Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = iron(II) adsorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2136 KB  
Review
Valorization of Agro-Industrial Lignin as a Functional Polymer for Sustainable Wastewater Treatment
by Elena Ungureanu, Bogdan-Marian Tofanica, Eugen Ulea, Ovidiu C. Ungureanu, Maria E. Fortună, Răzvan Rotaru, Irina Volf and Valentin I. Popa
Polymers 2025, 17(16), 2263; https://doi.org/10.3390/polym17162263 - 21 Aug 2025
Viewed by 965
Abstract
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the [...] Read more.
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the remediation of aqueous media contaminated with heavy metals. The study evaluates lignin’s behavior toward nine metal(loid) ions: arsenic, cadmium, chromium, cobalt, copper, iron, nickel, lead, and zinc. Adsorption performance was systematically investigated under static batch conditions, optimizing key parameters, with equilibrium and kinetic data modeled using established isotherms and rate equations. Surface characterization and seed germination bioassays provided supporting evidence. Unmodified Sarkanda grass lignin demonstrated effective adsorption, exhibiting a clear preference for Cu(II) followed by other divalent cations, with lower capacities for As(III) and Cr(VI). Adsorption kinetics consistently followed a pseudo-second-order model, indicating chemisorption as the dominant mechanism. Thermodynamic studies revealed spontaneous and endothermic processes. Bioassays confirmed significant reduction in aqueous toxicity and strong metal sequestration. This work positions unmodified Sarkanda grass lignin as a bio-based, low-cost polymer platform for emerging water treatment technologies, contributing to circular bioeconomy goals and highlighting the potential of natural polymers in sustainable materials design. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

24 pages, 1738 KB  
Review
Biomineralization Mediated by Iron-Oxidizing Microorganisms: Implication for the Immobilization and Transformation of Heavy Metals in AMD
by Siyu Li, Chengcheng Li, Xubo Gao, Mengyun Zhu, Huihui Li and Xue Wang
Minerals 2025, 15(8), 868; https://doi.org/10.3390/min15080868 - 17 Aug 2025
Viewed by 290
Abstract
Iron, an essential element for virtually all known organisms, serves not only as a micronutrient but also as an energy source for bacteria. Iron-oxidizing microorganisms mediate Fe(II) oxidation under diverse redox conditions, yielding amorphous iron (hydr)oxides or crystalline iron minerals. This globally significant [...] Read more.
Iron, an essential element for virtually all known organisms, serves not only as a micronutrient but also as an energy source for bacteria. Iron-oxidizing microorganisms mediate Fe(II) oxidation under diverse redox conditions, yielding amorphous iron (hydr)oxides or crystalline iron minerals. This globally significant biogeochemical process drives modern iron cycling across terrestrial and aquatic ecosystems. The resulting biomineralization not only produces secondary minerals but also effectively immobilizes heavy metals, offering a sustainable strategy for environmental remediation. This review systematically examines (1) the biogeochemical mechanisms and mineralogical signatures of Fe(II) oxidation by four distinct iron oxidizers: acidophilic aerobes (e.g., Acidithiobacillus), neutrophilic microaerophiles (e.g., Gallionella), nitrate-reducing anaerobes (e.g., Acidovorax), and anoxygenic phototrophs (e.g., Rhodobacter); (2) research advances in heavy metal immobilization by biogenic iron minerals: adsorption, coprecipitation, and structural incorporation; and (3) the impact of pH, temperature, organic matter, and coexisting ions on Fe(II) oxidation efficiency and iron mineral formation by iron-oxidizing bacteria. By characterizing iron-oxidizing bacterial species and their functional processes under varying pH and redox conditions, this study provides critical insights into microbial behaviors driving the evolution of acid mine drainage (AMD). Full article
Show Figures

Figure 1

18 pages, 4023 KB  
Article
Synergistic Effects of Silicon and Ferrous Sulfate on Reducing Arsenic and Cadmium Accumulation in Rice from Co-Contaminated Soil
by Yanlin You, Xiaodong Guo, Jianyu Chen, Zhiqin Liu, Qiuying Cai, Jinyong Yu, Wanli Zhu, Yuna Wang, Hanyue Chen, Bo Xu, Yanhui Chen and Guo Wang
Agronomy 2025, 15(6), 1422; https://doi.org/10.3390/agronomy15061422 - 10 Jun 2025
Viewed by 1423
Abstract
The co-contamination of arsenic (As) and cadmium (Cd) in paddy soils threatens rice safety, yet synergistic mitigation strategies using silicon (Si) and ferrous sulfate (FeSO4) remain underexplored. This study integrated hydroponic and soil pot experiments to evaluate Si-FeSO4 interactions on [...] Read more.
The co-contamination of arsenic (As) and cadmium (Cd) in paddy soils threatens rice safety, yet synergistic mitigation strategies using silicon (Si) and ferrous sulfate (FeSO4) remain underexplored. This study integrated hydroponic and soil pot experiments to evaluate Si-FeSO4 interactions on As/Cd accumulation and rice growth. Hydroponic trials employed 21-day-old rice seedlings exposed to 0.5 mg As(III)/Cd(II) L−1 with/without 70 mg Si L−1 and 30–70 mg Fe L−1, followed by sequential harvesting at 14 and 21 days. Soil experiments utilized co-contaminated paddy soil (50 mg As kg−1 and 1.2 mg Cd kg−1) amended with Si (80 or 400 mg kg−1) and Fe (100 or 1000 mg kg−1), with pore water dynamics monitored over 120 days. Hydroponic results demonstrated that 70 mg Si L−1 combined with 30 or 70 mg Fe L−1 enhanced shoot biomass by 12–79% under As stress, while simultaneously reducing shoot As concentrations by 76–87% and Cd concentrations by 14–33%. Iron plaque induced by FeSO4 exhibited contrasting adsorption behaviors: hydroponic roots immobilized both As and Cd (p < 0.01), whereas roots in soil primarily retained Cd (p < 0.05). In soil experiments, the optimal treatment of 100 mg Fe kg−1 and 400 mg Si kg−1 (Fe1 + Si2) increased grain biomass by 54%, while reducing As and Cd concentrations by 37% and 42%, respectively. However, a higher Fe dosage (Fe2: 1000 mg kg−1 Fe) paradoxically increased grain Cd concentrations. Mechanistically, Si amendment elevated soil pH (Δ + 0.72), facilitating Cd immobilization, while FeSO4 lowered pH (Δ−0.07–0.53), increasing Cd mobility. A strong correlation between soluble Cd and plant uptake was observed (p < 0.01), while changes in As accumulation were unrelated to aqueous behavior. The optimized Si/Fe molar ratio of 7.95:1 effectively mitigated As and Cd co-accumulation, offering a dual-functional strategy for safe rice cultivation in contaminated soils. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Prevention in Agricultural Soils)
Show Figures

Figure 1

21 pages, 3980 KB  
Article
Binding Capacity and Adsorption Stability of Uremic Metabolites to Albumin-Modified Magnetic Nanoparticles
by Indu Sharma, Agatha Milley, Lun Zhang, Jiamin Zheng, Ethan Lockwood, David S. Wishart, Marcello Tonelli and Larry D. Unsworth
Int. J. Mol. Sci. 2025, 26(11), 5366; https://doi.org/10.3390/ijms26115366 - 3 Jun 2025
Viewed by 517
Abstract
Kidney disease causes the retention of uremic metabolites in blood, which is associated with many comorbidities. Hemodialysis does not properly clear many metabolites, including large, middle-sized, and small protein-bound uremic toxins (PBUTs). Adsorption strategies for metabolite removal require the development of engineered adsorbents [...] Read more.
Kidney disease causes the retention of uremic metabolites in blood, which is associated with many comorbidities. Hemodialysis does not properly clear many metabolites, including large, middle-sized, and small protein-bound uremic toxins (PBUTs). Adsorption strategies for metabolite removal require the development of engineered adsorbents with tailored surfaces to increase the binding of desired metabolites. Albumin is uniquely positioned for modifying blood-contacting surfaces to absorb uremic metabolites, as it (i) minimizes non-specific protein adsorption and (ii) binds a range of molecules at Sudlow Sites I and II with different affinities. It is unknown if albumin-modified surfaces retain the adsorption qualities of solution-free albumin, namely, adsorption stability or specificity. Herein, albumin was covalently attached to iron oxide nanoparticles and characterized using multiple methods. Metabolite adsorption was conducted by incubating particles in a model solution of thirty-three uremic metabolites associated with kidney failure. Adsorption efficiency, selectivity, and stability were affected by albumin concentration and incubation time. Metabolite adsorption was found to change with time, and it was more effective on albumin-modified particles than unmodified controls. The findings outlined in this paper are crucial for the design of next-generation advanced blood-contacting materials to enhance dialysis and blood purification for patients with kidney disease. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

14 pages, 2703 KB  
Article
Evaluation of Heavy Metal Adsorption Efficiency of Biochars Derived from Agricultural Waste
by Velyana Georgieva, Lenia Gonsalvesh, Sonia Mileva, Mariyana Hamanova and Hyusein Yemendzhiev
Biomass 2025, 5(2), 33; https://doi.org/10.3390/biomass5020033 - 3 Jun 2025
Cited by 1 | Viewed by 1350
Abstract
This study investigates the potential of biochars derived from agricultural waste biomass for the removal of heavy metal ions from aqueous solutions. Biochars were produced via slow pyrolysis at 793 K using almond shells (AS), walnut shells (WS), pistachio shells (PS), and rice [...] Read more.
This study investigates the potential of biochars derived from agricultural waste biomass for the removal of heavy metal ions from aqueous solutions. Biochars were produced via slow pyrolysis at 793 K using almond shells (AS), walnut shells (WS), pistachio shells (PS), and rice husks (RH) as feedstocks. The physicochemical properties and adsorption performance of the resulting materials were evaluated with respect to Cd(II), Mn(II), Co(II), Ni(II), Zn(II), total Iron (Fetot), total Arsenic (Astot), and total Chromium (Crtot) in model solutions. Surface morphology, porosity, and surface chemistry of the biochars were characterized by scanning electron microscopy (SEM), nitrogen adsorption at 77 K (for specific surface area and pore structure), Fourier-transform infrared spectroscopy (FTIR), and determination of the point of zero charge (pHpzc). Based on their textural properties, biochars derived from WS, PS, and AS were classified as predominantly microporous, while RH-derived biochar exhibited mesoporous characteristics. The highest Brunauer–Emmett–Teller (SBET) surface area was recorded for PS biochar, while RH biochar showed the lowest. The pistachio shell biochar exhibited the highest specific surface area (440 m2/g), while the rice husk biochar was predominantly mesoporous. Batch adsorption experiments were conducted at 25 °C, with an adsorbent dose of 3 g/L and a contact time of 24 h. The experiments in multicomponent systems revealed removal efficiencies exceeding 87% for all tested metals, with maximum values reaching 99.9% for Cd(II) and 97.5% for Fetot. The study highlights strong correlations between physicochemical properties and sorption performance, demonstrating the suitability of these biochars as low-cost sorbents for complex water treatment applications. Full article
Show Figures

Figure 1

22 pages, 3601 KB  
Article
Fast Removal of Naphthol Blue Black B Dye from Water Using Polyethyleneimine Functionalized Zinc, Iron, and Manganese Porphyrinic Complexes: Structural Characterization, Kinetic, and Isotherms Studies
by Sahar Y. Rajeh, Aljazi Abdullah Alrashidi, Raoudha Soury and Mahjoub Jabli
Polymers 2025, 17(11), 1494; https://doi.org/10.3390/polym17111494 - 28 May 2025
Viewed by 442
Abstract
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed [...] Read more.
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed using several analytical techniques, including 1H NMR, FT-IR, UV-vis, XRD, XRF, TGA-DTA, SEM, and EDX. The presence of sharp main peaks at 2θ between 10° and 80°, in XRD analysis, for all studied compounds suggested the crystalline nature of the porphyrinic complexes. The morphological properties of the porphyrininc complexes were significantly affected by the chemical modification with polyethyleneimine. EDX result confirmed the complexation of zinc, iron, and manganese metals with the porphyrinic core. The increase in carbon and nitrogen contents after the addition of polyethyleneimine to the complexes (13) was noticeable. After thermal decomposition, the total mass loss was equal to 92.97%, 66.77%, and 26.78% for complexes (1), (2), and (3), respectively. However, for the complex (1)-PEI, complex (2)-PEI, and complex (3)-PEI, the total mass losses were 83.12%, 81.88%, and 35.78%, respectively. The synthetic compounds were additionally utilized for the adsorption of Naphthol blue black B from water. At optimum adsorption conditions (T = 20 °C, time = 60 min, pH = 5), the highest adsorption capacities were 154 mg/g, 139 mg/g, and 119 mg/g for complex (3)-PEI, complex (2)-PEI, and complex (1)-PEI, respectively. The adsorption mechanism followed the pseudo second order, the Freundlich, and the Temkin models. The results indicated that the adsorption process is reliant on chemical interactions. It was also governed by intraparticular diffusion and other kinetic phenomena. Full article
Show Figures

Figure 1

26 pages, 2768 KB  
Review
Application of Zero-Valent Iron and Its Derivatives in the Removal of Toxic Metal Ions from Groundwater
by Yaksha Verma, Akshay Verma, Aishwarya Bhaskaralingam, Pooja Dhiman, Tongtong Wang, Amit Kumar and Gaurav Sharma
Water 2025, 17(10), 1524; https://doi.org/10.3390/w17101524 - 18 May 2025
Viewed by 1962
Abstract
Zero-valent iron (ZVI), particularly in its nanoscale form (nZVI), is now considered a highly promising material for the remediation of toxic metal ions from polluted groundwater owing to its strong reductive potential, significant surface area, and reactive behavior. This review systematically explores the [...] Read more.
Zero-valent iron (ZVI), particularly in its nanoscale form (nZVI), is now considered a highly promising material for the remediation of toxic metal ions from polluted groundwater owing to its strong reductive potential, significant surface area, and reactive behavior. This review systematically explores the application of pristine and modified ZVI systems—including doped ZVI, bio-stabilized composites, and ZVI supported on advanced materials like MXene and nanocellulose—for effective treatment of water containing metal species like As(III/V), Hg(II), Cr(VI), and Ni(II). Emphasis is placed on understanding the underlying mechanisms, including redox reactions, surface complexation, and synergistic adsorption–reduction pathways. Key factors affecting adsorption efficiency—such as pH, temperature, ZVI dosage, and competing ions—are thoroughly analyzed, alongside adsorption kinetics and isotherm models. Modified ZVI composites exhibit enhanced stability, selectivity, and reusability, demonstrating promising performance even in complex aqueous environments. Despite significant progress, challenges such as nanoparticle passivation, limited field-scale data, and potential toxicity of byproducts remain. The review concludes by highlighting future research directions focused on improving material longevity, regeneration efficiency, selective adsorption, and integration with other advanced remediation technologies for sustainable and scalable groundwater treatment. Full article
Show Figures

Graphical abstract

18 pages, 8764 KB  
Article
Synergistic Removal of Cr(VI) Utilizing Oxalated-Modified Zero-Valent Iron: Enhanced Electron Selectivity and Dynamic Fe(II) Regeneration
by Song Hou, Jiangkun Du, Haibo Ling, Sen Quan, Jianguo Bao and Chuan Yi
Nanomaterials 2025, 15(9), 669; https://doi.org/10.3390/nano15090669 - 28 Apr 2025
Viewed by 587
Abstract
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization [...] Read more.
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization (STEM and FT-IR) confirmed the formation of a FeC2O4/nFe0 heterostructure, where oxalate coordinated with Fe(II) to construct a semiconductor interface that effectively inhibits anoxic passivation while enabling continuous electron supply, achieving 100% Cr(VI) removal efficiency within 20 min at an optimal oxalate/Fe molar ratio of 1/29. Mechanistic studies revealed that the oxalate ligand accelerates electron transfer from the Fe0 core to the surface via the FeC2O4-mediated pathway, as evidenced by EIS and LSV test analyses. This process dynamically regenerates surface Fe(II) active sites rather than relying on static-free Fe(II) adsorption. XPS and STEM further demonstrated that Cr(VI) was reduced to Cr(III) and uniformly co-precipitated with Fe(II/III)-oxalate complexes, effectively immobilizing chromium. The synergy between the protective semiconductor layer and the ligand-enhanced electron transfer endows nFeoxa with superior reactivity. This work provides a ligand-engineering strategy to design robust nFe0-based materials for sustainable remediation of metal oxyanion-contaminated water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

15 pages, 2224 KB  
Article
Fe3+ and Mn2+ Removal from Water Solutions by Clinoptilolite Zeolites as a Potential Treatment for Groundwater Wells
by William D. Arenhardt, Felipe Ketzer, João H. C. Wancura, Janaina Seraglio, Fabio L. Carasek, Guilherme Zin, Jean F. F. Calisto, Clovis A. Rodrigues, Alessandra C. de Meneses, José Vladimir Oliveira and Jacir Dal Magro
Processes 2025, 13(4), 1060; https://doi.org/10.3390/pr13041060 - 2 Apr 2025
Cited by 1 | Viewed by 918
Abstract
This study presents data on the water quality of the Guarani Aquifer based on samples collected from distinct groundwater wells in the western region of Santa Catarina State, Brazil. Among the analyses performed, the results indicated the need for treatment to ensure suitability [...] Read more.
This study presents data on the water quality of the Guarani Aquifer based on samples collected from distinct groundwater wells in the western region of Santa Catarina State, Brazil. Among the analyses performed, the results indicated the need for treatment to ensure suitability for human consumption, particularly concerning Fe3+ and Mn2+ ions. Accordingly, natural (NCLIN) and activated clinoptilolite (ACLIN) zeolites were evaluated for ion removal from synthetic aqueous solutions through adsorption. NCLIN demonstrated excellent performance in adsorbing Fe3+ and Mn2+ ions, achieving removal efficiencies of over 98% and 95%, respectively, at a controlled pH of 6.0 (NCLIN) or 4.0 (ACLIN). A non-linear approach to modeling adsorption kinetics indicated that the pseudo-second-order model best represented the experimental data. This finding suggests that the interaction between the adsorbent and Fe3+ and Mn2+ ions occur through electron sharing and chemisorption. Equilibrium modeling analysis revealed that adsorption on NCLIN occurred in a monolayer, whereas adsorption on ACLIN followed a multilayer pattern. This behavior is attributed to the activation process with H2SO4, which led to dealumination and the formation of HSO3 groups on the adsorbent surface. Full article
(This article belongs to the Special Issue Advances in Wastewater and Solid Waste Treatment Processes)
Show Figures

Figure 1

19 pages, 3964 KB  
Article
Preparation, Characterization, and Application of Citrate-Functionalized Cobalt-Doped Iron Oxide Nanoparticles for Rhodamine Dye and Lead Ion Sequestration
by Sangeetha Jayakumar, Barid Baran Lahiri and Arup Dasgupta
Magnetochemistry 2025, 11(4), 24; https://doi.org/10.3390/magnetochemistry11040024 - 29 Mar 2025
Viewed by 884
Abstract
The toxicity of hazardous dyes like rhodamine B and heavy metal ions like lead warrants the need for wastewater remediation. We describe here the functionalization of cobalt-doped iron oxide (Co0.1Fe2.9O4) magnetic nanoparticles (MNPs) with citrate moieties for [...] Read more.
The toxicity of hazardous dyes like rhodamine B and heavy metal ions like lead warrants the need for wastewater remediation. We describe here the functionalization of cobalt-doped iron oxide (Co0.1Fe2.9O4) magnetic nanoparticles (MNPs) with citrate moieties for the effective sequestration of rhodamine B dye and lead ions from contaminated water. Citrate-functionalized MNPs are prepared using a co-precipitation technique. For the uncoated MNPs, the hydrodynamic diameter and zeta potential are found to be 21 nm and ~45 ± 3.1 mV, respectively. The hydrodynamic diameters are found to increase to ~51, ~59, and ~68 nm for the MNPs functionalized with ~20, ~40, and ~60 mg/mL of citrate, respectively, whereas the corresponding zeta potentials are found to be ~−27.95 ± 3.5 mV, ~−32.5 ± 3.6 mV, and ~−33.9 ± 3.5 mV, respectively. The chemisorption of the citrate moieties over the MNPs cause the zeta potential to be negative, a phenomenon which is further verified from the citrate-specific absorption bands in the Fourier transform infrared (FTIR) spectra of the surface-functionalized MNPs. UV-visible spectrophotometry is employed to probe the MNP-aided elimination of rhodamine B dye and lead ions from aqueous media, where the absorption bands at ~554 nm and ~375 nm (for lead (II)-5-dimercapto-1,3,4-thiadiazole chelate) are utilized for quantitative analyses. These citrate-functionalized nanoparticles are found to successfully remove the toxic rhodamine B dye and lead ions from water, with removal efficiencies of ~93.7 ± 2.6% and ~90 ± 2.4%, respectively. The unbound -COO functional groups of the citrate-functionalized MNPs electrostatically interact with the cationic rhodamine B dye or lead (II) ions, thereby leading to the adsorption onto the surface-functionalized MNPs and the subsequent magnetic-field-assisted removal. The experimental findings show the efficacy of the citrate-functionalized cobalt-doped iron oxide MNPs for the sequestration of dye pollutants and lead ions from contaminated water. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Figure 1

22 pages, 10352 KB  
Article
Physico-Chemical Properties of Granular Sorbents Based on Natural Bentonite Modified by Polyhydroxocations of Aluminum and Iron (III) by Co-Precipitation
by Bakytgul Kussainova, Gaukhar Tazhkenova, Ivan Kazarinov, Marina Burashnikova, Raigul Ramazanova, Yelena Ivashchenko, Bekzat Saurbayeva, Batima Tantybayeva, Ainur Seitkan, Gulsim Matniyazova, Khalipa Sadiyeva, Aisha Nurlybayeva and Aidana Bazarkhankyzy
Molecules 2025, 30(1), 195; https://doi.org/10.3390/molecules30010195 - 6 Jan 2025
Cited by 1 | Viewed by 1257
Abstract
The physicochemical and adsorption properties of granular sorbents based on natural bentonite and modified sorbents based on it have been studied. It was found that modification of natural bentonite with iron (III) polyhydroxocations (mod. 1_Fe_5 GA) and aluminum (III) (mod. 1_Al_5 GA) by [...] Read more.
The physicochemical and adsorption properties of granular sorbents based on natural bentonite and modified sorbents based on it have been studied. It was found that modification of natural bentonite with iron (III) polyhydroxocations (mod. 1_Fe_5 GA) and aluminum (III) (mod. 1_Al_5 GA) by the “co-precipitation” method leads to a change in their chemical composition, structure, and sorption properties. It is shown that modified sorbents based on natural bentonite are finely porous (nanostructured) objects with a predominance of pores measuring 1.5–8.0 nm, with a specific surface area of 55–65 m2/g. Modification of bentonite with iron (III) and aluminum compounds by the “co-precipitation” method also leads to an increase in the sorption capacity of the obtained sorbents with respect to bichromate and arsenate anions and nickel cations by 5-10 times compared with natural bentonite. The obtained sorption isotherms were classified as Langmuir type isotherms. Kinetic analysis showed that at the initial stage the sorption process is controlled by an external diffusion factor, i.e. refers to the diffusion of sorbent from solution into a liquid film on the surface of the sorbent. Then the sorption process begins to proceed in a mixed diffusion mode, when it limits both the external diffusion factor and the internal diffusion factor (the diffusion of the sorbent to the active centers through the system of pores and capillaries). To determine the contribution of the chemical stage to the rate of adsorption of bichromate and arsenate anions and nickel(II) cations with the studied granular sorbents, kinetic curves were processed using the equations of chemical kinetics (pseudo-second-order model). As a result, it was found that the adsorption of the studied anions by modified sorbents based on natural bentonite is best described by a pseudo-second-order kinetic model. It is shown that the use of natural bentonite for the development of technology for the production of granular sorbents based on it has an undeniable advantage, firstly, in terms of its chemical and structural properties, it is easily and effectively modified, and secondly, having astringent properties, granules are easily made on its basis, which turn into ceramics during high-temperature firing. The result is a granular sorbent with high physical and mechanical properties. Since bentonite is an environmentally friendly product, the technology of recycling spent sorbents is also greatly simplified. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials)
Show Figures

Graphical abstract

18 pages, 2378 KB  
Article
Adsorption and Immobilization of Cadmium by an Iron-Coated Montmorillonite Composite
by Bangzheng Ren, Chengqiang Shu, Zailin Chen, Qiang Xiao and Yuli He
Water 2024, 16(21), 3105; https://doi.org/10.3390/w16213105 - 30 Oct 2024
Cited by 1 | Viewed by 999
Abstract
In this study, an iron-coated montmorillonite composite (FMC) was prepared, and the adsorption and immobilization of cadmium (Cd) was investigated. The composite was coated with spherical amorphous iron (Fe), which can promote the adsorption of Cd. At the fifth minute of adsorption, the [...] Read more.
In this study, an iron-coated montmorillonite composite (FMC) was prepared, and the adsorption and immobilization of cadmium (Cd) was investigated. The composite was coated with spherical amorphous iron (Fe), which can promote the adsorption of Cd. At the fifth minute of adsorption, the rate of Cd adsorption by the FMC reached 97.8%. With temperature, the adsorption of Cd by FMCs first increases and then decreases. High pH can promote Cd adsorption; under the same ionic strength, the adsorption of Cd was greater by montmorillonite (Mont) than that by the FMC at pH < 4, but greater by FMC than that by Mont at pH > 4. High ionic strength had negative effects on Cd(II) adsorption by FMC and Mont, and ionic strength had less of an influence on the FMC than on Mont. Soil microorganisms promoted the dissolution of Fe and the release of Cd in the FMC. High temperature can promote the dissolution of Fe, but its effect on Cd release is not significant. At 32 °C, the Fe dissolution can promote Cd release in the FMC. Both the FMC and Mont reduced the bioavailability and leaching toxicity of Cd, reduced the exchangeable Cd, and increased the Fe-Mn bound and residual Cd. Overall, the FMC was more effective than Mont at immobilizing Cd. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 9800 KB  
Article
Harnessing Chitosan Beads as an Immobilization Matrix for Zero-Valent Iron Nanoparticles for the Treatment of Cr(VI)-Contaminated Laboratory Residue
by Ignacio Daniel Rychluk, Ulises Casado, Víctor Nahuel Montesinos and Natalia Quici
Processes 2024, 12(10), 2101; https://doi.org/10.3390/pr12102101 - 27 Sep 2024
Cited by 1 | Viewed by 1455
Abstract
Nanocomposites (NCs) consisting of zero-valent iron nanoparticles (nZVI) immobilized in chitosan (CS) were prepared and employed for the removal of hexavalent chromium (Cr(VI)) from both synthetic and real wastewater. Medium (MCS)- and high (HCS)-molecular-weight chitosan and stabilization with carboxymethylcellulose (CMC) and different nZVI [...] Read more.
Nanocomposites (NCs) consisting of zero-valent iron nanoparticles (nZVI) immobilized in chitosan (CS) were prepared and employed for the removal of hexavalent chromium (Cr(VI)) from both synthetic and real wastewater. Medium (MCS)- and high (HCS)-molecular-weight chitosan and stabilization with carboxymethylcellulose (CMC) and different nZVI loads were explored. Characterization through scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDS) and X-ray diffraction (XRD) revealed millimeter-sized spheres with micrometer-sized nZVI clusters randomly distributed. Better nanoparticle dispersion was observed in NCs from the CMC-MCS and HCS combinations. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that CS binds to Fe(II) or Fe(III) on the surface of nZVI through its functional groups -CONH-, -N-H, and -C-OH and through the -COO functional group of CMC, forming a bidentate bridge complex. Through experiments with synthetic waters, it was found that the elimination of Cr(VI) was favored by lowering the pH, obtaining the maximum percentage of Cr(VI) removal at pH 5.5. With real waters, it was shown that increasing the mass of NCs also improved the removal of Cr(VI), following a pseudo-second-order adsorption kinetics. The synthesized materials show great potential for applications in environmental remediation, showing good efficiency in the removal of Cr(VI) in wastewater. Full article
(This article belongs to the Special Issue Nanomaterials for Environmental Remediation Processes)
Show Figures

Graphical abstract

18 pages, 2104 KB  
Article
Virtual Screening of Fluorescent Heterocyclic Molecules and Advanced Oxidation Degradation of Rhodamine B in Synthetic Solutions
by Gabriela Vizuete, Fabián Santana-Romo and Cristina E. Almeida-Naranjo
Water 2024, 16(15), 2141; https://doi.org/10.3390/w16152141 - 29 Jul 2024
Cited by 1 | Viewed by 1515
Abstract
A virtual screening, a process based on computational chemistry that involves the rapid evaluation of a large number of compounds to identify those with the most promising characteristics, is presented. This screening found concordance in the fluorescent heterocyclic compounds with isosteres of similar [...] Read more.
A virtual screening, a process based on computational chemistry that involves the rapid evaluation of a large number of compounds to identify those with the most promising characteristics, is presented. This screening found concordance in the fluorescent heterocyclic compounds with isosteres of similar reactivity, determining that rhodamine B (RhB) meets the necessary criteria for its use. Furthermore, with the values calculated in silico, it is considered to be a compound with low adsorption and oral bioavailability, so its degradation was evaluated by advanced oxidation processes (POAs), such as the catalytic process with titanium dioxide (TiO2), hydrogen peroxide (H2O2), and presence or absence of dissolved oxygen (O2), in which the concentration of RhB and amount of TiO2 were varied, and the photo-Fenton process with an ultraviolet light emitting diode (UV-LED), zero-valent iron (ZVI) and H2O2, in which the amount of ZVI and H2O2 were varied. The results indicate that the catalytic process achieves a removal of 95.11% compared to 80.42% in the photo-Fenton process, concluding that the greater the amount of ZVI in the solution, the greater the degradation of RhB and that the residual amount of iron (II) (Fe2+) ions in the solution is less than 0.3 mg/L without causing secondary contamination. These results highlight the efficacy and feasibility of POAs for the removal of dyes such as RhB, which offers a promising solution for the remediation of contaminated waters. Full article
(This article belongs to the Special Issue Advanced Technologies for Wastewater Treatment and Water Reuse)
Show Figures

Graphical abstract

22 pages, 4581 KB  
Article
Efficient Methylene Blue Degradation by Activation of Peroxymonosulfate over Co(II) and/or Fe(II) Impregnated Montmorillonites
by Niurka Barrios-Bermúdez, Arisbel Cerpa-Naranjo and María Luisa Rojas-Cervantes
Catalysts 2024, 14(8), 479; https://doi.org/10.3390/catal14080479 - 27 Jul 2024
Cited by 3 | Viewed by 1272
Abstract
Two commercial montmorillonites, namely montmorillonite K10 (MK10) and montmorillonite pillared with aluminum (MPil) were impregnated with cobalt(II) and/or iron(II) acetates by incipient wetness impregnation and used to activate peroxymonosulfate (PMS) for the degradation of methylene blue (MB) dye in water. Various characterization techniques, [...] Read more.
Two commercial montmorillonites, namely montmorillonite K10 (MK10) and montmorillonite pillared with aluminum (MPil) were impregnated with cobalt(II) and/or iron(II) acetates by incipient wetness impregnation and used to activate peroxymonosulfate (PMS) for the degradation of methylene blue (MB) dye in water. Various characterization techniques, including ICP-MS, XRD, SEM and TEM with EDX, and N2 physisorption, confirmed the successful impregnation process. The removal of the dye resulted from a combined effect of adsorption and PMS activation through Co3+/Co2+ redox couples. The MK10 series exhibited a higher degree of dye adsorption compared to the MPil series, leading to enhanced dye decomposition and superior catalytic performance in the former. The influence of catalyst mass, dye concentration, and initial pH was investigated. SO4 radicals were found as the dominant reactive oxygen species. Co2+-impregnated montmorillonites showed better performance than their Fe2+-impregnated counterparts, with MK10-Co achieving complete MB removal in just 20 min. High degradation values of MB were achieved using lower PMS/MB ratios and amount of catalyst than others reported in the literature, showing the efficiency of cobalt-impregnated montmorillonites. Moreover, the catalysts maintained excellent catalytic activity after three reaction cycles. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

Back to TopTop