Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = isotropic pattern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6614 KB  
Article
Seismic Response Characteristics and Characterization Parameter Prediction of Thin Interbedded Coal Seam Fracture System
by Kui Wu, Yu Qi, Sheng Zhang, Feng He, Silu Chen, Yixin Yu, Fei Gong and Tingting Zhang
Processes 2025, 13(10), 3173; https://doi.org/10.3390/pr13103173 - 6 Oct 2025
Viewed by 161
Abstract
Fracture systems critically govern coal seam permeability, influencing hydrocarbon migration pathways and well placement strategies. We established a predictive framework for fracture characterization in thin-interbedded coal reservoirs by integrating seismic response analysis with multi-domain validation. Utilizing borehole log statistics and staggered-grid wave equation [...] Read more.
Fracture systems critically govern coal seam permeability, influencing hydrocarbon migration pathways and well placement strategies. We established a predictive framework for fracture characterization in thin-interbedded coal reservoirs by integrating seismic response analysis with multi-domain validation. Utilizing borehole log statistics and staggered-grid wave equation modeling, we first decode azimuthal amplitude anisotropy patterns in fractured coal seams under varying lithological contexts. Key findings reveal that (1) isotropic thick surrounding rocks yield distinct fracture symmetry axis alignment (ellipse long-axis orientation shifts with layer velocity), while (2) anisotropic thin-interbedded host strata amplify azimuthal anisotropy ratios at mid–far offsets but induce prediction ambiguity under comparable fracture intensities. By applying azimuthally partitioned OVT data with optimized mid–long offset stacking, our amplitude ellipse fitting method demonstrates unique fracture solutions validated against structural, logging, and production data. This workflow resolves the multi-solution challenges in thin-layered systems, enabling precise fracture parameter prediction to optimize coalbed methane development in geologically complex basins. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

13 pages, 4980 KB  
Article
Characterization of Transparent Surfaces Through Double Fringe Projection, Implementing a Frequency Filtering Technique and Spatial Phase Demodulation
by Ubaldo Uribe-López, David Asael Gutiérrez-Hernández, Víctor Zamudio-Rodríguez, Josué del Valle-Hernández, Daniel Olivares-Vera, Raúl Santiago-Montero, Miguel Gómez-Díaz and Dulce Aurora Velázquez-Vázquez
Eng 2025, 6(9), 244; https://doi.org/10.3390/eng6090244 - 15 Sep 2025
Viewed by 356
Abstract
This study introduces a novel, low-cost, and non-invasive method for characterizing the surface profile of transparent objects using double digital fringe projection (DDFP). By projecting dual sinusoidal patterns that generate a Moiré effect and applying a frequency-domain Gaussian filter, the system isolates relevant [...] Read more.
This study introduces a novel, low-cost, and non-invasive method for characterizing the surface profile of transparent objects using double digital fringe projection (DDFP). By projecting dual sinusoidal patterns that generate a Moiré effect and applying a frequency-domain Gaussian filter, the system isolates relevant data for accurate phase recovery through the isotropic quadrature transform (IQT). Experimental validation with plastic and acrylic samples confirms the method’s high spatial resolution and robustness against ambient noise. Unlike traditional systems, this technique avoids coherent light sources and complex hardware, improving its accessibility for academic and industrial use in transparent surface metrology. Full article
(This article belongs to the Special Issue Emerging Trends and Technologies in Manufacturing Engineering)
Show Figures

Figure 1

17 pages, 3935 KB  
Article
Markerless Force Estimation via SuperPoint-SIFT Fusion and Finite Element Analysis: A Sensorless Solution for Deformable Object Manipulation
by Qingqing Xu, Ruoyang Lai and Junqing Yin
Biomimetics 2025, 10(9), 600; https://doi.org/10.3390/biomimetics10090600 - 8 Sep 2025
Viewed by 450
Abstract
Contact-force perception is a critical component of safe robotic grasping. With the rapid advances in embodied intelligence technology, humanoid robots have enhanced their multimodal perception capabilities. Conventional force sensors face limitations, such as complex spatial arrangements, installation challenges at multiple nodes, and potential [...] Read more.
Contact-force perception is a critical component of safe robotic grasping. With the rapid advances in embodied intelligence technology, humanoid robots have enhanced their multimodal perception capabilities. Conventional force sensors face limitations, such as complex spatial arrangements, installation challenges at multiple nodes, and potential interference with robotic flexibility. Consequently, these conventional sensors are unsuitable for biomimetic robot requirements in object perception, natural interaction, and agile movement. Therefore, this study proposes a sensorless external force detection method that integrates SuperPoint-Scale Invariant Feature Transform (SIFT) feature extraction with finite element analysis to address force perception challenges. A visual analysis method based on the SuperPoint-SIFT feature fusion algorithm was implemented to reconstruct a three-dimensional displacement field of the target object. Subsequently, the displacement field was mapped to the contact force distribution using finite element modeling. Experimental results demonstrate a mean force estimation error of 7.60% (isotropic) and 8.15% (anisotropic), with RMSE < 8%, validated by flexible pressure sensors. To enhance the model’s reliability, a dual-channel video comparison framework was developed. By analyzing the consistency of the deformation patterns and mechanical responses between the actual compression and finite element simulation video keyframes, the proposed approach provides a novel solution for real-time force perception in robotic interactions. The proposed solution is suitable for applications such as precision assembly and medical robotics, where sensorless force feedback is crucial. Full article
(This article belongs to the Special Issue Bio-Inspired Intelligent Robot)
Show Figures

Figure 1

16 pages, 578 KB  
Systematic Review
Biomechanical Insights into the Variation of Maxillary Arch Dimension with Clear Aligners: A Finite Element Analysis-Based Scoping Review
by Alessandra Putrino, Gaia Bompiani, Francesco Aristei, Valerio Fornari, Ludovico Massafra, Roberto Uomo and Angela Galeotti
Appl. Sci. 2025, 15(17), 9514; https://doi.org/10.3390/app15179514 - 29 Aug 2025
Viewed by 503
Abstract
Clear aligners (CAs) have emerged as a widely accepted alternative to conventional fixed orthodontic appliances due to their aesthetic appeal, comfort, and removability. Despite their increasing use, the precise biomechanical behavior of CAs—particularly in relation to maxillary arch expansion and torque control—remains incompletely [...] Read more.
Clear aligners (CAs) have emerged as a widely accepted alternative to conventional fixed orthodontic appliances due to their aesthetic appeal, comfort, and removability. Despite their increasing use, the precise biomechanical behavior of CAs—particularly in relation to maxillary arch expansion and torque control—remains incompletely understood. This scoping review aims to synthesize and critically examine the recent body of evidence derived from finite element analysis (FEA) studies investigating the performance of clear aligners in managing transverse discrepancies and controlling tooth movement. It considered studies published up to April 2025. All included FEA studies assumed dental and bone tissues as linearly elastic, homogeneous, and isotropic, unless otherwise specified. Five in silico studies were included, all employing three-dimensional FEA models to assess the influence of various clinical and design parameters, such as aligner thickness, movement sequence, attachment configuration, and torque compensation. The findings consistently show that movement protocols involving alternating activation patterns and specific attachment designs can significantly improve the efficiency of maxillary expansion, while reducing undesired tipping or anchorage loss. Additionally, greater aligner thicknesses were generally associated with increased force delivery and more pronounced tooth displacement. Although FEA provides a powerful tool for visualizing stress distribution and predicting mechanical responses under controlled conditions, the lack of standardized force application and limited clinical validation remain important limitations. These findings underscore the potential of optimized aligner protocols to enhance treatment outcomes, but they also highlight the need for complementary in vivo studies to confirm their clinical relevance and guide evidence-based practice. Full article
(This article belongs to the Special Issue Advances in Orthodontic Treatment, 2nd Edition)
Show Figures

Figure 1

18 pages, 441 KB  
Article
Classical SO(n) Spins on Geometrically Frustrated Crystals: A Real-Space Renormalization Group Approach
by Angel J. Garcia-Adeva
Crystals 2025, 15(8), 715; https://doi.org/10.3390/cryst15080715 - 5 Aug 2025
Viewed by 474
Abstract
A real-space renormalization group (RG) framework is formulated for classical SO(n) spin models defined on d-dimensional crystal lattices composed of corner-sharing hyper-tetrahedra, a class of geometrically frustrated crystal structures. This includes, as specific instances, the classical Heisenberg model on the kagome and pyrochlore [...] Read more.
A real-space renormalization group (RG) framework is formulated for classical SO(n) spin models defined on d-dimensional crystal lattices composed of corner-sharing hyper-tetrahedra, a class of geometrically frustrated crystal structures. This includes, as specific instances, the classical Heisenberg model on the kagome and pyrochlore crystals. The approach involves computing the partition function and corresponding order parameters for spin clusters embedded in the crystal, to leading order in symmetry-breaking fields generated by surrounding spins. The crystal geometry plays a central role in determining the scaling relations and the associated critical behavior. To illustrate the efficacy of the method, a reduced manifold of symmetry-allowed ordered states for isotropic nearest-neighbor interactions is analyzed. The RG flow systematically excludes the emergence of a q=0 ordered phase within the antiferromagnetic sector, independently of both the spatial dimensionality of the crystal and the number of spin components. Extensions to incorporate more elaborate crystal-symmetry-induced ordering patterns and fluctuation-driven phenomena—such as order-by-disorder—are also discussed. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 9867 KB  
Article
Recurrence Patterns After Resection of Sacral Chordoma: Toward an Optimized Postoperative Target Volume Definition
by Hanna Waldsperger, Burkhard Lehner, Andreas Geisbuesch, Felix Jotzo, Eva Meixner, Laila König, Sebastian Regnery, Katharina Kozyra, Lars Wessel, Sandro Krieg, Klaus Herfarth, Jürgen Debus and Katharina Seidensaal
Cancers 2025, 17(15), 2521; https://doi.org/10.3390/cancers17152521 - 30 Jul 2025
Viewed by 570
Abstract
Background: Postoperative recurrence of sacrococcygeal chordomas presents significant clinical challenges due to unusual recurrence patterns. This study aimed to characterize these patterns of recurrence to inform improved adjuvant radiotherapy planning. Methods: We retrospectively analyzed 31 patients with recurrent sacrococcygeal chordoma following surgery, assessing [...] Read more.
Background: Postoperative recurrence of sacrococcygeal chordomas presents significant clinical challenges due to unusual recurrence patterns. This study aimed to characterize these patterns of recurrence to inform improved adjuvant radiotherapy planning. Methods: We retrospectively analyzed 31 patients with recurrent sacrococcygeal chordoma following surgery, assessing recurrence locations considering initial tumor extent, resection levels, and postoperative anatomical changes on MRI. In 18 patients, pre- and postoperative imaging enabled the spatial mapping of early recurrence origins relative to the initial tumor volume using isotropic expansions. The median initial gross tumor volume was 113 mL. Results: Recurrences were mostly multifocal and predominantly involved soft tissues (e.g., mesorectal/perirectal space (80.6%), piriformis and gluteal muscles (80.6% and 67.7%, respectively) and osseous structures, particularly the sacrum (87.1%)). The median time to recurrence was 15 months. The initial surgery was R0 in 17 patients (55%). The highest infiltrated sacral vertebra was S1 in 3%, S2 in 10%, S3 in 35%, S4 in 23%, S5 in 10%, and coccygeal in 19%. Anatomical changes post-resection, including rectal herniation into gluteal and subcutaneous tissues, significantly affected radiotherapy planning. Expansion of the initial tumor volume by 2 cm failed to encompass all recurrence origins in 72% of cases. A 5 cm expansion was required to achieve full coverage in 56% of patients, though 22% of recurrences still lay beyond this margin and the remaining were covered only partially. Conclusions: Recurrent sacrococcygeal chordomas exhibit complex, soft-tissue-dominant patterns and are influenced by significant anatomical displacement post-surgery. Standard target volume expansions are often insufficient to cover the predominantly multifocal recurrences. Full article
(This article belongs to the Special Issue Advanced Research on Spine Tumor)
Show Figures

Figure 1

21 pages, 1061 KB  
Article
Local Streamline Pattern and Topological Index of an Isotropic Point in a 2D Velocity Field
by Jian Gao, Rong Wang, Hongping Ma and Wennan Zou
Mathematics 2025, 13(14), 2320; https://doi.org/10.3390/math13142320 - 21 Jul 2025
Viewed by 371
Abstract
In fluid mechanics, most studies on flow structure analysis are simply based on the velocity gradient, which only involves the linear part of the velocity field and does not focus on the isotropic point. In this paper, we are concerned with a general [...] Read more.
In fluid mechanics, most studies on flow structure analysis are simply based on the velocity gradient, which only involves the linear part of the velocity field and does not focus on the isotropic point. In this paper, we are concerned with a general polynomial velocity field with a nonzero linear part and study its streamline pattern around an isotropic point, i.e., the local streamline pattern (LSP). A complete classification of LSPs in two-dimensional (2D) velocity fields is established. By proposing a novel formulation of qualitative equivalence, namely, the invariance under spatiotemporal transformations, we first introduce the quasi-real Schur form to classify the linear part of velocity fields. Then, for a nonlinear velocity field, the topological type of its LSP is either completely determined by the linear part when the determinant of the velocity gradient at the isotropic point is nonzero or controlled by both linear and nonlinear parts when the determinant of the velocity gradient vanishes at the isotropic point. Four new topological types of LSPs through detailed sector analysis are identified. Finally, we propose a direct method for calculating the index of the isotropic point, which also serves as a fundamental topological property of LSPs. These results do challenge the conventional linear analysis paradigm that simply neglects the contribution of the nonlinear part of the velocity field to the streamline pattern. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

16 pages, 3999 KB  
Article
Influence of TRISO Fuel Particle Arrangements on Pebble Neutronics and Isotopic Evolution
by Ben Impson, Mohamed Elhareef, Zeyun Wu and Braden Goddard
J. Nucl. Eng. 2025, 6(3), 27; https://doi.org/10.3390/jne6030027 - 14 Jul 2025
Viewed by 1269
Abstract
Pebble Bed Reactors (PBRs) represent a new generation of nuclear reactors. However, modeling TRi-structural ISOtropic (TRISO) fuel particles employed in PBRs presents a unique challenge in comparison to most conventional reactor designs. Rapid generation of different possible fuel particle configurations for Monte-Carlo simulations [...] Read more.
Pebble Bed Reactors (PBRs) represent a new generation of nuclear reactors. However, modeling TRi-structural ISOtropic (TRISO) fuel particles employed in PBRs presents a unique challenge in comparison to most conventional reactor designs. Rapid generation of different possible fuel particle configurations for Monte-Carlo simulations provides improved insights into the effects of particle distribution irregularities on the neutron economy. Defective pebbles could cause changes in the neutron flux in a nuclear reactor due to increased or decreased moderating effects. Different configurations of particle fuel also impact isotope production within the nuclear reactor. This study simulates several TRISO configurations representing limited capabilities of randomization algorithms, manufacturing defects configurations and/or special pebble design. All predictions are compared to an equivalent homogenized model used as baseline. The results show that the TRISO configuration has a non-negligible impact on the parameters under consideration. To explain these results, the ratio of the thermal flux of each model to the thermal flux of the homogeneous model is calculated. A clear pattern is observed in the data: as irregularities in the moderator medium emerge due to the distribution of TRISO particles, the neutron spectrum softens, leading to higher values of k and better fuel utilization. This dependence of the spectrum on the TRISO configuration is used to explain the pattern observed in the depletion calculation. The results open the possibility of optimizing the TRISO configuration in manufactured pebbles for fuel utilization and safeguards. Future work should focus on full core simulations to determine the extent of these findings. Full article
Show Figures

Figure 1

17 pages, 3034 KB  
Article
Numerical Simulation of Impermeability of Composite Geomembrane in Rigid Landfills
by Ming Huang, Teng Tu, Yueling Jing and Fan Yang
Modelling 2025, 6(3), 65; https://doi.org/10.3390/modelling6030065 - 10 Jul 2025
Viewed by 444
Abstract
To investigate the impermeability characteristics of composite geomembranes in rigid landfills, a three-dimensional finite element seepage analysis model, which incorporates a composite geomembrane, was established based on a case study of a rigid landfill project in Tongling. Utilizing the seepage mechanism of the [...] Read more.
To investigate the impermeability characteristics of composite geomembranes in rigid landfills, a three-dimensional finite element seepage analysis model, which incorporates a composite geomembrane, was established based on a case study of a rigid landfill project in Tongling. Utilizing the seepage mechanism of the composite geomembrane, the seepage distribution patterns of the hazardous waste leachate within the unit cell were computed under representative operating conditions. Different thickness amplification factor schemes for the equivalent treatment of the composite geomembrane were comparatively analyzed, considering both isotropic and anisotropic seepage conditions. The relationships between the seepage flow rate, velocity, and thickness amplification factor were determined. The results showed that the leachate experiences a rapid drop in the water head as it passes through the composite geomembrane, with a low seepage flow rate and velocity, highlighting the membrane’s significant impermeability effect. The finite element analysis indicated that thickness amplification of the composite geomembrane based on the flow equivalence is feasible to some degree, but treating the geomembrane as an anisotropic material during the equivalent process better approximates the actual conditions. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Graphical abstract

23 pages, 2058 KB  
Review
Alginate Sphere-Based Soft Actuators
by Umme Salma Khanam, Hyeon Teak Jeong, Rahim Mutlu and Shazed Aziz
Gels 2025, 11(6), 432; https://doi.org/10.3390/gels11060432 - 5 Jun 2025
Viewed by 1250
Abstract
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability [...] Read more.
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability to respond to thermal, magnetic, electrical, optical and chemical stimuli has enabled applications in targeted delivery, artificial muscles, microrobotics and environmental interfaces. This review examines recent advances in alginate sphere-based actuators, focusing on fabrication methods such as droplet microfluidics, coaxial flow and functional surface patterning, and strategies for introducing multi-stimuli responsiveness using smart polymers, nanoparticles and biologically active components. Actuation behaviours are understood and correlated with physical mechanisms including swelling kinetics, photothermal effects and the field-induced torque, supported by analytical and multiphysics models. Their demonstrated functionalities include shape transformation, locomotion and mechano-optical feedback. The review concludes with an outlook on the existing limitations, such as the material stability, cyclic durability and integration complexity, and proposes future directions toward the development of autonomous, multifunctional soft systems. Full article
(This article belongs to the Special Issue Polysaccharide Gels for Biomedical and Environmental Applications)
Show Figures

Figure 1

30 pages, 15147 KB  
Article
Analysis of Numerical Instability Factors and Geometric Reconstruction in 3D SIMP-Based Topology Optimization Towards Enhanced Manufacturability
by Longbao Chen and Ding Zhou
Appl. Sci. 2025, 15(11), 6195; https://doi.org/10.3390/app15116195 - 30 May 2025
Cited by 1 | Viewed by 725
Abstract
The advancement of topology optimization (TO) and additive manufacturing (AM) has significantly enhanced structural design flexibility and the potential for lightweight structures. However, challenges such as intermediate density, mesh dependency, checkerboard patterns, and local extrema in TO can lead to suboptimal performance. Moreover, [...] Read more.
The advancement of topology optimization (TO) and additive manufacturing (AM) has significantly enhanced structural design flexibility and the potential for lightweight structures. However, challenges such as intermediate density, mesh dependency, checkerboard patterns, and local extrema in TO can lead to suboptimal performance. Moreover, existing AM technologies confront geometric constraints that limit their application. This study investigates minimum compliance as the objective function and volume as the constraint, employing the solid isotropic material with penalization method, density filtering, and the method of moving asymptotes. It examines how factors like mesh type, mesh size, volume fraction, material properties, initial density, filter radius, and penalty factor influence the TO results for a metallic gooseneck chain. The findings suggest that material properties primarily affect numerical variations along the TO path, with minimal impact on structural configuration. For both hexahedral and tetrahedral mesh types, a recommended mesh size is identified where the results show less than a 1% difference across varying mesh sizes. An initial density of 0.5 is advised, with a filter radius of approximately 2.3 to 2.5 times the average unit edge length for hexahedral meshes and 1.3 to 1.5 times for tetrahedral meshes. The suggested penalty factor ranges of 3–4 for hexahedral meshes and 2.5–3.5 for tetrahedral meshes. The optimal geometric reconstruction model achieves weight reductions of 23.46% and 22.22% compared to the original model while satisfying static loading requirements. This work contributes significantly to the integration of TO and AM in engineering, laying a robust foundation for future design endeavors. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

12 pages, 1606 KB  
Article
Measurement Grid Optimization for OTA Testing of 5G Smart Watches
by Xudong An, Fei Liu, Meijun Qu and Siyang Sun
Sensors 2025, 25(10), 3185; https://doi.org/10.3390/s25103185 - 19 May 2025
Viewed by 584
Abstract
Over-the-air (OTA) testing is crucial for optimizing wireless performance of 5G smart watches and improving their user experience. However, the current required test time is so long that it is almost impossible to complete the entire OTA testing without recharging and repositioning, which [...] Read more.
Over-the-air (OTA) testing is crucial for optimizing wireless performance of 5G smart watches and improving their user experience. However, the current required test time is so long that it is almost impossible to complete the entire OTA testing without recharging and repositioning, which is unacceptable for the industry. Therefore, test-time reduction is significant. The objective of this work is to optimize measurement grids for OTA testing of 5G smart watches, which balance accuracy with efficiency. In this research, passive patterns from a typical 5G commercial smart watch are measured at different bands as reference patterns, which represent general radiation properties of 5G commercial smart watches. The effect of various coarse grids on OTA testing precision is characterized quantitatively by analyzing their accuracy in reconstructing reference patterns. The related measurement uncertainty (MU) terms are then evaluated and determined quantitatively based on statistical analysis. According to the derived MU limits for grid configurations, reducing grid points from currently required 62 (30/30) to 26 (45/45), and from 266 (15/15) to 62 (30/30) could save roughly 60% and 75% of the test time, respectively, with an uncertainty increase of 0.1 dB for both Total Isotropic Sensitivity (TIS) and Total Radiated Power (TRP) testing, which is considered acceptable. Furthermore, the feasibility of the proposed MU analysis and recommended grids have been experimentally verified. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Antenna Technology)
Show Figures

Figure 1

16 pages, 3783 KB  
Article
Investigation of a New Stacking Pattern of Laminates with Approximately Constant Bending Stiffness
by Qingnian Liu, Yingfeng Shao, Yong Cai, Long Li and Fan Song
Polymers 2025, 17(8), 1098; https://doi.org/10.3390/polym17081098 - 18 Apr 2025
Viewed by 438
Abstract
To achieve laminates with constant bending stiffness to match the high precision requirement of optical systems made of carbon fiber reinforced plastic (CFRP), a new method, the normalized direction factor of bending stiffness (NDFBS), is proposed based on the normalized geometric factor of [...] Read more.
To achieve laminates with constant bending stiffness to match the high precision requirement of optical systems made of carbon fiber reinforced plastic (CFRP), a new method, the normalized direction factor of bending stiffness (NDFBS), is proposed based on the normalized geometric factor of bending stiffness. Using NDFBS and its variance (VNDFBS), we investigate two common stacking patterns, I and II ([(θ1)m/(θ2)m/…/(θp)m]S and [(θ1/θ2/…/θp)m]S) and our proposed new stacking pattern, Pattern III ([(θ1/θ2/…/θp)S]m) based on the initial quasi-isotropic laminates, [θ1/θ2/…/θp]. The bending stiffness of the stacking sequence [(45/−45/0/90)S]2 tends to be more uniform than that of [45/−45/0/90]2S, and the order of uniformity in bending stiffness of other stacking sequences is [(60/0/−60)S]4 > [60/0/−60]4S > [(60/0/−60)S]2 > [60/0/−60]2S. Both theoretical deviations and experimental observations confirm that as the cycle number m increased, the uniformity in bending stiffness is improved gradually, except for that of Pattern I. As the cycle number increased, the speed of Pattern III approaching the constant bending stiffness was faster than that of Patterns I and II. Notably, to achieve a nearly identical uniformity in bending stiffness, only the square root of the cycle number of Pattern II was enough for Pattern III. Based on the same initial laminate and cycle number, Pattern III exhibited more uniform bending stiffness and strength, which are appropriate for precision optical components that require dimensional stability, such as space mirrors. Full article
Show Figures

Figure 1

14 pages, 3209 KB  
Article
Graphene-Based Absorber: Tunable, Highly Sensitive, Six-Frequency
by Xinmei Wang, Xianding He, Hua Yang, Xu Bao, Yongjian Tang, Pinghui Wu and Yougen Yi
Molecules 2025, 30(8), 1688; https://doi.org/10.3390/molecules30081688 - 10 Apr 2025
Viewed by 1008
Abstract
Due to the equipartition exciton property of graphene metamaterials, researchers have applied them to the design of absorbers and developed a series of absorbers covering different wavebands (including narrowband and broadband). In this paper, an absorber based on surface-isotropic excitations was designed with [...] Read more.
Due to the equipartition exciton property of graphene metamaterials, researchers have applied them to the design of absorbers and developed a series of absorbers covering different wavebands (including narrowband and broadband). In this paper, an absorber based on surface-isotropic excitations was designed with the help of graphene metamaterials and relevant simulations. The absorber exhibited six perfect absorption peaks in the mid-infrared band and had an extremely simple structure consisting of only three layers: a gold layer at the bottom, a dielectric layer made of silica in the middle, and patterned graphene at the top. This absorber possesses excellent tuning ability, and by applying an external bias to the graphene layer, the Fermi energy level of graphene can be adjusted, and thus the resonance frequency of the absorption peak can be tuned. Meanwhile, the effect of the graphene relaxation time on the absorber performance was investigated. In addition, the refractive index of the dielectric layer was found to be linearly related to the resonance frequency of the absorption peak. It is worth mentioning that the absorber structure possessed polarization insensitivity due to its central symmetry. Even when incident light with different polarizations was incident over a wide range of angles, the change in absorbance of the absorption peaks was negligible, demonstrating significant insensitivity to the angle of incidence. The sensor possesses excellent characteristics such as tunability, polarization insensitivity, incident angle insensitivity, and high sensitivity. This paper demonstrates the feasibility of a six-frequency sensor and opens up more ideas for the design of multi-frequency sensors. Full article
Show Figures

Figure 1

12 pages, 2964 KB  
Article
Azimuthal Variation in the Surface Wave Velocity of the Philippine Sea Plate
by Víctor Corchete
J. Mar. Sci. Eng. 2025, 13(3), 606; https://doi.org/10.3390/jmse13030606 - 19 Mar 2025
Viewed by 450
Abstract
A study of the azimuthal variation in the surface wave fundamental-mode phase velocity is performed for the Philippine Sea Plate (PSP). This azimuthal variation has been anisotropically inverted for the PSP to determine the isotropic and anisotropic structure of this plate from 0 [...] Read more.
A study of the azimuthal variation in the surface wave fundamental-mode phase velocity is performed for the Philippine Sea Plate (PSP). This azimuthal variation has been anisotropically inverted for the PSP to determine the isotropic and anisotropic structure of this plate from 0 to 260 km. This azimuthal variation is due to anisotropy in the upper mantle. The crust is found in an isotropic structure, but the lithosphere and asthenosphere exhibit anisotropic structures. For the lithosphere, the main cause of anisotropy is the alignment of anisotropic crystals approximately parallel to the direction of seafloor spreading, and the fast axis of the seismic velocity is in the direction of ~163° of azimuth. For the asthenosphere, the seismic anisotropy can be derived from the lattice-preferred orientation (LPO) in response to the shear strains induced by mantle flow, and the fast axis of the seismic velocity is also the direction of ~163° of azimuth. This result suggests that a mantle flow pattern may occur in the asthenosphere and seems to be approximately parallel to the direction of seafloor spreading observed for the lithosphere. Finally, the changes in the parameter ξ with depth are studied to estimate the depth of the lithosphere–asthenosphere boundary (LAB), observing a clear change in this parameter at 80 km depth. Full article
(This article belongs to the Special Issue Storm Tide and Wave Simulations and Assessment, 3rd Edition)
Show Figures

Figure 1

Back to TopTop