Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = kidney bean polyphenols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2432 KiB  
Article
Unraveling the Impact of Aspergillus sojae—A Food-Grade Fungus—On Phytoalexins, Phenolic Acids, and the Antioxidant and Antidiabetic Activity of Different Legumes
by Shalika Rana, William Broussard, Steven Elliott, Matthew E. Burow and Stephen M. Boue
Foods 2024, 13(22), 3533; https://doi.org/10.3390/foods13223533 - 5 Nov 2024
Cited by 1 | Viewed by 1145
Abstract
Legumes are a rich source of polyphenolic compounds known for their ability to promote health. Under stress conditions, legumes have been shown to produce higher levels of secondary metabolites, as a defensive mechanism. Hence, the present study aimed to induce legume seeds (e.g., [...] Read more.
Legumes are a rich source of polyphenolic compounds known for their ability to promote health. Under stress conditions, legumes have been shown to produce higher levels of secondary metabolites, as a defensive mechanism. Hence, the present study aimed to induce legume seeds (e.g., soybean, chickpea, green pea, and red kidney bean) by inoculating them with Aspergillus sojae (A. sojae) and to evaluate the extracts for phytoalexins, phenolics, and antioxidant, antiobesity, and antidiabetic potentials. The UPLC-DAD findings of A. sojae-induced legumes showed medicarpin and maackiain in chickpea, pisatin in green pea, glyceollin I-III in soybean, and kievitone and phaseollin in red kidney bean. All induced legumes exhibited a higher total polyphenol content compared to the non-induced ones. Among induced legumes, soybean exhibited a higher (4.85 mg GAE/g) polyphenol content. The UPLC-ESI-QTOF-MS/MS findings established that legumes contained substantial levels of protocatechuic acid, vanillic acid, ferulic acid, chlorogenic acid, coumaric acid, 4-hydroxybenzoic acid, and caffeic acid. The results of antioxidant assays revealed a significantly higher level of activity in induced red kidney bean and soybean, whereas the level of activity in non-induced legumes was markedly lower. Moreover, induced red kidney bean effectively inhibited α-glucosidase (87.2%) and α-amylase (63.90%) at 5 mg/mL. Additionally, the maximum lipase inhibitory effects were displayed by induced soybean (72.54%) at 20 mg/mL. Full article
(This article belongs to the Special Issue Advances on Functional Foods with Antioxidant Bioactivity)
Show Figures

Graphical abstract

21 pages, 2614 KiB  
Article
Physicochemical, Sensory, and Microbiological Analysis of Fermented Drinks Made from White Kidney Bean Extract and Cow’s Milk Blends during Refrigerated Storage
by Ibaratkan Kurbanova, Lina Lauciene, Kristina Kondrotiene, Gintare Zakariene, Vitalijs Radenkovs, Sandra Kiselioviene, Alvija Salaseviciene, Agne Vasiliauskaite, Mindaugas Malakauskas, Mukarama Musulmanova and Loreta Serniene
Microorganisms 2024, 12(9), 1832; https://doi.org/10.3390/microorganisms12091832 - 4 Sep 2024
Viewed by 1555
Abstract
Due to its low dietary impact and bioactive compounds, such as polyphenols and flavonoids, white kidney bean extract is an attractive raw material for fermented drinks. It can be utilized either on its own or blended with cow’s milk, offering a promising solution [...] Read more.
Due to its low dietary impact and bioactive compounds, such as polyphenols and flavonoids, white kidney bean extract is an attractive raw material for fermented drinks. It can be utilized either on its own or blended with cow’s milk, offering a promising solution to help meet dairy product demand during mid-season shortages. Therefore, this study aimed to explore the physicochemical characteristics, sensory properties, and microbiological profile of fermented milk-like drinks made from white kidney bean extract, cow’s milk and their blends during 28 days of storage at 4 °C. Three blends of fermented milk-like drinks (FMLDs) were prepared from different ratios of cow’s milk (CM) and kidney bean extract (BE): FMLD1 (CM 30%:BE 70%); FMLD2 (CM 50%:BE 50%), FMLD3 (CM 70%:BE 30%), along with plain fermented kidney been extract (FBE; CM 0%:BE 100%), and plain fermented cow’s milk (FCM; CM 100%:BE 0%). The mixtures were pasteurized at 92 °C for 25 min and fermented with a probiotic-type starter culture (S. thermophilus, B. bifidum, L. acidophilus) at 43 °C. FBE exhibited the lowest levels of carbohydrates (2.14%), fat (0.11%), and protein (1.45%) compared to fermented cow’s milk and blends. The FBE and the fermented blends with a higher ratio of bean extract had lower viscosity and lactic acid contents, greener hue, more pronounced aftertaste and off-flavors, and received lower overall acceptability scores. Although the FCM had higher counts of S. thermophilus and L. acidophilus, the FBE displayed significantly higher counts of B. bifidum. This study demonstrated the potential of using white kidney bean extract and its blends with cow’s milk to create unique fermented products with a lower dietary impact, highlighting the importance of further optimizing the formulations to enhance sensory qualities and reduce the beany off-flavors in the products with added kidney bean extract. Full article
Show Figures

Figure 1

23 pages, 1801 KiB  
Article
Probiotic-Enriched Ice Cream with Fermented White Kidney Bean Homogenate: Survival, Antioxidant Activity, and Potential for Future Health Benefits
by Małgorzata Ziarno, Patrycja Cichońska, Ewa Kowalska and Dorota Zaręba
Molecules 2024, 29(13), 3222; https://doi.org/10.3390/molecules29133222 - 7 Jul 2024
Cited by 3 | Viewed by 2464
Abstract
This study investigated a novel probiotic-enriched ice cream containing fermented white kidney bean homogenate to explore its potential health benefits in the future. We assessed the viability of various probiotic strains during ice cream production and storage, focusing on their potential to reach [...] Read more.
This study investigated a novel probiotic-enriched ice cream containing fermented white kidney bean homogenate to explore its potential health benefits in the future. We assessed the viability of various probiotic strains during ice cream production and storage, focusing on their potential to reach the gut, and evaluated overall antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and total polyphenol content (TPC) assays. The incorporation of fermented white bean homogenate significantly increased antioxidant capacity compared to the control group. Notably, strains such as Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum 299v demonstrated the most pronounced effects on antioxidant activity, suggesting potential synergistic benefits between probiotics and bioactive compounds in fermented white beans. Although all probiotic strains experienced decreased viability during storage, certain strains, particularly L. plantarum 299v and Lacticaseibacillus casei DN-114001, showed promising survival rates even after 6 months. These results suggest the potential for developing probiotic ice cream containing viable bacteria capable of reaching the gut and contributing to a healthy gut microbiota. Overall, this study highlights the potential of probiotic-enriched ice cream with fermented white kidney bean homogenate to combine the established benefits of probiotics for gut health with the enjoyment of consuming ice cream. Full article
(This article belongs to the Special Issue New Frontiers in Fermented Products – 2nd Edition)
Show Figures

Figure 1

13 pages, 2666 KiB  
Article
Investigation of Pharmacologically Important Polyphenolic Secondary Metabolites in Plant-based Food Samples Using HPLC-DAD
by Naheed Akhtar, Amna Jabbar Siddiqui, Muhammad Ramzan, Jalal Uddin, Mufarreh Asmari, Hesham R. El-Seedi and Syed Ghulam Musharraf
Plants 2024, 13(10), 1311; https://doi.org/10.3390/plants13101311 - 10 May 2024
Cited by 1 | Viewed by 1541
Abstract
Polyphenolic compounds are vital components of plants. However, their analysis is particularly difficult and challenging due to their similar chemical and structural properties. In this study, we developed a simple and reproducible HPLC-DAD protocol for determining nineteen pharmacologically important polyphenols in plant-based food [...] Read more.
Polyphenolic compounds are vital components of plants. However, their analysis is particularly difficult and challenging due to their similar chemical and structural properties. In this study, we developed a simple and reproducible HPLC-DAD protocol for determining nineteen pharmacologically important polyphenols in plant-based food samples, including fruits (apple, banana, grapefruit, peach, grapes, plum, and pear), vegetables (onion, cabbage, capsicum, garlic, lemon, tomato, potato, and spinach), and other edible items (corn, kidney beans, green tea, black tea, and turmeric). The reference standards were pooled into four different groups based on logP values and expected retention time to avoid compound co-elution. These developed methods will be useful for the qualitative and quantitative analysis of biologically important polyphenolic compounds in various food samples and botanicals. Full article
(This article belongs to the Special Issue Phytochemical Analysis and Metabolic Profiling in Plants)
Show Figures

Graphical abstract

35 pages, 2891 KiB  
Review
Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials
by Vi Nguyen, Elaine G. Taine, Dehao Meng, Taixing Cui and Wenbin Tan
Nutrients 2024, 16(7), 924; https://doi.org/10.3390/nu16070924 - 23 Mar 2024
Cited by 68 | Viewed by 14886
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with [...] Read more.
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA’s pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA. Full article
(This article belongs to the Special Issue The Role of Bioactive Compounds in Immunonutrition)
Show Figures

Figure 1

27 pages, 3344 KiB  
Article
Anti-Obesity Effect of Combining White Kidney Bean Extract, Propolis Ethanolic Extract and CrPi3 on Sprague-Dawley Rats Fed a High-Fat Diet
by Doaa Salah Eldin Abdelfattah, Mervat A. Fouad, Aliaa N. Elmeshad, Mohamed A. El-Nabarawi and Sammar Fathy Elhabal
Nutrients 2024, 16(2), 310; https://doi.org/10.3390/nu16020310 - 20 Jan 2024
Cited by 14 | Viewed by 6951
Abstract
Obesity has been associated with the occurrence and prevalence of various chronic metabolic diseases. The management of obesity has evolved to focus not only on reducing weight, but also on preventing obesity-related complications. Studies have shown that bioactive components in natural products like [...] Read more.
Obesity has been associated with the occurrence and prevalence of various chronic metabolic diseases. The management of obesity has evolved to focus not only on reducing weight, but also on preventing obesity-related complications. Studies have shown that bioactive components in natural products like white kidney bean extract (WKBE), propolis ethanolic extract (PEE), and chromium picolinate (CrPi3) showed anti-obesity properties. However, no studies have examined the outcomes of combining any of these nutraceutical supplements. We compared the effects of HFD supplemented with WKBE, WKBE+PEE, or WKBE+PEE+CrPi3 against control and obese groups using Sprague-Dawley rats fed a 45% high-fat diet as an in vivo model. Nutritional parameters, biochemical parameters, and biomarkers of cardiovascular disease, liver function, kidney function, and gut health were among the comparable effects. Our findings showed that combining the three nutraceutical supplements had a synergetic effect on reducing weight gain, food utilization rate, abdominal fat, serum lipids, arterial and hepatic lipids, risk of cardiovascular disease, and blood glucose level, in addition to improving renal function and gut microbiota. We attributed these effects to the α-amylase inhibitor action of WKBE, flavonoids, and polyphenol content of PEE, which were potentiated with CrPi3 resulting in a further reduction or normalization of certain parameters. Full article
(This article belongs to the Special Issue Natural Products and Health: 2nd Edition)
Show Figures

Graphical abstract

22 pages, 14540 KiB  
Article
Metallothionein–Kidney Bean Polyphenol Complexes Showed Antidiabetic Activity in Type 2 Diabetic Rats by Improving Insulin Resistance and Regulating Gut Microbiota
by Zhaohang Zuo, Weiqiao Pang, Wei Sun, Baoxin Lu, Liang Zou, Dongjie Zhang and Ying Wang
Foods 2023, 12(16), 3139; https://doi.org/10.3390/foods12163139 - 21 Aug 2023
Cited by 11 | Viewed by 3229
Abstract
Previous studies have shown that interaction between polyphenols and proteins can benefit health, but the mechanism of its antidiabetic effect has not been thoroughly elucidated. Therefore, this study aimed to investigate the impact of the metallothionein (MT)–kidney bean polyphenol complex on the blood [...] Read more.
Previous studies have shown that interaction between polyphenols and proteins can benefit health, but the mechanism of its antidiabetic effect has not been thoroughly elucidated. Therefore, this study aimed to investigate the impact of the metallothionein (MT)–kidney bean polyphenol complex on the blood glucose levels and gut microbiota of rats with type 2 diabetes mellitus (T2DM) induced by a high-fat diet combined with streptozotocin (STZ). After 7 weeks of intervention, the MT–kidney bean polyphenol complex can significantly improve the loss of body weight, the increase in blood glucose and blood lipids, and insulin resistance caused by T2DM in rats. In addition, it can effectively alleviate the damage to the pancreas and liver in rats. The MT–kidney bean polyphenol complex also significantly increased the concentrations of six short-chain fatty acids (SCFAs) in the intestinal contents of rats, especially acetic acid, propionic acid, and butyric acid (296.03%, 223.86%, and 148.97%, respectively). More importantly, the MT–kidney bean polyphenol complex can significantly reverse intestinal microflora dysbiosis in rats caused by T2DM, increase intestinal microorganism diversity, improve the abundance of various beneficial bacteria, and reshape the gut microbiota. In summary, the hypoglycemic effect of the MT–kidney bean polyphenol complex and its possible mechanism was expounded in terms of blood glucose level, blood lipid level, and gut microbiota, providing a new perspective on the development of the MT–kidney bean polyphenol complex as functional hypoglycemic food. Full article
Show Figures

Graphical abstract

13 pages, 1066 KiB  
Article
Kidney Bean Substitution Ameliorates the Nutritional Quality of Extruded Purple Sweet Potatoes: Evaluation of Chemical Composition, Glycemic Index, and Antioxidant Capacity
by Eny Palupi, Nira Delina, Naufal M. Nurdin, Hana F. Navratilova, Rimbawan Rimbawan and Ahmad Sulaeman
Foods 2023, 12(7), 1525; https://doi.org/10.3390/foods12071525 - 4 Apr 2023
Cited by 9 | Viewed by 4359
Abstract
The extrusion process may influence the nutritional profiles of carbohydrate-rich food ingredients, including the glycemic index (GI) and antioxidant capacity. This study aimed to evaluate the nutritional profile of extruded purple sweet potato (EPSP) substituted with kidney bean flour (KBF) (0, 30, and [...] Read more.
The extrusion process may influence the nutritional profiles of carbohydrate-rich food ingredients, including the glycemic index (GI) and antioxidant capacity. This study aimed to evaluate the nutritional profile of extruded purple sweet potato (EPSP) substituted with kidney bean flour (KBF) (0, 30, and 40%). These foods were further characterized by their proximate composition, resistant starch, polyphenols, GI, and antioxidant capacities. The 40% KBF substitution enhanced the protein and fiber contents of the EPSP by up to 8% and 6%, respectively. Moreover, it also revealed that EPSP with 40% KBF substitution had a low-GI category (53.1), while the 0 and 30% substitution levels had a high-GI category, i.e., 77.4 and 74.7, respectively. However, the extrusion processing reduced the anthocyanin content and antioxidant capacity of purple sweet potato flour containing 40% KBF by 48% and 19%, respectively. There was a significant relationship between the GI values of proteins, fats, and fibers (p < 0.05). The insignificant effect of resistant starch and phenol contents on GI value was recorded due to the low concentrations of those components. KBF substitution could ameliorate the profile of protein, fiber, and GI, but not for antioxidant capacity. The other innovative processes for preserving antioxidant capacity might improve the product quality. Full article
Show Figures

Figure 1

14 pages, 796 KiB  
Review
Nutritional Composition, Efficacy, and Processing of Vigna angularis (Adzuki Bean) for the Human Diet: An Overview
by Yao Wang, Xinmiao Yao, Huifang Shen, Rui Zhao, Zhebin Li, Xinting Shen, Fei Wang, Kaixin Chen, Ye Zhou, Bo Li, Xianzhe Zheng and Shuwen Lu
Molecules 2022, 27(18), 6079; https://doi.org/10.3390/molecules27186079 - 17 Sep 2022
Cited by 23 | Viewed by 6203
Abstract
Adzuki beans are grown in several countries around the world and are widely popular in Asia, where they are often prepared in various food forms. Adzuki beans are rich in starch, and their proteins contain a balanced variety of amino acids with high [...] Read more.
Adzuki beans are grown in several countries around the world and are widely popular in Asia, where they are often prepared in various food forms. Adzuki beans are rich in starch, and their proteins contain a balanced variety of amino acids with high lysine content, making up for the lack of protein content of cereals in the daily diet. Therefore, the research on adzuki beans and the development of their products have broad prospects for development. The starch, protein, fat, polysaccharide, and polyphenol contents and compositions of adzuki beans vary greatly among different varieties. The processing characteristic components of adzuki beans, such as starch, isolated protein, and heated flavor, are reported with a view to further promote the processing and development of adzuki bean foods. In addition to favorable edibility, the human health benefits of adzuki beans include antioxidant, antibacterial, and anti-inflammatory properties. Furtherly, adzuki beans and extracts have positive effects on the prevention and treatment of diseases, including diabetes, diabetes-induced kidney disease or kidney damage, obesity, and high-fat-induced cognitive decline. This also makes a case for the dual use of adzuki beans for food and medicine and contributes to the promotion of adzuki beans as a healthy, edible legume. Full article
(This article belongs to the Special Issue Recent Advances in Food Carbohydrates)
Show Figures

Figure 1

22 pages, 8546 KiB  
Article
Kidney Bean Fermented Broth Alleviates Hyperlipidemic by Regulating Serum Metabolites and Gut Microbiota Composition
by Weiqiao Pang, Di Wang, Zhaohang Zuo, Ying Wang, Wei Sun, Naidan Zhang and Dongjie Zhang
Nutrients 2022, 14(15), 3202; https://doi.org/10.3390/nu14153202 - 5 Aug 2022
Cited by 17 | Viewed by 3168
Abstract
Hyperlipidemia with fat accumulation and weight gain causes metabolic diseases and endangers human body health easily which is accompanied by metabolic abnormalities and intestinal flora disorders. In this study, the kidney bean fermented broth (KBF) was used in rats that were fed a [...] Read more.
Hyperlipidemia with fat accumulation and weight gain causes metabolic diseases and endangers human body health easily which is accompanied by metabolic abnormalities and intestinal flora disorders. In this study, the kidney bean fermented broth (KBF) was used in rats that were fed a high-fat diet to induce hyperlipidemia in order to subsequently analyse the serum metabolomics and gut microbiota modulatoration. The results show that the contents of the total polyphenols and total flavonoids in the KBF were up three and one times, while energy and carbohydrates decreased. In the HFD-induced hyperlipidemic model, body weight, organ weight, and the level of blood lipids (ALT, AST, TG, TC) were lower in rats treated with KBF than in the controls. Metabonomics indicate that there were significant differences in serum metabolomics between the KBF and the HFD. KBF could significantly improve the glycerophospholipids, taurine, and hypotaurine metabolism and amino acid metabolism of hyperlipidemic rats and then improve the symptoms of hypersterol and fat accumulation in rats. The relative abundance of beneficial bacteria increased while pathogenic bacteria decreased after the intervention of KBF. KBF ameliorates dyslipidemia of HFD-induced hyperlipidemic via modulating the blood metabolism and the intestinal microbiota. Collectively, these findings suggest that KBF could be developed as a functional food for anti-hyperlipidemia. Full article
Show Figures

Figure 1

17 pages, 670 KiB  
Article
Effects of Raw and Roasted Cocoa Bean Extracts Supplementation on Intestinal Enzyme Activity, Biochemical Parameters, and Antioxidant Status in Rats Fed a High-Fat Diet
by Dorota Żyżelewicz, Joanna Oracz, Małgorzata Bojczuk, Grażyna Budryn, Adam Jurgoński, Jerzy Juśkiewicz and Zenon Zduńczyk
Nutrients 2020, 12(4), 889; https://doi.org/10.3390/nu12040889 - 25 Mar 2020
Cited by 11 | Viewed by 5131
Abstract
The aim of the study was to analyze the influence of diet containing the polyphenol-rich material on intestinal enzyme activity, oxidative stress markers, lipid metabolism and antioxidant status of laboratory rats. The animals were fed high-fat diet supplemented with freeze-dried water extracts of [...] Read more.
The aim of the study was to analyze the influence of diet containing the polyphenol-rich material on intestinal enzyme activity, oxidative stress markers, lipid metabolism and antioxidant status of laboratory rats. The animals were fed high-fat diet supplemented with freeze-dried water extracts of raw and roasted cocoa beans of Forastero variety. The observed changes indicated the biological activity of polyphenols and other components of the prepared cocoa beans extracts (CBEs). The presence of raw and roasted CBEs in the diets diversified the activity of the enzymes of the cecal microflora of rats. Both CBEs beneficially affect the antioxidant status of the serum, even in relation to the control standard group. The experimental cocoa bean preparations showed no significant effect on the mass of rats’ liver, heart, and kidneys, but varied some parameters of the antioxidant status of their organisms. The raw CBE in rats fed with the high-fat diet shows a high ability to inhibit lipid peroxidation in heart and more effectively increases hepatic reduced glutathione (GSH) concentrations compared to the roasted CBE, which did not show any significant effect. Moreover, supplementation with both CBEs significantly affects the volatile fatty acids concentration in the rats’ cecum. Results of this study contribute to the evidence that dietary supplementation with raw and roasted CBEs can exert health-promoting effects, however further studies are necessary. Full article
(This article belongs to the Special Issue Sustainable Nutrition and Health Based on Coffee, Tea, and Cocoa)
Show Figures

Figure 1

22 pages, 1929 KiB  
Article
An In Vivo (Gallus gallus) Feeding Trial Demonstrating the Enhanced Iron Bioavailability Properties of the Fast Cooking Manteca Yellow Bean (Phaseolus vulgaris L.)
by Jason A. Wiesinger, Raymond P. Glahn, Karen A. Cichy, Nikolai Kolba, Jonathan J. Hart and Elad Tako
Nutrients 2019, 11(8), 1768; https://doi.org/10.3390/nu11081768 - 1 Aug 2019
Cited by 31 | Viewed by 5163
Abstract
The common dry bean (Phaseolus vulgaris L.) is a globally produced pulse crop and an important source of micronutrients for millions of people across Latin America and Africa. Many of the preferred black and red seed types in these regions have seed [...] Read more.
The common dry bean (Phaseolus vulgaris L.) is a globally produced pulse crop and an important source of micronutrients for millions of people across Latin America and Africa. Many of the preferred black and red seed types in these regions have seed coat polyphenols that inhibit the absorption of iron. Yellow beans are distinct from other market classes because they accumulate the antioxidant kaempferol 3-glucoside in their seed coats. Due to their fast cooking tendencies, yellow beans are often marketed at premium prices in the same geographical regions where dietary iron deficiency is a major health concern. Hence, this study compared the iron bioavailability of three faster cooking yellow beans with contrasting seed coat colors from Africa (Manteca, Amarillo, and Njano) to slower cooking white and red kidney commercial varieties. Iron status and iron bioavailability was assessed by the capacity of a bean based diet to generate and maintain total body hemoglobin iron (Hb-Fe) during a 6 week in vivo (Gallus gallus) feeding trial. Over the course of the experiment, animals fed yellow bean diets had significantly (p ≤ 0.05) higher Hb-Fe than animals fed the white or red kidney bean diet. This study shows that the Manteca yellow bean possess a rare combination of biochemical traits that result in faster cooking times and improved iron bioavailability. The Manteca yellow bean is worthy of germplasm enhancement to address iron deficiency in regions where beans are consumed as a dietary staple. Full article
(This article belongs to the Special Issue Dietary Trace Minerals)
Show Figures

Figure 1

12 pages, 567 KiB  
Article
Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method
by Marielle Margier, Stéphane Georgé, Noureddine Hafnaoui, Didier Remond, Marion Nowicki, Laure Du Chaffaut, Marie-Josèphe Amiot and Emmanuelle Reboul
Nutrients 2018, 10(11), 1668; https://doi.org/10.3390/nu10111668 - 4 Nov 2018
Cited by 180 | Viewed by 14882
Abstract
Pulses display nutritional benefits and are recommended in sustainable diets. Indeed, they are rich in proteins and fibers, and can contain variable amounts of micronutrients. However, pulses also contain bioactive compounds such as phytates, saponins, or polyphenols/tannins that can exhibit ambivalent nutritional properties [...] Read more.
Pulses display nutritional benefits and are recommended in sustainable diets. Indeed, they are rich in proteins and fibers, and can contain variable amounts of micronutrients. However, pulses also contain bioactive compounds such as phytates, saponins, or polyphenols/tannins that can exhibit ambivalent nutritional properties depending on their amount in the diet. We characterized the nutritional composition and bioactive compound content of five types of prepared pulses frequently consumed in France (kidney beans, white beans, chickpeas, brown and green lentils, flageolets), and specifically compared the effects of household cooking vs. canning on the composition of pulses that can be consumed one way or the other. The contents in macro-, micronutrients, and bioactive compounds highly varied from one pulse to another (i.e., 6.9 to 9.7 g/100 g of cooked product for proteins, 4.6 to 818.9 µg/100 g for lutein or 15.0 to 284.3 mg/100 g for polyphenols). The preparation method was a key factor governing pulse final nutritional composition in hydrophilic compounds, depending on pulse species. Canning led to a greater decrease in proteins, total dietary fibers, magnesium or phytate contents compared to household cooking (i.e., −30%, −44%, −33% and −38%, p < 0.05, respectively, in kidney beans). As canned pulses are easy to use for consumers, additional research is needed to improve their transformation process to further optimize their nutritional quality. Full article
Show Figures

Graphical abstract

11 pages, 269 KiB  
Article
Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus
by Edith Espinosa-Páez, Ma. Guadalupe Alanis-Guzmán, Carlos E. Hernández-Luna, Juan G. Báez-González, Carlos A. Amaya-Guerra and Ana M. Andrés-Grau
Molecules 2017, 22(12), 2275; https://doi.org/10.3390/molecules22122275 - 20 Dec 2017
Cited by 65 | Viewed by 7282
Abstract
The aim of the research was to determine the impact of fermentation with Pleurotus ostreatus on kidney beans, black beans, and oats. The results indicate that the fungus has a positive effect on the substrates when compared to the controls. The antioxidant activity [...] Read more.
The aim of the research was to determine the impact of fermentation with Pleurotus ostreatus on kidney beans, black beans, and oats. The results indicate that the fungus has a positive effect on the substrates when compared to the controls. The antioxidant activity (39.5% on kidney beans and 225% on oats in relation to the controls) and content of total polyphenols (kidney beans three times higher regarding the controls) increased significantly by the presence of the fungus mycelium, even after simulated digestion. There was a significant increase in protein digestibility (from 39.99 to 48.13% in black beans, 44.06 to 69.01% in kidney beans, and 63.25 to 70.01% in oats) and a decrease of antinutrient tannins (from 65.21 to 22.07 mg in black beans, 35.54 to 23.37 in kidney beans, and 55.67 to 28.11 in oats) as well as an increase in the contents of some essential amino acids. Overall, this fermentation treatment with Pleurotus ostreatus improved the nutritional quality of cereals and legumes, making them potential ingredients for the elaboration and/or fortification of foods for human nutrition. Full article
(This article belongs to the Special Issue Extractable and Non-Extractable Antioxidants)
Show Figures

Graphical abstract

Back to TopTop