Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (202)

Search Parameters:
Keywords = kraft process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3221 KB  
Article
Synthesis and Characterization of Phosphorylated Cellulose Nanocrystals: Exploring Factors for Enhanced Thermal and Colloidal Stability
by Diego López, María Graciela Aguayo, Mario Núñez-Decap, Pablo Reyes-Contreras, Regis Teixeira Mendonça, Isidora Reyes-González, Benjamín Opazo and Fabiola Valdebenito
Polymers 2025, 17(19), 2581; https://doi.org/10.3390/polym17192581 - 24 Sep 2025
Viewed by 74
Abstract
Phosphorylated cellulose nanocrystals (P-CNCs) are a superior alternative to conventional sulfuric acid-derived CNCs because of their enhanced thermal and colloidal stability. However, further research is needed to understand the factors influencing their synthesis and properties for advanced material applications. In this study, P-CNCs [...] Read more.
Phosphorylated cellulose nanocrystals (P-CNCs) are a superior alternative to conventional sulfuric acid-derived CNCs because of their enhanced thermal and colloidal stability. However, further research is needed to understand the factors influencing their synthesis and properties for advanced material applications. In this study, P-CNCs were synthesized from bleached hardwood kraft pulp (BEKP) using a controlled hydrolysis method involving pretreatment with H3PO4 followed by reaction with metaphosphoric acid (HPO3) and urea. To optimize the process, a full factorial design was employed to evaluate the effects of reaction time (60–90 min) and HPO3 concentration (3–4 M). The P-CNCs were characterized using physicochemical, morphological, and thermal analyses. Surface charge densities ranged from 757 to 1993 mmol/kg, with exceptional colloidal stability, as evidenced by zeta potentials ranging from −30.17 to −67.40 mV. Statistical analysis showed that reaction time had a significant main effect on surface charge (p-value = 0.0022) and zeta potential (p-value = 0.0448), while a significant interaction between reaction time and HPO3 concentration was observed when analyzing the surface charge (p-value = 0.0097), suggesting a combined effect of these factors on the surface modification of CNC. Crystallinity indices ranged from 63.6% to 71.3%, and the thermal stability exceeded that of the raw material. These findings contribute to a better understanding of the surface modification and stability of P-CNCs and support efforts to sustainably produce functional CNCs for advanced composite applications. Full article
(This article belongs to the Special Issue Advances in Cellulose and Wood-Based Composites)
Show Figures

Graphical abstract

20 pages, 7280 KB  
Article
Optimisation of Enzyme Lignin Degradation Using Response Surface Methodology for Sustainable Lignocellulosic By-Products Management
by Alexandra Burlacu (Grigoraș), Aglaia Popa and Florentina Israel-Roming
AgriEngineering 2025, 7(10), 314; https://doi.org/10.3390/agriengineering7100314 - 23 Sep 2025
Viewed by 148
Abstract
The efficient degradation of lignin from agricultural by-products is a critical step in the development of sustainable bioprocessing technologies for waste valorisation. Enzymatic degradation of kraft lignin performed with lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) was investigated. A response surface [...] Read more.
The efficient degradation of lignin from agricultural by-products is a critical step in the development of sustainable bioprocessing technologies for waste valorisation. Enzymatic degradation of kraft lignin performed with lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) was investigated. A response surface methodology (RSM) based on a Box–Behnken Design (BBD) was employed in order to optimise key process parameters including enzyme concentration, lignin concentration, pH, incubation temperature, and activator concentration. The surface plots were used to determine the best conditions for each enzyme in order to better degrade kraft lignin. Therefore, LiP needed a stronger acidic environment and moderate temperature, MnP needed an almost neutral pH and moderate temperature, and Lac needed a neutral pH and higher temperature. This work contributes to the development of smart agricultural waste management practices by combining enzymatic treatments with statistical modelling for process optimisation. This study provides a framework for lignin degradation that can be used as a starting point for diverse lignocellulosic by-product fragmentation, thus supporting a circular bioeconomy initiative in accordance with today’s trends. The optimised enzymatic parameters could help enhance efficiency, enable process standardisation across feedstocks, and support economically and environmentally sustainable industrial-scale lignin valorisation in integrated biorefineries. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

19 pages, 3745 KB  
Article
Multifunctional, Flexible, Electrospun Lignin/PLA Micro/Nanofiber Mats from Softwood Kraft, Hardwood Alcell, and Switchgrass CELF Lignin
by Dorota B. Szlek, Emily L. Fan and Margaret W. Frey
Fibers 2025, 13(9), 129; https://doi.org/10.3390/fib13090129 - 19 Sep 2025
Viewed by 306
Abstract
Herein, biobased 1:1 lignin/polylactic acid (PLA) blends are electrospun into micro- and nanofiber mats. Lignin samples originating from softwood, hardwood, and switchgrass biomass, extracted through the Kraft, Alcell, and CELF processes, respectively, and processed into soluble and insoluble fractions, are used. Functional properties [...] Read more.
Herein, biobased 1:1 lignin/polylactic acid (PLA) blends are electrospun into micro- and nanofiber mats. Lignin samples originating from softwood, hardwood, and switchgrass biomass, extracted through the Kraft, Alcell, and CELF processes, respectively, and processed into soluble and insoluble fractions, are used. Functional properties of the mats varied with lignin biomass origin, isolation method, and fraction. Mat attributes are demonstrated through analysis of spinnability, thermal and mechanical behavior, chemical structure, morphology, hydrophobicity, and antioxidant activity. Samples spun with hardwood Alcell lignin fractions were brittle and rigid with the highest Young’s modulus, lowest elongation at break, and hydrophobic contact angle > 100°. Switchgrass CELF lignin (SGL)/PLA mats showed the highest tensile strength, a low Young’s modulus, and high elongation at break, as well as good spinnability with the smallest fiber diameter from all samples. Kraft lignin/PLA demonstrated similar mechanical properties to SGL/PLA, as well as the highest antioxidant activity, measurable within 5 min. Therefore, while they did not dictate spinnability, the lignin biomass origin and pretreatment method were shown to have a significant impact on fiber properties, while the use of lignin fractions was shown to tailor functional properties of fibers for specific end use, such as in flexible, hydrophobic, or antioxidant product applications. Full article
(This article belongs to the Special Issue Preparation and Application of Sustainable Electrospun Nanofibers)
Show Figures

Graphical abstract

16 pages, 11041 KB  
Article
Comparative Study of Cement Composites Reinforced with Cellulose and Lignocellulose Fibers
by Piotr Turoboś and Piotr Przybysz
Fibers 2025, 13(9), 128; https://doi.org/10.3390/fib13090128 - 17 Sep 2025
Viewed by 344
Abstract
The urgent need to decarbonize the construction sector has prompted research into sustainable alternatives to conventional concrete. This study compares two industrially produced pulps with contrasting lignin contents: a bleached kraft cellulose pulp with near-zero lignin used in paper production and a thermo-mechanical [...] Read more.
The urgent need to decarbonize the construction sector has prompted research into sustainable alternatives to conventional concrete. This study compares two industrially produced pulps with contrasting lignin contents: a bleached kraft cellulose pulp with near-zero lignin used in paper production and a thermo-mechanical lignocellulose pulp with high lignin content used in MDF production. Fiber-reinforced composites were produced by partially replacing mineral aggregates with fibers at dosages from 0.1% to 3% by mass and air-curing to simulate practical curing conditions. The specimens were evaluated for density, water absorption, and compressive strength, with compressive strength measured at 7, 28, and 60 days. Results showed a reduction in density for both fiber types, along with increased water absorption and decreased compressive strength at higher fiber contents. Cellulose composites achieved a more favorable mechanical performance than lignocellulose composites but showed markedly higher water absorption, raising concerns about long-term durability. By testing two pulps that differ primarily in lignin content across multiple replacement ratios, the study provides a systematic comparison of their effects on composite properties. The comparison explicitly contrasts the lignin contents of the two industrial pulps—bleached kraft (~0.1%) versus thermo-mechanical (27.4%)—to isolate lignin-driven effects on hydration and property development. A practical air-curing protocol was adopted, leveraging fiber-bound/process water, thereby reflecting use cases where external water curing is constrained. Full article
Show Figures

Figure 1

16 pages, 4851 KB  
Article
Experimental Investigation of Wetting Materials for Indirect Evaporative Cooling Applications
by Lanbo Lai, Xiaolin Wang, Gholamreza Kefayati, Eric Hu and Kim Choon Ng
Appl. Sci. 2025, 15(17), 9818; https://doi.org/10.3390/app15179818 - 7 Sep 2025
Viewed by 1288
Abstract
The indirect evaporative cooling system, which exploits the water evaporation process to generate cooling loads without introducing additional moisture, has been recognised as a viable alternative to conventional air-conditioning systems. This acknowledgment is due to its attributes of energy efficiency and environmental friendliness. [...] Read more.
The indirect evaporative cooling system, which exploits the water evaporation process to generate cooling loads without introducing additional moisture, has been recognised as a viable alternative to conventional air-conditioning systems. This acknowledgment is due to its attributes of energy efficiency and environmental friendliness. The meticulous selection of wetting materials for an indirect evaporative cooler is of paramount importance as it significantly influences the heat and mass transfer performance of the system. Therefore, this paper experimentally examined a novel material produced by laser-resurfaced technology, and this material was compared with four other distinct materials (kraft paper, cotton fibre, polyester fibre, and polypropylene + nylon fibre) while considering the wicking ability, water-holding capacity, and thermal response performance. The results revealed that the fabric materials, specifically cotton fibre and polyester fibre, exhibited outstanding water-wicking ability, with a vertical wicking distance exceeding 16 cm. Cotton fibre also demonstrated an exceptional water-holding ability, registering a value of 0.0754 g/cm2. In terms of thermal response performance, polypropylene + nylon fibre and the laser-resurfaced polymer achieved stable conditions within one minute, which could be attributed to the absence of a mechanical support plate and adhesive layer. All five materials attained stability after 4.2 min. Cotton and polyester fibres exhibited advantages in the duration of the evaporation process, maintaining stable conditions for 24 and 90 min, respectively. Based on the experimental results, appropriate water-spray strategies are proposed for each material. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

17 pages, 2863 KB  
Article
Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
by Lahbib Abenghal, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi and François Brouillette
Polymers 2025, 17(15), 2022; https://doi.org/10.3390/polym17152022 - 24 Jul 2025
Viewed by 644
Abstract
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber [...] Read more.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead. The Langmuir isotherm model is applied to determine the maximum adsorption capacities at four different temperatures (10, 20, 30, and 50 °C), enabling the calculation of the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH) of adsorption. The results show that the adsorption capacity of phosphorylated fibers is equal or even higher than that of commercially available resins (1.7–2.9 vs. 2.4–2.6 mmol/g). However, the nature of the phosphate counterion plays an important role in the adsorption capacity, with the alkaline form showing a superior ion exchange capacity than the hybrid form and acid form (2.7–2.9 vs. 2.3–2.7 vs. 1.7–2.5 mmol/g). The thermodynamic analysis indicates the spontaneous (ΔG = (-)16–(-)30 kJ/mol) and endothermic nature of the adsorption process with positive changes in enthalpy (0.45–15.47 kJ/mol) and entropy (0.07–0.14 kJ/mol·K). These results confirm the high potential of phosphorylated lignocellulosic fibers for ion exchange applications, such as the removal of heavy metals from process or wastewaters. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

15 pages, 3592 KB  
Article
Critical Criterion for Flame Spread Acceleration of Concave Surfaces with Different Curvatures
by Yang Zhou, Haoteng Chen and Xu Yan
Fire 2025, 8(8), 292; https://doi.org/10.3390/fire8080292 - 24 Jul 2025
Viewed by 717
Abstract
Concave surface is a common geometry in both industrial buildings and natural environments; the flame spread behaviors on this special surface are worth studying, while few studies have been completed yet. In this study, kraft paper, which is a typical charring material, was [...] Read more.
Concave surface is a common geometry in both industrial buildings and natural environments; the flame spread behaviors on this special surface are worth studying, while few studies have been completed yet. In this study, kraft paper, which is a typical charring material, was chosen to investigate the behaviors of concurrent flame spread on concave surfaces. The results showed that there were three stages of the flame spread process on a concave surface: the flame gathering stage, the flame acceleration stage and the flame burnout stage. A peak mass loss rate was found at the end of the flame acceleration stage and then decayed rapidly due to the lack of sample that can maintain the flame spread. An experiential equation to predict the maximum mass loss rate was established. The flame spread showed an obvious acceleration with the increase in curvature, a new dimensionless number was proposed to find out whether the flame spread was accelerated or not. For the accelerated flame spread, the critical value is 0.85. Segmented expressions between dimensionless flame height and dimensionless heat release rate were developed, with good correlation for smaller curvatures. This study’s results will fill the blank of flame propagation on concave surfaces, improve the understanding of fires in special cases, and provide assistance in related fire risk evaluations. Full article
Show Figures

Figure 1

18 pages, 5617 KB  
Article
Tex-Crete—Carbon and Cost Assessment of Concrete with Textile and Carboard Fibres—Case Studies Towards Circular Economy
by Malindu Sandanayake, Ronja Kraus, Robert Haigh, Ehsan Yaghoubi and Zora Vrcelj
Appl. Sci. 2025, 15(13), 6962; https://doi.org/10.3390/app15136962 - 20 Jun 2025
Viewed by 538
Abstract
Concrete and other cementitious materials are among the most widely used construction materials worldwide. However, their high embodied carbon emissions and energy-intensive manufacturing processes pose significant environmental challenges. This study assesses the carbon emissions, cost implications, and circularity potential of a novel concrete [...] Read more.
Concrete and other cementitious materials are among the most widely used construction materials worldwide. However, their high embodied carbon emissions and energy-intensive manufacturing processes pose significant environmental challenges. This study assesses the carbon emissions, cost implications, and circularity potential of a novel concrete mix, Tex-crete, which incorporates recycled textile and cardboard fibres as sustainable alternatives to conventional reinforcement and cementitious materials in concrete. The study employs a cradle-to-gate life cycle assessment (LCA) approach to compare carbon emissions and costs across different mix designs, using two case studies: a temporary construction site compound and a footpath. Experimental results indicate that Tex-crete, particularly the KFT mix design (including 2.5% textile fibres with treated kraft fibres), achieves comparable compressive and tensile strength to traditional concrete while demonstrating a net reduction in both carbon emissions (3.38%) and production costs (2.56%). A newly introduced circularity index (CI) further evaluated the reuse, repair, and recycling potential of the novel mix, revealing that KFT exhibits the highest circularity score (0.44). Parametric analysis using Monte Carlo simulations highlighted transportation distance and energy consumption during fibre processing as key factors influencing emissions. The findings provide valuable insights for industry stakeholders seeking sustainable concrete solutions aligned with circular economy principles, offering an optimized balance between environmental performance, structural integrity, and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

18 pages, 1628 KB  
Article
A More Environmentally Friendly Method for Pulp Processing Using DES-like Mixtures: Comparison of Physical Properties with Oxygen Bleached Pulp
by Lota Chrvalová, Veronika Jančíková, Ida Skotnicová, Michal Jablonský and Štefan Šutý
Processes 2025, 13(6), 1930; https://doi.org/10.3390/pr13061930 - 18 Jun 2025
Viewed by 2787
Abstract
The traditional papermaking process uses petroleum-based additives, which raise environmental concerns. As a result, these concerns have attracted the scientific community to explore green additives by introducing environmentally friendly cellulose modifications as additives to the papermaking process. A promising way to process pulp [...] Read more.
The traditional papermaking process uses petroleum-based additives, which raise environmental concerns. As a result, these concerns have attracted the scientific community to explore green additives by introducing environmentally friendly cellulose modifications as additives to the papermaking process. A promising way to process pulp is the application of deep eutectic solvent-like mixtures, which expand new possibilities for delignification processes. This article aims to characterize the physical properties of pulps modified with deep eutectic solvent-like mixtures and to compare these properties to untreated softwood kraft pulp and pulp obtained after oxygen delignification (commercially available pulp; obtained from Mondi Štětí a.s.). The physical properties (mechanical and optical) of the original pulp and delignified pulps were evaluated based on the degree of beating (Schopper–Riegler degree), zeta potential, water retention value, tensile strength, modulus of elasticity, and whiteness. Technology employing deep eutectic solvent-like mixtures shows great promise for sustainable pulp production; however, its full-scale adoption will require further research focused on process optimization, solvent recovery, and economic cost reduction. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Graphical abstract

16 pages, 3183 KB  
Article
Relationship Between Density and Structure of Lignins Obtained from Different Feedstocks Pretreated with Protic Ionic Liquids
by Francisco Malaret, Pedro Y. S. Nakasu, Pedro Verdía Barbará, Cynthia Hopson and Jason Hallett
Processes 2025, 13(6), 1848; https://doi.org/10.3390/pr13061848 - 11 Jun 2025
Cited by 1 | Viewed by 1297
Abstract
Lignin, one of the most abundant biopolymers on Earth, holds significant promise as a feedstock for applications such as resins, biofuels, foams, and carbon fibres. However, despite extensive research, lignin remains largely underutilised, with its primary use limited to combustion for energy. While [...] Read more.
Lignin, one of the most abundant biopolymers on Earth, holds significant promise as a feedstock for applications such as resins, biofuels, foams, and carbon fibres. However, despite extensive research, lignin remains largely underutilised, with its primary use limited to combustion for energy. While lignin’s structural features are well documented, there is a lack of consistent data on its key physical properties such as density. This study addresses that gap by providing experimentally determined values for skeletal and bulk densities of lignins obtained through different extraction methods, including Kraft; soda pulping; and particularly the ionoSolv process, using ionic liquids such as N,N-dimethyl butyl ammonium hydrogen sulphate ([DMBA][HSO4]). The results reveal correlations between lignin chemical structure and density in ionoSolv-extracted lignins from Eucalyptus Red Grandis, suggesting opportunities to tune the extraction parameters for targeted material properties. The skeletal density of the lignin samples ranged from 1.3370 to 1.4598 g/cm3, while the bulk density varied more widely—from 0.0944 to 0.5302 g/cm3—reflecting significant differences in particle packing and porosity depending on the biomass source and extraction method. These findings contribute valuable data for process design and scale-up, advancing the commercial viability of lignin-based products. Full article
(This article belongs to the Special Issue Ionic Liquid Applications in Sustainable Biomass Processing)
Show Figures

Figure 1

21 pages, 4436 KB  
Article
Alkaline Extraction and Ethanol Precipitation of High-Molecular-Weight Xylan Compounds from Eucalyptus Residues
by María Noel Cabrera, Antonella Rossi, Juan Ignacio Guarino, Fernando Esteban Felissia and María Cristina Area
Polymers 2025, 17(12), 1589; https://doi.org/10.3390/polym17121589 - 6 Jun 2025
Viewed by 985
Abstract
Alkaline treatment is well suited for extracting high-molecular-weight hemicelluloses, specifically hardwoods xylans, which, due to their polymer structure and chemical characteristics, enable the production of films with desirable mechanical, barrier, and optical properties for packaging applications. Despite its relevance, the optimization of antisolvent [...] Read more.
Alkaline treatment is well suited for extracting high-molecular-weight hemicelluloses, specifically hardwoods xylans, which, due to their polymer structure and chemical characteristics, enable the production of films with desirable mechanical, barrier, and optical properties for packaging applications. Despite its relevance, the optimization of antisolvent addition has received little attention in the literature. This study explores the use of eucalyptus industrial residue as feedstock, utilizing a statistical design to determine the optimal extraction conditions for hemicelluloses while minimizing the lignin content in the recovered liquor. The process uses alkali loads that are compatible with those in conventional Kraft pulp mills. Optimal extraction conditions involve a temperature of 105 °C, 16.7% NaOH charge, and 45 min at maximum temperature. The resulting liquor was subjected to ethanol precipitation under varying pH conditions (initial pH, 9, 7, 5, and 2) and different ethanol-to-liquor ratios (1:1 to 4:1). The acidification was performed using hydrochloric, sulfuric, and acetic acids. Ethanol served as the main antisolvent, while isopropyl alcohol and dioxane were tested for comparison. Results show that 2.3 ± 0.2% of xylans (based on oven-dry biomass) could be extracted, minimizing lignin content in the liquor. This value corresponds to the extraction of 15.6% of the xylans present in the raw material. The highest xylan precipitation yield (78%) was obtained at pH 7, using hydrochloric acid for pH adjustment and an ethanol-to-liquor ratio of 1:1. These findings provide valuable insight into optimizing hemicellulose recovery through antisolvent precipitation, contributing to more efficient biomass valorization strategies within lignocellulosic biorefineries. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

20 pages, 1037 KB  
Article
Study of the Change in Properties by Artificial Aging of Eco-Papers
by Yulia Sevastyanova, Natalya Shcherbak, Ksenya Konshina, Alexander Potashev, Ekaterina Palchikova, Igor Makarov, Danagul Kalimanova, Lidiya Sakipova, Zhannat Kareshova, Sholpan Balabekova, Gulbarshin Shambilova, Markel Vinogradov and Egor Novikov
Processes 2025, 13(6), 1750; https://doi.org/10.3390/pr13061750 - 2 Jun 2025
Viewed by 749
Abstract
This study analyzes the effect of artificial aging on the mechanical deformational and optical properties of various paper samples, which allows us to evaluate their durability and suitability for long-term storage. The methods of accelerated aging, measuring the breaking length, specific resistance, elongation, [...] Read more.
This study analyzes the effect of artificial aging on the mechanical deformational and optical properties of various paper samples, which allows us to evaluate their durability and suitability for long-term storage. The methods of accelerated aging, measuring the breaking length, specific resistance, elongation, and fracture strength, were used, and the optical characteristics were estimated by the R457 and CIE whiteness indices, as well as opacity. Mechanical measurements (breaking length, specific resistance, elongation, and fracture strength) revealed that bleaching reduces residual lignin and strengthens interfiber bonds, boosting pine pulp strength by up to 8%. Optical properties initially improve slightly, then increase sharply after the second bleaching cycle and stabilize, while opacity decreases, providing greater light transmittance. After accelerated aging, the following deterioration is observed: for bleached samples, R457 whiteness changes; and for unbleached samples, CIE whiteness and opacity increase. After aging, aspen pulps and kraft papers retained over 90% of their initial strength and whiteness, whereas untreated and office papers lost up to 20–25%. These findings identify that aspen-based and kraft papers demonstrate better mechanical deformational and optical properties, which makes it possible to predict the operational characteristics of paper depending on the processing and aging methods used. Full article
(This article belongs to the Special Issue Synthesis and Applications of Cellulose Composite)
Show Figures

Figure 1

31 pages, 5141 KB  
Article
Acidic Oxidative Depolymerization Towards Functionalized Low-Molecular-Weight Lignin and High-Value-Added Aliphatic Monomers: Operating Conditions, Scale-Up, and Crosslinking
by Marta C. Lourenço, Talita Nascimento, Pedro José Sanches Filho, Ana C. Marques and Marta Ramos-Andrés
Int. J. Mol. Sci. 2025, 26(10), 4872; https://doi.org/10.3390/ijms26104872 - 19 May 2025
Viewed by 853
Abstract
Lignin, a complex aromatic biopolymer abundant as waste in biorefineries and the pulp and paper industry, holds significant potential for valorization. This study presents the oxidative depolymerization of Lignoboost lignin (LB) using H2O2 under mild, solvent- and catalyst-free, inherently acidic [...] Read more.
Lignin, a complex aromatic biopolymer abundant as waste in biorefineries and the pulp and paper industry, holds significant potential for valorization. This study presents the oxidative depolymerization of Lignoboost lignin (LB) using H2O2 under mild, solvent- and catalyst-free, inherently acidic conditions at 50–70 °C. The process aimed to produce functionalized low-molecular-weight oligomers, retaining aromaticity, and aliphatic dicarboxylic acids, rather than complete monomerization. The depolymerized LB was rich in aromatic dimers-trimers (68.6 wt.%) with high functionalization (2.75 mmol/g OHphen, 3.58 mmol/g OHcarb, 19.5 wt.% of H in -CH=CH-), and aliphatic dicarboxylic acids (53.4 wt.% of monomers). Acidic conditions provided higher depolymerization and functionalization than alkaline, alongside simplified product recovery. The process was also successfully applied to Kraft lignin, demonstrating versatility and robustness even with higher polymeric content feedstocks. The optimized conditions were scaled up (×25), improving efficiency and yielding Mw 464 g/mol and Đ 1.3. As proof of concept, the scaled-up product underwent radical crosslinking, resulting in a new biopolymer with higher thermal stability than LB (54.2 wt.% residual mass at 600 °C versus 36.1 wt.%). This green, scalable process enhances lignin valorization by producing functionalized low-molecular-weight lignin oligomers and dicarboxylic acids that can be used independently or together to form crosslinked networks. Full article
(This article belongs to the Special Issue Valorization of Lignocellulosic Biomass)
Show Figures

Graphical abstract

12 pages, 4238 KB  
Article
Toxic Effects of Liquors Generated During Kraft Pulp Production Process on Aerobic Biomass and Growth of Selenastrum capricornutum
by Constanza Hidd, Gabriela Morales, Naomi Monsalves and Gladys Vidal
Sustainability 2025, 17(10), 4494; https://doi.org/10.3390/su17104494 - 15 May 2025
Viewed by 581
Abstract
The kraft pulp process generates liquors with different physicochemical characteristics at each treatment stage. These liquors can accidentally spill into the biological treatment, hindering it and harming ecosystems where the effluents are discharged. Due to the lack of studies on the effects these [...] Read more.
The kraft pulp process generates liquors with different physicochemical characteristics at each treatment stage. These liquors can accidentally spill into the biological treatment, hindering it and harming ecosystems where the effluents are discharged. Due to the lack of studies on the effects these liquors can have on the aerobic biomass of activated sludges and ecosystems, this investigation aims to assess the toxicity of each liquor spill to the aerobic biomass of an activated sludge, using Selenastrum capricornutum as a bioindicator of water quality. This evaluation used a laboratory-scale activated sludge, which was fed with an effluent with pH 6.62–6.67 and chemical organic demand (COD) of 611–638.5 mg/L. The liquors used had the following parameters: pH = 13 and COD = 1911 mg/L (white); pH = 13 and COD = 141,350 mg/L (black); pH = 13 and 2755 mg/L (green); and pH = 7.5 and COD = 358 mg/L (condensate). White liquor produced the greatest toxicity (EC20 of 17.8 mgCOD/L) and lowest oxygen uptake rate (8.42 mgO2/L·h with 287.7 mgCOD/L) in the aerobic biomass compared to the other liquors. White liquor presented the greatest inhibition of Selenastrum capricornutum, with 81.7% (48 h) and 98.0% (96 h). Meanwhile, black liquor presented an inhibition of 94.7% (48 h), but a 13% increase in microalga growth at 96 h of culture. The information from this study makes it possible to calculate how much liquor can be fed to an activated sludge system, keeping it optimized to eliminate liquor discharges generated within the kraft mill’s processing units. Full article
Show Figures

Figure 1

19 pages, 6169 KB  
Article
Chlorine Dioxide (ClO2)-Releasing Sachet for Preservation of Cherry Tomatoes
by Junseok Lee, Hojun Shin, Kambiz Sadeghi and Jongchul Seo
Molecules 2025, 30(9), 2041; https://doi.org/10.3390/molecules30092041 - 3 May 2025
Viewed by 833
Abstract
Chlorine dioxide (ClO2) is a powerful sterilizing agent that is widely used to prevent the spoilage of fresh foods during delivery and storage. However, its practical applications are hindered by a short sterilization duration, complex deployment processes, and high treatment costs. [...] Read more.
Chlorine dioxide (ClO2) is a powerful sterilizing agent that is widely used to prevent the spoilage of fresh foods during delivery and storage. However, its practical applications are hindered by a short sterilization duration, complex deployment processes, and high treatment costs. To address these challenges, an innovative ClO2 self-releasing sachet was developed, which was specifically designed for use in retail and wholesale markets. The sachet utilizes polyether block amide (PEBAX®) as a hydrophilic polymer to facilitate the dissociation of sodium chlorite (NaClO2) and citric acid (CA), which generates ClO2. A PEBAX/CA composite film was coated onto kraft paper to construct the sachet. This design extended the ClO2 release period to over 3 d, with a controllable release rate being achieved by adjusting the concentrations of NaClO2 and CA. In practical tests, the sachets inhibited fungal growth by >50% over 14 d at 20 °C within a corrugated box. Furthermore, they preserved the quality of the cherry tomatoes for 16 d during storage. These results demonstrate that the newly developed sachet offers an economical and user-friendly solution for fresh-food packaging, effectively preserving product quality. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

Back to TopTop