substitution patterns, providing a wide range of versatile structures. Over the years, numerous different structural types of chloridoiridium complexes have been developed and studied for their antineoplastic activity. In this review, the recent advances in the cytotoxicity studies of chloridoiridium(III) compounds have been summarized. The studied complexes have been categorized in this review according to the number of coordinated ligands, the type of donor atoms, nuclearity of the complexes, etc., allowing for a thorough discussion of the structure–activity relationship. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 3504 KB  
Article
The Effect of the Position of a Phenyl Group on the Luminescent and TNP-Sensing Properties of Cationic Iridium(III) Complexes
by Xiaoran Yang, Jiahao Du, Rui Cai and Chun Liu
Sensors 2025, 25(3), 839; https://doi.org/10.3390/s25030839 - 30 Jan 2025
Cited by 1 | Viewed by 977
Abstract
Three cationic Ir(III) complexes, 1, 2, and 3, were successfully synthesized and characterized by tuning the position of a phenyl group at the pyridyl moiety in 2-phenylpyridine. All three complexes exhibited typical aggregation-induced phosphorescence emission (AIPE) properties in CH3 [...] Read more.
Three cationic Ir(III) complexes, 1, 2, and 3, were successfully synthesized and characterized by tuning the position of a phenyl group at the pyridyl moiety in 2-phenylpyridine. All three complexes exhibited typical aggregation-induced phosphorescence emission (AIPE) properties in CH3CN/H2O. The AIPE property was further utilized to achieve the highly sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous media with low limit of detection (LOD) values of 164, 176, and 331 nM, respectively. This suggests that the different positions of the phenyl group influence the effectiveness of 1, 2, and 3 in the detection of TNP. In addition, 1, 2, and 3 showed superior selectivity and anti-interference properties for the detection of TNP and were observed to have the potential to be used to detect TNP in practical applications. The changes in the luminescence lifetime and UV-Vis absorption spectra of 1, 2, and 3 before and after the addition of TNP indicate that the corresponding quenching process is a combination of static and dynamic quenching. Additionally, the proton nuclear magnetic resonance spectra and results of spectral studies show that the detection mechanism is photo-induced electron transfer (PET). Full article
(This article belongs to the Special Issue Recent Advances in Photo(electro)chemical Sensing and Sensors)
Show Figures

Figure 1

17 pages, 6065 KB  
Article
AIPE-Active Neutral Ir(III) Complexes as Bi-Responsive Luminescent Chemosensors for Sensing Picric Acid and Fe3+ in Aqueous Media
by Qinglong Zhang, Jiangchao Xu, Qiang Xu and Chun Liu
Chemosensors 2025, 13(1), 10; https://doi.org/10.3390/chemosensors13010010 - 8 Jan 2025
Viewed by 1084
Abstract
Three neutral iridium complexes Ir1Ir3 were synthesized using diphenylphosphoryl-substituted 2-phenylpyridine derivatives as the cyclometalating ligand and picolinic acid as the auxiliary ligand. They exhibited significant aggregation-induced phosphorescent emission (AIPE) properties in H2O/THF and were successfully used as bi-responsive luminescent [...] Read more.
Three neutral iridium complexes Ir1Ir3 were synthesized using diphenylphosphoryl-substituted 2-phenylpyridine derivatives as the cyclometalating ligand and picolinic acid as the auxiliary ligand. They exhibited significant aggregation-induced phosphorescent emission (AIPE) properties in H2O/THF and were successfully used as bi-responsive luminescent sensors for the detection of picric acid (PA) and Fe3+ in aqueous media. Ir1Ir3 possesses high efficiency and high selectivity for detecting PA and Fe3+, with the lowest limit of detection at 59 nM for PA and 390 nM for Fe3+. Additionally, the complexes can achieve naked-eye detection of Fe3+ in aqueous media. Ir1Ir3 exhibit excellent potential for practical applications in complicated environments. The detection mechanism for PA is attributed to photo-induced electron transfer (PET) and Förster resonance energy transfer (FRET), and the detection mechanism for Fe3+ may be explained by PET and the strong interactions between Fe3+ and the complexes. Full article
Show Figures

Graphical abstract

12 pages, 5169 KB  
Article
Phosphorescent Sensor Based on Iridium(III) Complex with Aggregation-Induced Emission Activity for Facile Detection of Volatile Acids
by Yu Pei, Yan Sun and Dongxia Zhu
Molecules 2024, 29(24), 6041; https://doi.org/10.3390/molecules29246041 - 22 Dec 2024
Cited by 2 | Viewed by 1381
Abstract
Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. [...] Read more.
Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. In order to obtain an efficient and rapid response to volatile acid stimulation, N-H and -NH2 substituents are introduced into an auxiliary ligand to synthesize a new cationic Ir(III) complex (Ir-NH). The AIE property of Ir-NH leads to enhanced emission in the aggregated state, which facilitates the construction of solid-state acid-base sensors. More importantly, due to the introduction of -NH2 and N-H in the molecular structure, reversible switching of the emission color of Ir-NH under acid-base stimulation was successfully achieved. A convenient and efficient sensing device for volatile acid monitoring was prepared using Ir-NH as the active material. Our results provide a new strategy for designing phosphorescent materials with AIE and acid-base stimulus-responsive properties. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry 2.0)
Show Figures

Figure 1

20 pages, 2959 KB  
Article
A Hydrometallurgical Process for the Recovery of Noble Metals (Au, Pt, Ir, and Ta) from Pyrolyzed and Acid-Digested Solutions of Single-Use Medical Devices
by Angeliki Lampou, Evgenios Kokkinos, Charikleia Prochaska, Theodosios Tsiogkas, Effrosyni Peleka, Anthimos Xenidis and Anastasios Zouboulis
Recycling 2024, 9(6), 118; https://doi.org/10.3390/recycling9060118 - 5 Dec 2024
Viewed by 2873
Abstract
Developing an efficient recycling route for spent single-use medical devices is essential for recovering precious metals. The proposed complete hydrometallurgical route goes through the initial pyrolysis and acid digestion steps, expanding upon our previous relevant work in the field, followed by solvent extraction, [...] Read more.
Developing an efficient recycling route for spent single-use medical devices is essential for recovering precious metals. The proposed complete hydrometallurgical route goes through the initial pyrolysis and acid digestion steps, expanding upon our previous relevant work in the field, followed by solvent extraction, stripping, and precipitation procedures. In this study, a complete hydrometallurgical process was developed for the recovery of gold, platinum, iridium, and tantalum, separating them from other metals, i.e., from iron, chromium, and nickel, also present in the examined medical devices, i.e., (i) diagnostic electrophysiology catheters, containing gold, (ii) diagnostic guide wires, containing platinum and iridium alloys, and (iii) self-expanding stents, containing tantalum. This study reports the experimental results of selecting an efficient extractant, stripping, and precipitation agent, along with the effects of key factors that influence each consecutive step of the process, i.e., agent concentration, aqueous to organic phase ratio, contact time, and pH, using simulated metal solutions and also applying the obtained optimal conditions to the treatment of real sample solutions. For the selective separation of gold, Aliquat 336 was used to extract it in the organic phase; it was then stripped using a thiourea solution and precipitated by utilizing an iron sulfate (II) solution and proper pH adjustment. The selective separation of platinum was achieved by using Aliquat 336 for the organic phase extraction and a perchlorate acid solution for stripping it back into the aqueous solution and adding a sodium bromate solution to precipitate it. Due to the similar chemical behavior, the selective recovery of iridium followed the same processes as that of platinum, and the separation between them was achieved through selective precipitation, as heating the solution and adjusting the pH value resulted in the selective precipitation of iridium. Lastly, the selective recovery of tantalum consists of extraction by using Alamine 336, then stripping it back to the aqueous phase by using sodium chloride, and precipitation by using potassium salt solution and proper pH adjustment. A total recovery of 88% for Au, 86% for Pt, 84% for Ir, and 80% for Ta was obtained, thus achieving a high uptake of precious metals from the examined real spent/waste samples. Full article
Show Figures

Figure 1

21 pages, 4041 KB  
Article
Unexpected XPS Binding Energy Observations Further Highlighted by DFT Calculations of Ruthenocene-Containing [IrIII(ppy)2(RCOCHCORc)] Complexes: Cytotoxicity and Crystal Structure of [Ir(ppy)2(FcCOCHCORc)]
by Blenerhassitt E. Buitendach, Elizabeth Erasmus, Eleanor Fourie, Frederick P. Malan, Jeanet Conradie, J. W. (Hans) Niemantsverdriet and Jannie C. Swarts
Molecules 2024, 29(22), 5383; https://doi.org/10.3390/molecules29225383 - 15 Nov 2024
Viewed by 1787
Abstract
The series of iridium(III) complexes, [Ir(ppy)2(RCOCHCOR′)], with R = CH3 and R′ = CH3 (1), Rc (2), and Fc (3), as well as R = Rc and R′ = Rc (4) [...] Read more.
The series of iridium(III) complexes, [Ir(ppy)2(RCOCHCOR′)], with R = CH3 and R′ = CH3 (1), Rc (2), and Fc (3), as well as R = Rc and R′ = Rc (4) or Fc (5), and R = R′ = Fc (6), ppy = 2-phenylpyridinyl, Fc = FeII5–C5H4)(η5–C5H5), and Rc = RuII5–C5H4)(η5–C5H5), has been investigated by single-crystal X-ray crystallography and X-ray photoelectron spectroscopy (XPS) supplemented by DFT calculations. Here, in the range of 3.74 ≤ ΣχR ≤ 4.68, for Ir 4f, Ru 3d and 3p and N 1s orbitals, binding energies unexpectedly decreased with increasing ΣχR (ΣχR = the sum of Gordy group electronegativities of the R groups on β-diketonato ligands = a measure of electron density on atoms), while in Fe 2p orbitals, XPS binding energy, as expected, increased with increasing ΣχR. Which trend direction prevails is a function of main quantum level, n = 1, 2, 3…, sub-quantum level (s, p, d, and f), initial state energies, and final state relaxation energies, and it may differ from compound series to compound series. Relations between DFT-calculated orbital energies and ΣχR followed opposite trend directions than binding energy/ΣχR trends. X-ray-induced decomposition of compounds was observed. The results confirmed good communication between molecular fragments. Lower binding energies of both the Ir 4f7/2 and N 1s photoelectron lines are associated with shorter Ir-N bond lengths. Cytotoxic tests showed that 1 (IC50 = 25.1 μM) and 3 (IC50 = 37.8 μM) are less cytotoxic against HeLa cells than cisplatin (IC50 = 1.1 μM), but more cytotoxic than the free β-diketone FcCOCH2COCH3 (IC50 = 66.6 μM). Full article
Show Figures

Graphical abstract

16 pages, 2753 KB  
Article
Hydrogenation Studies of Iridium Pyridine Diimine Complexes with O- and S-Donor Ligands (Hydroxido, Methoxido and Thiolato)
by Max Völker, Matthias Schreyer and Peter Burger
Chemistry 2024, 6(5), 1230-1245; https://doi.org/10.3390/chemistry6050071 - 11 Oct 2024
Viewed by 1581
Abstract
For square-planar late transition metal pyridine, diimine (Rh, Ir) complexes with hydro-xido, methoxido, and thiolato ligands. We could previously establish sizable metal-O- and S π-bonding interactions. Herein, we report the hydrogenation studies of iridium hydroxido and methoxido complexes, which quantitatively lead to the [...] Read more.
For square-planar late transition metal pyridine, diimine (Rh, Ir) complexes with hydro-xido, methoxido, and thiolato ligands. We could previously establish sizable metal-O- and S π-bonding interactions. Herein, we report the hydrogenation studies of iridium hydroxido and methoxido complexes, which quantitatively lead to the trihydride compound and water/methanol. The iridium trihydride displays a highly fluctional structure with scrambling hydrogen atoms, which can be described as a dihydrogen hydride system based on NMR and DFT investigations. This contrasts the iridium sulfur compounds, which are not reacting with dihydrogen. According to DFT and LNO-CCSD(T) calculations, hydrogenation of the methoxido complex proceeds by a two-step mechanism, i.e., an oxidative addition step of H2 to an Ir(III) dihydride intermediate with consecutive reductive O-H elimination of methanol. Based on PNO-CCSD(T) calculations, the reactivity difference between the O- and S-donors can be traced to the stronger H-O bonds in the water/methanol products compared to the S-H bonds in the sulphur congeners, which serves as a driving force for hydrogenation. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Graphical abstract

14 pages, 1800 KB  
Article
A “Talking” between Gold Nanoparticle and a Luminescent Iridium(III) Complex: A Study of the Effect Due to the Interaction between Plasmon Resonance and a Fluorophore
by Angela Candreva, Loredana Ricciardi, Elisabeta I. Szerb and Massimo La Deda
Nanomaterials 2024, 14(19), 1543; https://doi.org/10.3390/nano14191543 - 24 Sep 2024
Cited by 1 | Viewed by 1366
Abstract
This paper explores a novel synthesis and characterization of silica-coated gold nanorods (AuNRs) embedding a highly emissive cyclometalated iridium(III) complex, denoted as Ir1. We investigate the optical properties and the interplay between the metal compound and gold plasmon, observing how the [...] Read more.
This paper explores a novel synthesis and characterization of silica-coated gold nanorods (AuNRs) embedding a highly emissive cyclometalated iridium(III) complex, denoted as Ir1. We investigate the optical properties and the interplay between the metal compound and gold plasmon, observing how the emission of Ir1 incorporated into the nanoparticles shows two emission bands, one in the blue and the other in the green-orange range of the visible spectrum. To obtain a clearer picture of what we were observing, we synthesized analogous nanosystems, from which it was possible to highlight the effect of different features. Based on what we observed, we proposed that the fraction of the iridium(III) complex in direct contact with the surface of the gold nanoparticle undergoes a “demixing” of the excited state, which, for cyclometalated iridium complexes, is generally considered a mixed LC+MLCT state. This preliminary study sheds light on the complexity of the “talking” between a fluorophore and a plasmonic system, highlighting the importance of considering the emitter typology when modeling such systems. Full article
(This article belongs to the Special Issue Noble Metal-Based Nanostructures: Optical Properties and Applications)
Show Figures

Figure 1

Back to TopTop