Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,726)

Search Parameters:
Keywords = isotopic analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4916 KB  
Article
The Genesis and Geological Significance of the Chaluo Granite in Yidun Magmatic Arc, Western Sichuan, China: Constraints from the Zircon U-Pb Chronology, Elemental Geochemistry and S-Pb-Hf Isotope
by Wenjing Yang, Tianshe Cheng, Xuebin Zhang, Lijun Guo, Xujiang Cheng, Xingfang Duo, Hangyu Fan, Hongsheng Gao, Lipeng Tu, Meng Zhao and Weihong Dong
Minerals 2025, 15(9), 916; https://doi.org/10.3390/min15090916 - 28 Aug 2025
Abstract
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, [...] Read more.
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, quartz, and biotite, with a small amount of apatite. LA-ICP-MS zircon U-Pb dating yielded crystallization ages of (87 ± 3) Ma for the Chaluo granite, indicating its formation in the Late Cretaceous. Elemental geochemical testing results showed that the Chaluo granite exhibits I-type granite characteristics. It has undergone significant fractional crystallization processes, with high SiO2 contents (72.83–76.63 wt%), K (K2O/Na2O = 1.33–1.53), Al2O3 (Al2O3 = 12.24–13.56 wt%, A/CNK = 0.91–1.08), and a high differentiation index (DI = 88.91–92.49). Notably, the MgO contents were low (0.10–0.26 wt%), and there were significant depletions of Nb, Sr, Ti, and Eu, while Rb, Pb, Th, U, Zr, and Hf were significantly enriched. The total rare earth element (REE) contents were relatively low (211–383 ppm), showing significant light REE (LREE) enrichment (LREE/HREE = 4.46–5.57) and a pronounced negative Eu anomaly (δEu = 0.09–0.17). In situ zircon Hf analyses, combined with 206Pb/238U ages, gave εHf(t) values ranging from −3.8 to 1.72 and two-stage Hf ages (tDM2) of 875–1160 Ma. Together with the S and Pb isotope compositions of the Chaluo granite, its magma likely originated from the partial melting of Middle–Neoproterozoic sedimentary rocks enriched in biogenic S. The tectonic-setting analysis indicates that the Chaluo granite formed in a post-orogenic intracontinental extensional environment. This environment was triggered by the northward subduction-collision of the Lhasa block, followed by slab break-off and the upwelling of the asthenosphere in the Neo-Tethys orogenic belt. We propose that the Paleo-Tethys tectonic belt was influenced by the Neo-Tethys tectonic activity, at least in the Yidun magmatic arc region during the Late Cretaceous. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

16 pages, 4683 KB  
Article
Geochemical Characteristics and Genetic Significance of Garnet in the Dulong Sn-Polymetallic Deposit, Yunnan Province, Southwestern China
by Tong Liu, Shao-Yong Jiang, Dong-Fang Li, Suo-Fei Xiong, Wei Wang and Shugang Xiao
Minerals 2025, 15(9), 911; https://doi.org/10.3390/min15090911 - 27 Aug 2025
Abstract
The Dulong Sn-polymetallic deposit in Yunnan Province of southwestern China serves as a unique case study for unraveling the evolution of skarn systems and tin mineralization. Four distinct garnet types (Grt I to Grt IV) were classified based on petrographic observations. Compositional analysis [...] Read more.
The Dulong Sn-polymetallic deposit in Yunnan Province of southwestern China serves as a unique case study for unraveling the evolution of skarn systems and tin mineralization. Four distinct garnet types (Grt I to Grt IV) were classified based on petrographic observations. Compositional analysis reveals a progression from Grt I to Grt III, marked by increasing andradite components, and elevated tin concentrations, peaking at 5039 ppm. These trends suggest crystallization from Sn-enriched magmatic-hydrothermal fluids. In contrast, Grt IV garnet exhibits dominant almandine components and minimal tin content (<2 ppm). Its association with surrounding rocks (schist) further implies its metamorphic origin, distinct from the magmatic origin of the other garnet types. Combined with previously published sulfur and lead isotopic data, as well as trace element compositions of garnet, our study suggests that Laojunshan granites supply substantial ore-forming elements such as S, Pb, W, Sn, In, and Ga. In contrast, elements such as Sc, Y, and Ge are inferred to be predominantly derived from, or buffered by, the surrounding rocks. The geochemical evolution of the garnets highlights the critical role of redox fluctuations and fluid chemistry in controlling tin mineralization. Under neutral-pH fluid conditions, early-stage garnets incorporated significant tin. As the oxygen fugacity of the ore-forming fluid declined, cassiterite precipitation was triggered, leading to tin mineralization. This study reveals the interplay between fluid redox dynamics, garnet compositional changes, and mineral paragenesis in skarn-type tin deposits. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Graphical abstract

16 pages, 2131 KB  
Article
Controlled-Release Nitrogen Fertilizer Enhances Saline–Alkali Soil Organic Carbon by Activating Straw Decomposition Agents
by Rui Xue, Zhengrui Wang, Qing Liu, Kun Song, Shanda Yuan, Mei Wang, Yuwen Shen, Guangqing Ji and Haitao Lin
Agronomy 2025, 15(9), 2053; https://doi.org/10.3390/agronomy15092053 - 26 Aug 2025
Abstract
Soil organic carbon (SOC) represents a crucial factor in agricultural production, and its accumulation is influenced by soil microbial community and microbial metabolism. Straw returning combined with decomposing agents is recognized practice to enhance SOC. On the other hand, the impacts of controlled-release [...] Read more.
Soil organic carbon (SOC) represents a crucial factor in agricultural production, and its accumulation is influenced by soil microbial community and microbial metabolism. Straw returning combined with decomposing agents is recognized practice to enhance SOC. On the other hand, the impacts of controlled-release nitrogen fertilizer (CR) on the function of the decomposing agent in degrading straw are underexplored. In this study, an incubation experiment with 13C labeled straw in three nitrogen fertilizer treatments (CK, no nitrogen applied; UR, urea applied; CR, controlled-release fertilizer applied) was carried out to elucidate how CR regulates the straw decomposition agent and bacterial community to influence the SOC sequestration, based on field experiments. And we examined the changes in soil organic carbon and the stability of the bacterial networks by combining co-occurrence networks and a structural equation model. In the incubation experiment, the results demonstrated that CR increased the relative abundance of straw decomposition agent and straw-derived SOC (SO13C). Additionally, CR enhanced the stability of soil bacterial networks, compared with UR, by strengthening the interactions within the soil bacterial community. Pearson correlations confirmed that straw decomposition agent was positively associated with SO13C. Moreover, the straw decomposition agent was positively correlated with the activities of the nitrogen-cycling enzyme (urease, N-acetyl-β-glucosaminidase) and carbon-degrading enzyme (β-1,4-glucosidase, cellulase). Furthermore, structural equation modeling indicated that soil inorganic nitrogen played the most direct role in changes in the straw decomposition agent and then indirectly stimulated the activity of cellulase, ultimately increasing straw-derived carbon in the soil. This study elaborates the mechanism of straw returning combined with straw decomposition agent and controlled-release fertilizers to enhance the SOC of coastal saline–alkali soil from the perspective of underground biology. Collectively, the results of this research might improve the management of straw returning and sustainable utilization of fertility in saline–alkali soil. It provides a new perspective on fertilization for increasing soil carbon sequestration in future farmland ecosystems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 5880 KB  
Article
Petrographic and Geochemical Insights from Fibrous Calcite Veins: Unraveling Overpressure and Fracture Evolution in the Upper Permian Dalong Formation, South China
by An Liu, Lin Chen, Shu Jiang, Hai Li, Baomin Zhang, Yingxiong Cai, Jingyu Zhang, Wei Wei and Feiyong Xia
Minerals 2025, 15(9), 896; https://doi.org/10.3390/min15090896 - 24 Aug 2025
Viewed by 187
Abstract
The characteristics and evolution of fibrous calcite veins in organic-rich shales have gained significant attention due to the recent advancements in shale oil and gas exploration. However, the fibrous calcite veins in the Upper Permian Dalong Formation remain lacking in awareness. To investigate [...] Read more.
The characteristics and evolution of fibrous calcite veins in organic-rich shales have gained significant attention due to the recent advancements in shale oil and gas exploration. However, the fibrous calcite veins in the Upper Permian Dalong Formation remain lacking in awareness. To investigate the formation and significance of bedding-parallel fibrous calcite veins in the Dalong Formation, we conducted an extensive study utilizing petrography, geochemistry, isotopic analysis, and fluid inclusion studies on outcrops of the Dalong Formation in South China. Our findings reveal that fibrous calcite veins predominantly develop in the middle section of the Dalong Formation, specifically within the transitional interval between siliceous and calcareous shales, characterized by symmetric, antitaxial fibrous calcite veins. The δ13C values of these veins exhibit a broad range (−4.53‰ to +3.39‰) and display a decreasing trend in the directions of fiber growth from the central part, indicating an increased contribution of organic carbon to the calcite veins. Additionally, a consistent increase in trace element concentrations from the central part toward the fiber growth directions suggests a singular fluid source in a relatively closed environment, while other samples exhibit no distinct pattern, possibly due to the mixing of fluids from multiple layers resulting from repeated opening and closing of bedding-parallel fractures in the shales. The notable difference in δEu between the fibers on either side of the median zone indicates that previously formed veins acted as barriers, impeding the mixing of fluids, with the variation in δEu reflecting the differing sedimentary properties of the surrounding rocks. The in situ U-Pb dating of fibrous calcite veins yields an absolute age of 211 ± 23 Ma, signifying formation during the Late Triassic, which correlates with a shale maturity of 1.0‰ to 1.25‰. This integrated study suggests that the geochemical records of fibrous calcite veins document the processes related to overpressure generation and the opening and healing of bedding-parallel fractures within the Dalong Formation. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

20 pages, 2210 KB  
Article
Menaquinone-7 Supplementation Increases Multiple Advanced Glycation End-Products and Oxidation Markers in Zucker Diabetic Fatty Rats
by Ingo Mrosewski, Thomas Fleming, Gundula Schulze-Tanzil, Christian Werner, Clemens Gögele, Valeriya Mantel, Maria Kokozidou and Thomas Bertsch
Nutrients 2025, 17(17), 2733; https://doi.org/10.3390/nu17172733 - 23 Aug 2025
Viewed by 346
Abstract
Background: Dicarbonyls and advanced glycation end-products (AGEs) contribute to oxidative stress, inflammation, and complications in type 2 diabetes mellitus (T2DM). Menaquinone-7 (MK-7), a vitamin K2 subtype, has shown benefits for glucose tolerance and vascular health in some studies. We evaluated the impact of [...] Read more.
Background: Dicarbonyls and advanced glycation end-products (AGEs) contribute to oxidative stress, inflammation, and complications in type 2 diabetes mellitus (T2DM). Menaquinone-7 (MK-7), a vitamin K2 subtype, has shown benefits for glucose tolerance and vascular health in some studies. We evaluated the impact of MK-7 on dicarbonyls, free AGEs, and protein nitration/oxidation adducts in a rat model of T2DM. Methods: Male heterozygous (fa/+, control) and homozygous (fa/fa, diabetic) Zucker Diabetic Fatty rats were fed a diabetogenic diet without or with MK-7 for 12 weeks. After sacrifice, plasma dicarbonyls as well as plasma and urinary levels of free AGEs and protein nitration/oxidation adducts were quantified by isotope dilution tandem mass spectrometry. Results: Diabetic rats showed significantly increased plasma glyoxal, 3-deoxyglucosone, and fructosyl-lysine with non-significant trends toward increased methylglyoxal-derived hydroimidazolone and methionine sulfoxide, as well as reductions in methylglyoxal and dityrosine. Urinary carboxyethyl-lysine, carboxymethyl-lysine, fructosyl-lysine (all significant), and dityrosine (non-significant) were elevated in diabetic rats; glucosepane (non-significant) was reduced. MK-7 supplementation reduced no measured parameter but was associated with non-significant further increases in plasma glyoxal-derived hydroimidazolone, carboxyethyl-lysine, carboxymethyl-lysine, fructosyl-lysine, 3-nitrotyrosine, and methionine sulfoxide, as well as in urinary glyoxal-derived hydroimidazolone, carboxyethyl-lysine, fructosyl-lysine, and 3-nitrotyrosine, in diabetic rats. Correlation analysis revealed significant associations between glucose, dicarbonyls, AGEs, and oxidative markers. Conclusions: High-dose MK-7 supplementation did not improve dicarbonyl stress, AGE burden, or protein nitration/oxidation. With respect to available scientific evidence and our observations, the combination of glycemia-driven amplification of glycation and oxidative stress, as well as MK-7-induced glutathione depletion, were likely causative. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

13 pages, 1207 KB  
Article
Evaluation of Cyclotron Solid Target Produced Gallium-68 Chloride for the Labeling of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC
by Michał Jagodziński, Jakub Boratyński, Paulina Hamankiewicz, Łukasz Cheda, Witold Uhrynowski, Agnieszka Girstun, Joanna Trzcińska-Danielewicz, Zbigniew Rogulski and Marek Pilch-Kowalczyk
Molecules 2025, 30(17), 3458; https://doi.org/10.3390/molecules30173458 - 22 Aug 2025
Viewed by 306
Abstract
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence [...] Read more.
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence of gallium-68 chloride obtained from cyclotron solid target and formulated to be equivalent to the eluate from a germanium-gallium generator, aiming to determine whether this production method can serve as a reliable alternative for PET radiopharmaceutical applications. Preparations of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC, labeled with cyclotron-derived gallium-68 chloride, were subjected to quality control analysis using radio thin layer chromatography and radio high performance liquid chromatography. Subsequently, biodistribution studies were performed in mouse oncological models of expression of PSMA antigen and SSTR receptor to compare uptake of preparations produced with generator and cyclotron-derived isotopes. All tested formulations met the required radiochemical purity specifications. Moreover, tumor accumulation of the radiolabeled compounds was comparable regardless of the isotope source. The results support the conclusion that gallium-68 produced via cyclotron is functionally equivalent to that obtained from a generator, demonstrating its potential for interchangeable use in clinical and research radiopharmaceutical applications. Full article
Show Figures

Figure 1

13 pages, 375 KB  
Article
Legume Proportion and Litter Deposition Rate in Signal Grass–Forage Peanut Mixed Pastures at Varying Planting Spacings
by Lucas Ladeira Cardoso, Igor Alexandre de Souza, Odilon Gomes Pereira, Paulo Roberto Cecon, Carlos Augusto de Miranda Gomide, José Carlos Batista Dubeux and Karina Guimarães Ribeiro
Sustainability 2025, 17(16), 7562; https://doi.org/10.3390/su17167562 - 21 Aug 2025
Viewed by 237
Abstract
Mixed legume–grass pastures may enhance nitrogen recycling via litter and excreta compared to unfertilized grass monocultures. This study evaluated litter biomass, litter deposition rate, and the chemical and isotopic composition of Urochloa decumbens litter in monoculture and mixed pasture intercropped with Arachis pintoi [...] Read more.
Mixed legume–grass pastures may enhance nitrogen recycling via litter and excreta compared to unfertilized grass monocultures. This study evaluated litter biomass, litter deposition rate, and the chemical and isotopic composition of Urochloa decumbens litter in monoculture and mixed pasture intercropped with Arachis pintoi cv. Belmonte at five planting spacings (0.40, 0.50, 0.60, 0.70, and 0.80 m) in a Ferralsol. Additionally, isotopic analysis of sheep feces under grazing was conducted across the dry season. The experiment was conducted according to a split-plot scheme, with spacings in the plots and the periods or years in the subplots, in a randomized block design, with four replications. Litter biomass was not significantly influenced by planting spacing; however, the litter deposition rate was substantially greater in mixed pastures, reaching up to 77.2 kg ha−1 day−1 in the second year. Isotopic analysis revealed that up to 39% of the litter carbon was derived from C3 plants (Arachis pintoi), while nitrogen concentration ranged from 8.3 g kg−1 in monoculture to 12.9 g kg−1 at 0.40 m spacing. Spatial arrangement was critical for optimizing nutrients dynamic. Narrower planting spacings (0.40–0.50 m) increased the proportion of Arachis pintoi and enhanced litter deposition rates, improving nitrogen inputs and cycling within mixed Urochloa decumbens. Full article
Show Figures

Figure 1

20 pages, 2272 KB  
Article
Multiplexed Quantification of First-Trimester Serum Biomarkers in Healthy Pregnancy
by Natalia Starodubtseva, Alisa Tokareva, Alexey Kononikhin, Alexander Brzhozovskiy, Anna Bugrova, Evgenii Kukaev, Alina Poluektova, Vladimir Frankevich, Evgeny Nikolaev and Gennady Sukhikh
Int. J. Mol. Sci. 2025, 26(16), 7970; https://doi.org/10.3390/ijms26167970 - 18 Aug 2025
Viewed by 242
Abstract
The maternal circulating proteome reflects critical physiological adaptations during pregnancy, yet standardized reference profiles for early gestation are lacking. In this prospective study, we employed targeted liquid chromatography–multiple reaction monitoring–mass spectrometry (LC-MRM-MS) with stable isotope-labeled (SIS) standards to characterize the serum proteome of [...] Read more.
The maternal circulating proteome reflects critical physiological adaptations during pregnancy, yet standardized reference profiles for early gestation are lacking. In this prospective study, we employed targeted liquid chromatography–multiple reaction monitoring–mass spectrometry (LC-MRM-MS) with stable isotope-labeled (SIS) standards to characterize the serum proteome of 83 women with uncomplicated singleton pregnancies between 11+2 and 13+6 weeks’ gestation. Robust analysis quantified 115 proteins (83% of targets), with 101 meeting ICH M10 standards. These included 38 FDA-approved, 19 CVD-related, and 25 CLIA-approved biomarkers. We identified 43 proteins significantly associated (p < 0.05) with gestational age, maternal factors (BMI, age, parity, and myomas), and fetal sex. Key findings included identification of 12 proteins significantly associated with trisomy risk (|R| = 0.21–0.45, p < 0.05) and extreme physiological variability in pregnancy zone protein (PZP, 123.9-fold), followed by apolipoprotein (a) (LPA; 9.9-fold) and pregnancy-associated plasma protein A (PAPP-A, 9.3-fold). In contrast, hemopexin (HPX) demonstrated remarkable stability (CV = 8.5%), suggesting its utility as a reference marker. The study successfully implemented multiples of the median (MoM) transformation for clinical standardization of protein profiles, with RobNorm proving particularly effective for batch-effect correction in our dataset. These methodological advances, combined with the establishment of comprehensive pregnancy-specific reference ranges, provide a valuable foundation for future research. The optimized analytical framework and protein signatures identified in this work not only enable the development of next-generation screening approaches but also offer new insights into the molecular adaptations occurring during early pregnancy. Full article
Show Figures

Figure 1

18 pages, 6368 KB  
Article
Research on the Genesis Mechanism of Hot Springs in the Middle Reaches of the Wenhe River
by Cheng Xue, Nan Xing, Zongjun Gao, Yiru Niu and Dongdong Yang
Water 2025, 17(16), 2431; https://doi.org/10.3390/w17162431 - 17 Aug 2025
Viewed by 370
Abstract
This study investigates geothermal clusters in the middle reaches of the Dawen River Basin, focusing on the developmental characteristics and genetic mechanisms of typical geothermal water exposures at key sites, including Daidaoan (Taishan), Qiaogou (Culai Town), and Anjiazhuang (Feicheng). Utilizing hydrogeochemical and environmental [...] Read more.
This study investigates geothermal clusters in the middle reaches of the Dawen River Basin, focusing on the developmental characteristics and genetic mechanisms of typical geothermal water exposures at key sites, including Daidaoan (Taishan), Qiaogou (Culai Town), and Anjiazhuang (Feicheng). Utilizing hydrogeochemical and environmental isotope analyses, we identify a dual groundwater recharge mechanism: (1) rapid infiltration via preferential flow through fissure media and (2) slow seepage with evaporative loss along gas-bearing zones. Ion sources are influenced by water–rock interactions and positive cation exchange. The hydrochemical types of surface water and geothermal water can be divided into five categories, with little difference within the same geothermal area. The thermal reservoir temperatures range from 53.54 to 101.49 °C, with the Anjiazhuang and Qiaogou geothermal areas displaying higher temperatures than the Daidaoan area. Isotope calculations indicate that the recharge elevation ranges from 2865.76 to 4126.69 m. The proportion of cold water mixed in the shallow part is relatively large. A comparative analysis of the genetic models of the three geothermal water groups shows that they share the common feature of being controlled by fault zones. However, they differ in that the Daidao’an geothermal area in Mount Tai is of the karst spring type with a relatively low geothermal water temperature, whereas the Qiaogou geothermal area in Culai Town and the Anjiazhuang geothermal area in Feicheng are of the gravel or sandy shale spring types with a relatively high geothermal water temperature. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

21 pages, 62661 KB  
Article
Petrography, Fluid Inclusions and Isotopic Analysis of Ordovician Carbonate Reservoirs in the Central Ordos Basin, NW China
by Xiaoli Wu, Ping Wang, Haijian Jiang, Hexin Huang, Tong Chen, Lei Chen, Dongxing Wang and Junnian Chen
Minerals 2025, 15(8), 860; https://doi.org/10.3390/min15080860 - 15 Aug 2025
Viewed by 304
Abstract
Deep carbonate reservoirs have garnered significant attention and demonstrated great potential for oil and gas exploration in recent years. The Majiagou Formation in the Ordos Basin has received much attention for its deep oil and gas deposits recently. However, the issue of fluid [...] Read more.
Deep carbonate reservoirs have garnered significant attention and demonstrated great potential for oil and gas exploration in recent years. The Majiagou Formation in the Ordos Basin has received much attention for its deep oil and gas deposits recently. However, the issue of fluid evolution within the great depth has been overlooked, and the relationship between fluid flow and the gas accumulation process remains unclear. This paper aims to explore the fluid evolution and its relationship with the gas accumulation, which poses a challenge for further petroleum exploration. To achieve this, petrological studies on dolomite samples were carried out and four types of secondary cements were identified: early gypsum-moldic pore-filling calcite, late gypsum-moldic pore-filling calcite, dissolution pore-filling calcite and fracture-filling calcite. Subsequently, an interdisciplinary approach that integrates petrography observation, microthermometry, laser Raman analysis of fluid inclusions, and carbon and oxygen isotope tests on these types of cements is employed to elucidate the fluid flow evolution. These investigations revealed that four different stages of inorganic fluid activity were coeval with two stages of organic fluid activity. The two stages of organic fluid flows were significantly important for petroleum accumulation. In the late Triassic to early Jurassic, there was small-scale liquid oil accumulation, which was associated with the second stage of fluids. In the early Cretaceous, there was large-scale gas accumulation, which was associated with the fourth stage of fluids. This research is crucial for understanding the fluid flow process and its relationship with hydrocarbon accumulation in deeply buried carbonate formations. Full article
(This article belongs to the Special Issue Natural and Induced Diagenesis in Clastic Rock)
Show Figures

Graphical abstract

25 pages, 1953 KB  
Article
Microbiome and Chemistry Insights into Two Oligotrophic Karst Water Springs in Slovenia from 2016 and 2023 Perspectives
by Mojca Likar, Marko Blagojevič, Maša Ošlak, Matjaž Mikoš, Zala Prevoršek, Ladislav Holko, Dragana Ribič, Blaž Likozar, Uroš Novak, Boštjan Murovec, Sabina Kolbl Repinc and Blaž Stres
Water 2025, 17(16), 2402; https://doi.org/10.3390/w17162402 - 14 Aug 2025
Viewed by 340
Abstract
Groundwater, a critical source of drinking water, plays an essential role in global biogeochemical cycles, yet its microbial ecosystems remain insufficiently characterized, particularly in pristine karst aquifers. This study conducted high-resolution profiling of microbial communities and environmental parameters in two representative alpine karst [...] Read more.
Groundwater, a critical source of drinking water, plays an essential role in global biogeochemical cycles, yet its microbial ecosystems remain insufficiently characterized, particularly in pristine karst aquifers. This study conducted high-resolution profiling of microbial communities and environmental parameters in two representative alpine karst aquifers in Slovenia: Idrijska Bela and Krajcarca. Monthly groundwater samples from the Krajcarca spring and Idrijska Bela borehole over a 14-month period were analyzed using whole-metagenome sequencing (WMS), UV-Vis spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and isotopic analysis. The results revealed stable hydrochemical conditions with clear spatial differences driven by bedrock composition and groundwater residence time. Bacterial communities displayed strong correlations with hydrochemical parameters, while archaeal communities exhibited temporal stability. Functional gene profiles mirrored bacterial patterns, emphasizing the influence of environmental gradients on metabolic potential. No significant temporal changes were detected across two sampling campaigns (2016–2023), highlighting the resilience of these aquifers. This work establishes a valuable baseline for understanding pristine groundwater microbiomes and informs future monitoring and water quality management strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

18 pages, 1885 KB  
Review
Advancement in Clinical Glycomics and Glycoproteomics for Congenital Disorders of Glycosylation: Progress and Challenges Ahead
by Nurulamin Abu Bakar and Nurul Izzati Hamzan
Biomedicines 2025, 13(8), 1964; https://doi.org/10.3390/biomedicines13081964 - 13 Aug 2025
Viewed by 381
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare, multisystemic genetic diseases caused by defects in glycan biosynthesis and protein glycosylation. Their broad clinical and genetic heterogeneity often require advanced diagnostic strategies. Clinical glycomics and glycoproteomics have emerged as powerful tools for [...] Read more.
Congenital disorders of glycosylation (CDG) are a group of rare, multisystemic genetic diseases caused by defects in glycan biosynthesis and protein glycosylation. Their broad clinical and genetic heterogeneity often require advanced diagnostic strategies. Clinical glycomics and glycoproteomics have emerged as powerful tools for understanding and diagnosing CDG by enabling high-resolution analysis of glycan structures and glycoproteins. Advancements in high-throughput mass spectrometry (MS) and site-specific glycoproteomics have led to the identification of disease-relevant biomarkers, providing insight into underlying glycosylation defects. These technologies enable detailed analysis of glycan structures and glycoproteins, improving early diagnosis, supporting biomarker discovery, and facilitating therapy monitoring. Integration with genomic and clinical data, including the use of dried blood spot testing and isotopic tracing, further enhances diagnostic precision and reveals the functional consequences of pathogenic variants. While challenges remain in standardizing methods, ensuring accessibility, and implementing bioinformatics tools, global collaborations and harmonized guidelines are beginning to address these gaps. Future directions include the use of artificial intelligence in data analysis, the development of comprehensive diagnostic frameworks, and international efforts to standardize glycomic methods. Collectively, these advances reinforce the growing clinical value of glycomics and glycoproteomics in the diagnosis and management of CDG. Full article
(This article belongs to the Special Issue Role of Glycomics in Health and Diseases)
Show Figures

Figure 1

16 pages, 1640 KB  
Article
Ontogenetic and Sex-Specific Isotopic Niches of Blue Sharks (Prionace glauca) in the Northwestern Pacific
by Pengpeng Ding, Satoshi Katayama, Hiroaki Murakami and Tah Andrew Ryan
Fishes 2025, 10(8), 402; https://doi.org/10.3390/fishes10080402 - 12 Aug 2025
Viewed by 391
Abstract
The blue shark (Prionace glauca) is a pelagic species widely distributed in the northwestern Pacific Ocean. The trophic roles of blue sharks across different developmental stages and between sexes remain poorly understood. Fifty-four sharks were sampled (October 2022–March 2024) for precaudal [...] Read more.
The blue shark (Prionace glauca) is a pelagic species widely distributed in the northwestern Pacific Ocean. The trophic roles of blue sharks across different developmental stages and between sexes remain poorly understood. Fifty-four sharks were sampled (October 2022–March 2024) for precaudal length (PCL) and stable isotope levels (δ13C, δ15N) in the muscle tissue (n = 52). Mean PCL varied based on the month of sampling (p = 0.034), with the smallest individuals occurring in July (143.0 ± 4.3 cm) and the largest in October (178.0 ± 2.6 cm). Stable isotope analysis (δ13C and δ15N) indicated consistent offshore habitat use (δ13C: from −20.70 to −18.82‰) and significant nitrogen isotopic differences among life history (δ15N: from 10.23 to 15.72‰; Kruskal–Wallis test, p = 0.037). The elevated δ15N values observed in the subadult group (relative to juvenile individuals) are likely due to trophic enrichment associated with morphological development. Females exhibited markedly larger isotopic niches (SEAc = 2.42‰2) than did males (0.57‰2), and niche overlap was greater within each sex (40–52%) than between sexes (<21%). These results revealed sex-specific ecological roles and trophic strategies throughout the life history of P. glauca. Understanding these foraging differences can help with catch reduction and habitat-protection measures in the transboundary pelagic fisheries of the northwestern Pacific. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

38 pages, 13807 KB  
Article
A Sediment Provenance Study of Middle Jurassic to Cretaceous Strata in the Eastern Sverdrup Basin: Implications for the Exhumation of the Northeastern Canadian-Greenlandic Shield
by Michael A. Pointon, Helen Smyth, Jenny E. Omma, Andrew C. Morton, Simon Schneider, Stephen J. Rippington, Berta Lopez-Mir, Quentin G. Crowley, Dirk Frei and Michael J. Flowerdew
Geosciences 2025, 15(8), 313; https://doi.org/10.3390/geosciences15080313 - 12 Aug 2025
Viewed by 577
Abstract
The Sverdrup Basin, Arctic Canada, is ideally situated to contain an archive of tectono-magmatic and climatic events that occurred within the wider Arctic region, including the exhumation of the adjacent (northeastern) part of the Canadian-Greenlandic Shield. To test this, a multi-analytical provenance study [...] Read more.
The Sverdrup Basin, Arctic Canada, is ideally situated to contain an archive of tectono-magmatic and climatic events that occurred within the wider Arctic region, including the exhumation of the adjacent (northeastern) part of the Canadian-Greenlandic Shield. To test this, a multi-analytical provenance study of Middle Jurassic to Cretaceous sandstones from the eastern Sverdrup Basin was undertaken. Most of the samples analysed were recycled from sedimentary rocks of the Franklinian Basin, with possible additional contributions from the Mesoproterozoic Bylot basins and metasedimentary shield rocks. The amount of high-grade metamorphic detritus in samples from central Ellesmere Island increased from Middle Jurassic times. This is interpreted to reflect exhumation of the area to the southeast/east of the Sverdrup Basin. Exhumation may have its origins in Middle Jurassic extension and uplift along the northwest Sverdrup Basin margin. Rift-flank uplift along the Canadian–West Greenland conjugate margin and lithospheric doming linked with the proximity of the Iceland hotspot and/or the emplacement of the Cretaceous High Arctic Large Igneous Province may have contributed to exhumation subsequently. The southeast-to-northwest thickening of Jurassic to Early Cretaceous strata across the Sverdrup Basin may be a distal effect of exhumation rather than rifting in the Sverdrup or Amerasia basins. Full article
Show Figures

Figure 1

22 pages, 7438 KB  
Article
Expanding Continuous Carbon Isotope Measurements of CO2 and CH4 in the Italian ICOS Atmospheric Consortium: First Results from the Continental POT Station in Potenza (Basilicata)
by Antonella Buono, Isabella Zaccardo, Francesco D’Amico, Emilio Lapenna, Francesco Cardellicchio, Teresa Laurita, Davide Amodio, Canio Colangelo, Gianluca Di Fiore, Aldo Giunta, Michele Volini, Claudia Roberta Calidonna, Alcide Giorgio di Sarra, Serena Trippetta and Lucia Mona
Atmosphere 2025, 16(8), 951; https://doi.org/10.3390/atmos16080951 - 8 Aug 2025
Viewed by 485
Abstract
Carbon isotope fractionation is an efficient tool used for the discrimination and differentiation of sinks and emission sources. Carbon dioxide (CO2) and methane (CH4) are among the key drivers of climate change, and a detailed evaluation of variations in [...] Read more.
Carbon isotope fractionation is an efficient tool used for the discrimination and differentiation of sinks and emission sources. Carbon dioxide (CO2) and methane (CH4) are among the key drivers of climate change, and a detailed evaluation of variations in the 13C/12C ratio in either compound provides vital information for the field of atmospheric sciences. The Italian atmospheric ICOS (Integrated Carbon Observation System) consortium is currently implementing δ13C-CO2 and δ13C-CH4 measurements, with four observation sites now equipped with Picarro G2201-i CRDS (Cavity Ring-Down Spectrometry) analyzers. In this work, results from the first two months of measurements performed at the Potenza station in southern Italy between 20 February and 20 April 2025 are presented and constitute the first evaluation of continuous atmospheric δ13C-CO2 and δ13C-CH4 measurements from an Italian station. These results provide a first insight on how these measurements can improve the current understanding of CO2 and CH4 variability in the Italian peninsula and the central Mediterranean sector. Although preliminary in nature, the findings of these measurements indicate that fossil fuel burning is responsible for the observed peaks in CO2 concentrations. CH4 has a generally stable pattern; however, abrupt peaks in its isotopic delta, observed during March, may constitute the first direct evidence in Italy of Saharan dust intrusion affecting carbon isotope fractionation in the atmosphere. This study also introduces an analysis of the weekly behavior in isotopic deltas. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

Back to TopTop