Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (191)

Search Parameters:
Keywords = labile organic C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9068 KB  
Article
Stratified Nitrogen Application Enhances Subsoil Carbon Sequestration via Enzyme-Mediated Pathways in Straw-Incorporated Croplands of North China Plain
by Bin Wang, Yanqun Wang, Jingyu Li, Rui Hou, Yulong Liu, Xin Fu, Jie Men, Yingchun Li and Zhengping Peng
Agriculture 2025, 15(19), 2098; https://doi.org/10.3390/agriculture15192098 - 9 Oct 2025
Abstract
Nitrogen (N) fertilization critically regulates the storage and availability of soil carbon (C) and N pools. However, the internal mechanism through which stratified N application affects soil organic carbon (SOC) sequestration and soil quality index (SQI) remains unclear. To investigate the effects of [...] Read more.
Nitrogen (N) fertilization critically regulates the storage and availability of soil carbon (C) and N pools. However, the internal mechanism through which stratified N application affects soil organic carbon (SOC) sequestration and soil quality index (SQI) remains unclear. To investigate the effects of stratified N application on C sequestration and SQI in both topsoil and subsoil, this study established six treatments (N0:0, N1:0, N4:1, N3:2, N2:3, N1:4) and analyzed soil biochemical indicators. The results showed that compared to N1:0, stratified N fertilization did not significantly improve soil C and N content in the 0–20 cm layer. In contrast, the N2:3 and N1:4 treatments even led to a significant reduction in soil C and N pools in the topsoil. In the 20–40 cm, compared to N1:0, stratified N fertilization increased SOC, TN, labile C fractions, N fractions (particulate organic N and microbial biomass N), enzyme activity and C pool management index (CPMI), increasing by 0.52–7.94%, 2.05–8.42%, 4.77–42.59%, 14.46–56.01%, 6.34–45.82%, and 31.26–51.93%, respectively. In 0–20 cm, compared to N0:0, N application increased SQI by 24.84–45.77%, and N2:3 and N1:4 treatments were lower SQI than N1:0. Furthermore, N2:3, N3:2, and N1:4 treatments in 20–40 cm were higher than other treatments. N fertilizer application drives the synergistic changes in C and N fractions by regulating enzyme activity and stoichiometric ratio, thus affecting CPMI and SQI. Thus, the 3:2 stratified N fertilization (0–20 cm:20–40 cm) method achieves synergistic dual-layer enhancement-maintaining surface C and N pools while boosting subsoil C sequestration and quality-through enzyme-mediated precision regulation of C/N stoichiometry. The study provides a scientific foundation for integrated C emission reduction and cropland quality enhancement in the North China. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 47559 KB  
Article
Dynamics and Driving Factors of Soil Carbon Fractions in Corethrodendron scoparium (Fisch. & C. A. Mey.) Fisch. & Basiner. Sand-Fixing Plantations at the South Edge of Tengger Desert, Northwestern China
by Linqi Shi, Quanlin Ma, Rui Ma, Linyuan Wei, Fang Cheng, Guohong Wu, Runjuan Wang and Qian Wei
Forests 2025, 16(9), 1499; https://doi.org/10.3390/f16091499 - 22 Sep 2025
Viewed by 246
Abstract
Establishing artificial sand-fixing plantations is a key strategy for combating land desertification and enhancing soil carbon sequestration in arid regions. To evaluate the effects of Corethrodendron scoparium (Fisch. & C. A. Mey.) Fisch. & Basiner. plantations on soil carbon storage along the southern [...] Read more.
Establishing artificial sand-fixing plantations is a key strategy for combating land desertification and enhancing soil carbon sequestration in arid regions. To evaluate the effects of Corethrodendron scoparium (Fisch. & C. A. Mey.) Fisch. & Basiner. plantations on soil carbon storage along the southern edge of the Tengger Desert, a systematic investigation of the 0–100 cm soil profile was conducted, using mobile sand dunes as the control (CK). The study analyzed dynamic changes in soil carbon fractions and their driving factors during the succession of C. scoparium plantations. After 40 years of vegetation restoration, total soil carbon, soil inorganic carbon (SIC), and soil organic carbon (SOC) contents increased by 0.87-, 0.77-, and 1.27-fold, respectively, while the Carbon Pool Management Index improved by 1.40-fold. Following 10 years of restoration, SIC content, as well as the ratios of particulate organic carbon/SOC, inert organic carbon (IOC)/SOC, and heavy-fraction organic carbon/SOC, increased with soil depth. In contrast, SOC content, the absolute amounts of SOC fractions, and the ratios of dissolved organic carbon/SOC, easily oxidizable organic carbon/SOC, light-fraction organic carbon/SOC, and mineral-associated organic carbon (MAOC)/SOC all showed decreasing trends with depth. Overall, C. scoparium plantations enhanced the contents of both labile and stable SOC fractions. The proportions of IOC and MAOC within SOC rose from 52.21% and 34.19% to 60.96% and 45.51%, respectively, indicating greater stability of the soil carbon pool. Structural equation modeling and redundancy analysis revealed that soil pH, bulk density, and soil water content were significantly negatively correlated with carbon fractions, whereas total nitrogen, vegetation cover, C/N ratio, electrical conductivity, available phosphorus, and alkali-hydrolyzable nitrogen were identified as the main drivers of carbon fraction variation. Full article
(This article belongs to the Special Issue The Role of Forests in Carbon Cycles, Sequestration, and Storage)
Show Figures

Figure 1

25 pages, 4161 KB  
Article
A Burning Intensity Gradient Modifies Sensitive Soil Properties Depending on Sampled Soil Depth and the Time Since Fire
by Marta Escuer-Arregui, Andoni Alfaro-Leranoz, David Badía-Villas, Ana P. Conte-Domínguez, Clara Martí-Dalmau and Oriol Ortiz-Perpiñá
Fire 2025, 8(9), 351; https://doi.org/10.3390/fire8090351 - 3 Sep 2025
Viewed by 905
Abstract
The effects of wildfires and prescribed burnings on soil are highly variable. In order to evaluate the effects of different burning intensities on soil properties, a surface-controlled burn of undisturbed soil monoliths was carried out by combining temperatures (50 and 80 °C) and [...] Read more.
The effects of wildfires and prescribed burnings on soil are highly variable. In order to evaluate the effects of different burning intensities on soil properties, a surface-controlled burn of undisturbed soil monoliths was carried out by combining temperatures (50 and 80 °C) and residence times (12 and 24 min). The effects of this burning gradient are evaluated at two soil depths (0–1 and 1–3 cm), with time (just after burning or immediate effects, T0, and five months later, T5), as well as the influence of ash (presence or absence). The results indicate that most soil properties were affected by the burning gradient applied only in the most superficial cm (0–1 cm), with few effects at greater depths. The most intense burn had the strongest immediate impact, reducing soil organic carbon, recalcitrant organic carbon, and microbial biomass carbon, as well as increasing the labile organic carbon and the microbial activity. On the other hand, this burning caused a strong decrease in soil water repellency at a 0–1 cm depth and increased it at 1–3 cm. In contrast, medium-intensity burning caused the opposite effect, increasing water repellency at the soil surface and reducing it at 1–3 cm. As a result of the mineralization of organic matter, the EC and pH increased significantly in all burning combinations and both soil depths studied. After five months (T5), several of these parameters tended to approach the values of unburned soil. Full article
Show Figures

Figure 1

15 pages, 1674 KB  
Article
Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach
by Fulvia Tambone, Anna Masseroli, Paolo Beccarelli, Luca Breno, Marco Zuccolo, Gigliola Borgonovo, Stefania Mazzini, Alex Golinelli and Barbara Scaglia
Forests 2025, 16(8), 1349; https://doi.org/10.3390/f16081349 - 19 Aug 2025
Viewed by 579
Abstract
Leaf litter conservation practices in forests can contribute to increasing CO2 storage in natural soils as organic matter; however, this process depends on the type of vegetation cover. This study, using different approaches, aimed to assess this process starting from the characteristics [...] Read more.
Leaf litter conservation practices in forests can contribute to increasing CO2 storage in natural soils as organic matter; however, this process depends on the type of vegetation cover. This study, using different approaches, aimed to assess this process starting from the characteristics of three different types of litters and topsoil (0–5 cm depth) originating from chestnut, beech, and pine in various forest locations within the territory of Edolo (Camonica Valley, Central Italian Alps). Both labile (DOM) and recalcitrant (ROM) organic matter fractions were considered. Microbial degradation activity was strongly influenced by DOM (DOM vs. Respiration mg CO2 g−1 dry matter: r = 0.96), and NMR spectroscopy showed that aromatic C and polymethylene C in long-chain aliphatic structures (e.g., lipids, cutin) became more evident from litters to topsoils due to a concentration effect. Finally, chemometric elaboration of quantitative and qualitative data identified two principal component (PC) profiles, explaining 88% of the total variance, in which litter and the topsoil samples were spatially separated, indicating that significant changes occurred during the decomposition process. An Evolution Index (EI) calculated highlighted greater changes for chestnut (0.90) followed by pine (0.60) and beech (0.48), in agreement with chemical (degradation rates of 14.21%, 49.11%, and 48% for beech, chestnut, and pine litter, respectively) and spectroscopic data. Beech litter appears to be more efficient at conserving organic carbon. These findings underscore the importance of understanding litter characteristics for forest management, suggesting which species are most effective in promoting soil carbon storage. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 12402 KB  
Article
Labile and Stable Carbon Pools in Antarctic Soils of the Arctowski Region, King George Island
by Barbara Kalisz, Andrzej Łachacz, Irena Giełwanowska, Maria Olech, Katarzyna Joanna Chwedorzewska and Wioleta Kellmann-Sopyła
Sustainability 2025, 17(16), 7221; https://doi.org/10.3390/su17167221 - 9 Aug 2025
Viewed by 447
Abstract
This study investigates the composition and transformation of soil organic matter (SOM) across seven sites in Maritime Antarctica, focusing on the impact of bird activity and vegetation cover on SOM dynamics. There is limited knowledge of the stability of Antarctic SOM and the [...] Read more.
This study investigates the composition and transformation of soil organic matter (SOM) across seven sites in Maritime Antarctica, focusing on the impact of bird activity and vegetation cover on SOM dynamics. There is limited knowledge of the stability of Antarctic SOM and the effects of seabird colonies on it. This study aims to address the knowledge gap regarding drivers of soil organic matter transformations in polar ecosystems. Hot water-extractable carbon (HWC) and carbon extracted with phosphoric acid (PHP-C) were chosen as parameters for the labile carbon pool. A stable carbon pool was here characterized as one with alkali-soluble organic compounds opposing microbial decomposition. This carbon pool has long (decades) turnover rates, and therefore is regarded stable. The mentioned carbon pools were used to calculate humification indices. The HWC in studied soils ranged from 1.5 to 4.3% of total carbon, while the PHP-C varied largely and was not correlated with HWC. Soils influenced by current or historical bird colonies (particularly penguins and skuas) exhibited elevated labile carbon fractions, indicating active microbial processing. In contrast, sites without bird influence showed lower biological activity. The stable carbon peaked at 18.9% of total carbon, indicating distinct soil transformation stages. The humification degree (HD) and labile-to-stable carbon (L/S) ratio were used to assess SOM stability, revealing that former bird rookeries had the most stabilized SOM, while recently deglaciated sites were in early stages of organic matter accumulation. Vegetation cover, though secondary to bird impact, was positively correlated with SOM humification, supporting the role of vascular plant-derived organic input in carbon stabilization. The study showed a clear link between bird activity and SOM dynamics, supporting the concept of biological legacies in soil formation in Antarctica. It highlighted the role of vegetation in SOM stabilization, which is crucial for understanding how terrestrial ecosystems may evolve as ice retreats and plant colonization expands. Full article
Show Figures

Figure 1

19 pages, 2530 KB  
Article
Soil Microbiome Drives Depth-Specific Priming Effects in Picea schrenkiana Forests Following Labile Carbon Input
by Kejie Yin, Lu Gong, Xinyu Ma, Xiaochen Li and Xiaonan Sun
Microorganisms 2025, 13(8), 1729; https://doi.org/10.3390/microorganisms13081729 - 24 Jul 2025
Viewed by 545
Abstract
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research [...] Read more.
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research object. An indoor incubation experiment was conducted by adding three concentrations (1% SOC, 2% SOC, and 3% SOC) of 13C-labelled glucose. We applied 13C isotope probe-phospholipid fatty acid (PLFA-SIP) technology to investigate the influence of readily labile organic carbon inputs on soil priming effect (PE), microbial community shifts at various depths, and the mechanisms underlying soil PE. The results indicated that the addition of 13C-labeled glucose accelerated the mineralization of soil organic carbon (SOC); CO2 emissions were highest in the 0–20 cm soil layer and decreased trend with increasing soil depth, with significant differences observed across different soil layers (p < 0.05). Soil depth had a positive direct effect on the cumulative priming effect (CPE); however, it showed negative indirect effects through physico-chemical properties and microbial biomass. The CPE of the 0–20 cm soil layer was significantly positively correlated with 13C-Gram-positive bacteria, 13C-Gram-negative bacteria, and 13C-actinomycetes. The CPE of the 20–40 cm and 40–60 cm soil layers exhibited a significant positive correlation with cumulative mineralization (CM) and microbial biomass carbon (MBC). Glucose addition had the largest and most significant positive effect on the CPE. Glucose addition positively affected PLFAs and particularly microbial biomass. This study provides valuable insights into the dynamics of soil carbon pools at varying depths following glucose application, advancing the understanding of forest soil carbon sequestration. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 1697 KB  
Article
Synergistic Effects of Organic and Chemical Fertilizers on Microbial-Mediated Carbon Stabilization: Insights from Metagenomics and Spectroscopy
by Wei Wang, Yue Jiang, Shanshan Cai, Yumei Li, Juanjuan Qu and Lei Sun
Agronomy 2025, 15(7), 1555; https://doi.org/10.3390/agronomy15071555 - 26 Jun 2025
Viewed by 769
Abstract
Fertilization management constitutes a critical determinant of agroecosystem productivity. Reasonable fertilization can increase the organic matter content in soil; however, the potential mechanism of how different fertilization regimes impact soil carbon sequestration is unclear. We hypothesized that the combined application of biochar and [...] Read more.
Fertilization management constitutes a critical determinant of agroecosystem productivity. Reasonable fertilization can increase the organic matter content in soil; however, the potential mechanism of how different fertilization regimes impact soil carbon sequestration is unclear. We hypothesized that the combined application of biochar and organic fertilizer would enhance soil carbon sequestration by improving soil physicochemical conditions, increasing microbial activity, and promoting the accumulation of stable forms of carbon. This study systematically investigated different regimes, including the application of chemical fertilizer alone (SCN), chemical fertilizer with biochar (SCB), chemical fertilizer with organic fertilizer (SCO), and chemical fertilizer with both biochar and organic fertilizer (SCBO), on soil physiochemical properties, enzyme activities, labile organic carbon fractions, microbial carbon fixation gene expression, and community composition. The results demonstrated that (1) the application of organic materials significantly enhanced soil nutrient levels and enzyme activities, with the best performance from SCBO; (2) the organic materials increased the labile soil organic carbon (SOC) content and the carbon pool management index, with SCO showing the highest at 69.82%; (3) SCB and SCBO improved the stability of soil carbon components by increasing the proportion of Aromatic C; and (4) the carbon fixation genes ACAT and sdhA exhibited the highest abundance in SCBO. In parallel, the relative abundance of Actinomycetota increased with the application of organic materials, reaching its peak in SCBO. Mantel testing revealed a strong correlation between microbial community composition and SOC, emphasizing the importance of SOC in microbial growth and metabolism. Moreover, the strong correlation between carbon fixation genes and aromatic carbon suggested that specific carbon forms, particularly aromatic structures, played a critical role in driving microbial carbon fixation processes. Full article
(This article belongs to the Special Issue Microbial Carbon and Its Role in Soil Carbon Sequestration)
Show Figures

Figure 1

15 pages, 2347 KB  
Article
Soil Biogeochemical Feedback to Fire in the Tropics: Increased Nitrification and Denitrification Rates and N2O Emissions Linked to Labile Carbon and Nitrogen Fractions
by Mengru Kong, Ali Mohd Yatoo, Rui Zhang, Junjie Feng, Xiaomeng Sun, Yunxing Wan, Yuhong Wen, Yanzheng Wu, Qiuxiang He, Lei Meng, Jinbo Zhang and Ahmed S. Elrys
Forests 2025, 16(6), 983; https://doi.org/10.3390/f16060983 - 11 Jun 2025
Viewed by 605
Abstract
Although tropical ecosystems have become increasingly vulnerable to fire over the past century, the mechanisms by which fire disturbance influences N2O emissions in these regions remain poorly understood. This study investigated the effects of fire on nitrous oxide (N2O) [...] Read more.
Although tropical ecosystems have become increasingly vulnerable to fire over the past century, the mechanisms by which fire disturbance influences N2O emissions in these regions remain poorly understood. This study investigated the effects of fire on nitrous oxide (N2O) emissions, the gross nitrification rate (GN), denitrification genes, and carbon (C) and nitrogen (N) fractions in a tropical forest. The results showed that fire increased the GN by 41.5%. The abundance of the nirK and nirS genes encoding nitrite reductase increased by 16.3% and 27.5%, respectively, while the abundance of the nosZI gene encoding N2O reductase increased by 28%, suggesting a potentially enhanced denitrification capacity. This enhancement in nitrification and denitrification was mainly due to increased easily oxidizable organic C (EOC, +35%), light fraction organic C (LFOC, +32%), hydrolyzable ammonium N (HAN, +13%), and amino sugar N (ASN, +11%), which provided additional substrates for nitrification and denitrification. As a result, soil N2O emissions increased by 18% in response to fire. Soil N2O emissions showed a significant and positive linear correlation with GN, EOC, LFOC, HAN, nirK, nirS, and nosZI. Thus, the post-fire increase in N2O emissions is likely driven by enhanced nitrification and denitrification processes, facilitated by the elevated availability of labile C and N fractions. Our findings provide new evidence for the role of soil C and N fractions in controlling N2O emission and nitrification–denitrification under fire disturbances in tropical soils. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 5545 KB  
Article
Stable and Mobile (Water-Extractable) Forms of Organic Matter in High-Latitude Volcanic Soils Under Various Land Use Scenarios in Southeastern Iceland
by Aleksandra Kot, Urszula Norton, Grzegorz Kulczycki, Jón Guðmundsson, Agnieszka Medyńska-Juraszek, Chloe M. Mattilio, Szymon Jędrzejewski and Jarosław Waroszewski
Agriculture 2025, 15(12), 1255; https://doi.org/10.3390/agriculture15121255 - 10 Jun 2025
Viewed by 1075
Abstract
High-latitude regions store substantial amounts of soil organic matter (SOM). Icelandic volcanic soils have exceptional capabilities for SOM accumulation, but recent changes in land use can significantly impact it. Water-extractable organic matter (WEOM) represents a labile SOM pool and serves as a reliable [...] Read more.
High-latitude regions store substantial amounts of soil organic matter (SOM). Icelandic volcanic soils have exceptional capabilities for SOM accumulation, but recent changes in land use can significantly impact it. Water-extractable organic matter (WEOM) represents a labile SOM pool and serves as a reliable index of SOM dynamics. We assessed the stable carbon (C), stable nitrogen (N), and WEOC (water-extractable organic carbon), as well as WETN (water-extractable total nitrogen), concentrations in soils under different land uses—semi-natural habitats (tundra and wetland) and human-managed areas (intensively and extensively grazed pasturelands and formerly and presently fertilized meadows)—in southeastern Iceland. The results suggest that human-managed sites contain more total C and N but less WEOM per unit of total C or N than semi-natural habitats, except for wetlands. Wetlands exhibited the highest WEOM content. Extensive pasturelands and fertilized meadows are becoming more common in local ecosystems, highlighting the direction of changes in Icelandic grasslands management. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

17 pages, 2927 KB  
Article
Long-Term Film Mulching with Manure Amendment Drives Trade-Offs Between Spring Maize Nutrient Uptake and Topsoil Carbon Stability on the Loess Plateau
by Fangfang Zhang, Kai Liu, Qilong Song, Linjuan Wang, Renshan Li, Kongyang Wu, Jianming Han and Shiqing Li
Agronomy 2025, 15(6), 1352; https://doi.org/10.3390/agronomy15061352 - 31 May 2025
Cited by 1 | Viewed by 639
Abstract
Film mulching and gravel mulching are effective methods for increasing crop yields in Northwest China but exacerbate soil organic carbon (SOC) mineralisation. Manure amendment is a viable method for offsetting carbon (C) losses from mulching. SOC stability is a key factor in determining [...] Read more.
Film mulching and gravel mulching are effective methods for increasing crop yields in Northwest China but exacerbate soil organic carbon (SOC) mineralisation. Manure amendment is a viable method for offsetting carbon (C) losses from mulching. SOC stability is a key factor in determining the nutrient supply capacity of soils, as it affects the C sources available to microorganisms. However, the synergistic effects of film mulching and manure amendment on SOC stability and crop nutrient uptake are still unclear. Therefore, four treatments—no mulching (CK), gravel mulching (GM), film mulching (FM), and film mulching with manure amendment (FCM)—were established on the Loess Plateau. Experiments were conducted to measure plant and grain nitrogen (N), phosphorus (P), potassium (K) uptake, SOC, labile organic C fractions (LOCFs), stability-based organic C fractions (SOCFs), and the C management index (CMI) in 2019 and 2020. The results showed that the FM and FCM treatments significantly improved crop dry matter accumulation in both years compared to the control. The FCM treatment significantly increased the two-year NPK averages of plants to 44.9%, 50.7%, and 54.5% and significantly increased those of grains to 46.7%, 58.2%, and 30.4%. The FCM treatment significantly increased all LOCFs, water solution C (WSC), hot-water-extractable C (HWC), permanganate oxidisable C (POXC), and particulate organic C (POC) in the topsoil (0–20 cm) in both years. The fractions of the active C pool (AP) in the SOCFs, namely, very labile C (CVL) and labile C (CL), were significantly increased, suggesting that the FCM treatment significantly decreased C stability in the topsoil. The sensitivity index showed that, among all SOC fractions, POC (21.5–72.9%) and less labile C (CLL) (20.8–483.8%) were the most sensitive fractions of LOCFs and SOCFs compared to SOC (1.93–35.8%). A random forest analysis showed that most labile C fractions and the CMI significantly contributed to crop N, P, and K uptake, especially POXC to crop N uptake, the CMI to crop P uptake, and the AP to crop K uptake. It was concluded that the FCM treatment synergistically enhanced SOC lability, crop NPK uptake, and labile C fractions, especially POXC, the AP, and the CMI, which serve as robust indicators for guiding precision nutrient management in semi-arid croplands. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

33 pages, 2794 KB  
Article
Soil Bulk Density, Aggregates, Carbon Stabilization, Nutrients and Vegetation Traits as Affected by Manure Gradients Regimes Under Alpine Meadows of Qinghai–Tibetan Plateau Ecosystem
by Mahran Sadiq, Nasir Rahim, Majid Mahmood Tahir, Aqila Shaheen, Fu Ran, Guoxiang Chen and Xiaoming Bai
Plants 2025, 14(10), 1442; https://doi.org/10.3390/plants14101442 - 12 May 2025
Cited by 1 | Viewed by 719
Abstract
Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence [...] Read more.
Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence SOC stability, grassland soil, forage structure and nutritional quality. However, the responses of SOC fractions, soil and forage structure and quality to the influence of manure gradient practices remain unclear, particularly at Tianzhu belt, and require further investigation. A field study was undertaken to evaluate the soil bulk density, aggregate fractions and dynamics in SOC concentration, permanganate oxidizable SOC fractions, SOC stabilization and soil nutrients at the soil aggregate level under manure gradient practices. Moreover, the forage biodiversity, aboveground biomass and nutritional quality of alpine meadow plant communities were also explored. Four treatments, i.e., control (CK), sole sheep manure (SM), cow dung alone (CD) and a mixture of sheep manure and cow dung (SMCD) under five input rates, i.e., 0.54, 1.08, 1.62, 2.16 and 2.70 kg m−2, were employed under randomized complete block design with four replications. Our analysis confirmed the maximum soil bulk density (BD) (0.80 ± 0.05 g cm−3) and micro-aggregate fraction (45.27 ± 0.77%) under CK, whilst the maximum macro-aggregate fraction (40.12 ± 0.54%) was documented under 2.70 kg m−2 of SMCD. The SOC, very-labile C fraction (Cfrac1), labile C fraction (Cfrac2) and non-labile/recalcitrant C fraction (Cfrac4) increased with manure input levels, being the highest in 2.16 kg m−2 and 2.70 kg m−2 applications of sole SM and the integration of 50% SM and 50% CD (SMCD), whereas the less-labile fraction (Cfrac3) was highest under CK across aggregate fractions. However, manures under varying gradients improved SOC pools and stabilization for both macro- and micro-aggregates. A negative response of the carbon management index (CMI) in macro-aggregates was observed, whilst CMI in the micro-aggregate fraction depicted a positive response to manure addition with input rates, being the maximum under sole SM addition averaged across gradients. Higher SOC pools and CMI under the SM, CD and SMCD might be owing to the higher level of soil organic matter inputs under higher doses of manures. Moreover, the highest accumulation of soil nutrients,, for instance, TN, AN, TP, AP, TK, AK, DTPA extractable Zn, Cu, Fe and Mn, was recorded in SM, CD and SMCD under varying gradients over CK at both aggregate fractions. More nutrient accumulation was found in macro-aggregates over micro-aggregates, which might be credited to the physical protection of macro-aggregates. Overall, manure addition under varying input rates improved the plant community structure and enhanced meadow yield, plant community diversity and nutritional quality more than CK. Therefore, alpine meadows should be managed sustainably via the adoption of sole SM practice under a 2.16 kg m−2 input rate for the ecological utilization of the meadow ecosystem. The results of this study deliver an innovative perspective in understanding the response of alpine meadows’ SOC pools, SOC stabilization and nutrients at the aggregate level, as well as vegetation structure, productivity and forage nutritional quality to manure input rate practices. Moreover, this research offers valuable information for ensuring climate change mitigation and the clean production of alpine meadows in the Qinghai–Tibetan Plateau area of China. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 1713 KB  
Article
Quantum Chemical Studies on the Prototropic and Acid/Base Equilibria for 2-Aminopyrrole in Vacuo—Role of CH Tautomers in the Design of Strong Brønsted Imino N-Bases
by Ewa Daniela Raczyńska, Pierre-Charles Maria and Jean-François Gal
Molecules 2025, 30(10), 2112; https://doi.org/10.3390/molecules30102112 - 9 May 2025
Viewed by 1072
Abstract
In the quest of the pivotal origin of the very strong gas-phase proton basicity for some iminopyrrole derivatives, proposed in the literature on the basis of quantum chemical calculations, the full tautomeric and acid/base equilibria were investigated in vacuo for 2-aminopyrrole exhibiting enamino–imino [...] Read more.
In the quest of the pivotal origin of the very strong gas-phase proton basicity for some iminopyrrole derivatives, proposed in the literature on the basis of quantum chemical calculations, the full tautomeric and acid/base equilibria were investigated in vacuo for 2-aminopyrrole exhibiting enamino–imino tautomerism. Thermochemistry of these processes investigated at the Density Functional Theory (DFT) level indicates a lower stability for the imino than for the enamino tautomers. However, the imino N atom in the imino forms displays an exceptionally high basicity, particularly in the minor and rare tautomers containing at least one tautomeric proton at the pyrrole C atom. This explains why derivatives of CH tautomers (being free of prototropy) display exceptionally high gas-phase proton basicity. As predicted by the Maksić group using quantum chemical methods, these derivatives can be considered as good organic imino N-superbase candidates. Unfortunately, some other structures of iminopyrrole derivatives (proposed by the same group) possess labile protons, and, thus, exhibit prototropy, resulting in the transformation into the more stable but less basic aminopyrrole derivatives under synthesis conditions or acid/base equilibria measurements. Full article
(This article belongs to the Special Issue Quantum Chemical Calculations of Molecular Reaction Processes)
Show Figures

Figure 1

23 pages, 5520 KB  
Article
Multivariate Insight into Soil Organic Matter Dynamics in Subarctic Abandoned Farmland by the Chronosequence Approach
by Timur Nizamutdinov, Sizhong Yang, Xiaodong Wu, Vladislav Gurzhiy and Evgeny Abakumov
Agronomy 2025, 15(4), 893; https://doi.org/10.3390/agronomy15040893 - 3 Apr 2025
Viewed by 880
Abstract
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to [...] Read more.
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to fill the gaps in research on the processes of post-agricultural soil transformation, with a focus on the harsh climatic conditions of the Arctic and Subarctic regions. Parameters of soil organic matter (SOM) are largely reflected in the quality of soil, and this study investigates the dynamics of SOM properties in Subarctic agricultural soils in process of post-agrogenic transformation and long-term fertilization. Using a chronosequence approach (0–25 years of abandonment) and a reference site with over 90 years of fertilization, we performed elemental (CHN-O) analysis, solid-state 13C NMR spectroscopy of SOM, PXRD of soil and parent material, and multivariate statistical analysis to identify the connections between SOM composition and other soil properties. The results revealed transient increases in soil organic carbon (SOC) during early abandonment (5–10 years; 3.75–4.03%), followed by significant declines after 25 years (2.15–2.27%), driven by mineralization in quartz-dominated soils lacking reactive minerals for organo-mineral stabilization. The reference site (the Yamal Agricultural Station) maintained stable SOC (3.58–3.83%) through long-term organic inputs, compensating for poor mineralogical protection. 13C NMR spectroscopy highlighted shifts from labile alkyl-C (40.88% in active fields) to oxidized O-alkyl-C (21.6% in late abandonment) and lignin-derived aryl-C (15.88% at middle abandonment), reflecting microbial processing and humification. Freeze–thaw cycles and quartz dominance mineralogy exacerbated SOM vulnerability, while fertilization sustained alkyl-C (39.61%) and balanced C:N (19–20) ratios. Principal Component Analysis linked SOC loss to declining nutrient retention and showed SOM to be reliant on physical occlusion and biochemical recalcitrance, both vulnerable to Subarctic freeze–thaw cycles that disrupt aggregates. These findings underscore the fragility of SOM in Subarctic agroecosystems, emphasizing the necessity of organic amendments to counteract limitations of poor mineralogical composition and climatic stress. Full article
(This article belongs to the Special Issue Soil Organic Matter and Tillage)
Show Figures

Figure 1

14 pages, 1555 KB  
Article
Effect of Agricultural Management Intensity on the Organic Carbon Fractions and Biological Properties of a Volcanic-Ash-Derived Soil
by Camila Aravena, Susana R. Valle, Rodrigo Vergara, Mauricio González Chang, Oscar Martínez, John Clunes, Belén Caurapán and Joel Asenjo
Sustainability 2025, 17(6), 2704; https://doi.org/10.3390/su17062704 - 18 Mar 2025
Cited by 2 | Viewed by 1028
Abstract
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic [...] Read more.
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic carbon (OC-sol) and permanganate oxidizable carbon (POXC), were evaluated in a volcanic-ash-derived soil (Andisol) with a very high soil organic matter (SOM) content (>20%). These indicators were associated with water-stable aggregates (WSAs) and biological indicators, namely, earthworm density, cellulase activity, and autoclaved-citrate-extractable (ACE) proteins, related to the decomposition of SOM and its physical protection. The conditions evaluated were secondary native forest (SF), naturalized grassland (NG), no-till (NT), and conventional tillage (CT), considering the last item to be representative of a higher agriculture management intensity. Soil samples were collected by horizon. The SF and NG soil showed higher contents of SOC, OC-sol, and POXC. When comparing the evaluated annual cropping systems, NT showed higher values than CT (p < 0.05) in the first horizon (Hz1), while similar values were found at deeper horizons. The highest cellulase activity, ACE protein levels, and earthworm densities were found in NG and SF. NT also showed significantly higher levels of the aforementioned factors than CT (p < 0.05). A positive and significant relationship was found between the SOC content and WSA (R2 = 0.76; p < 0.05) in the whole profile and between POXC and WSA for Hz1 (R2 = 0.67; p < 0.05). Soil C storage was affected by the intensity of agricultural management, mainly because of the effect of tillage on structural stability, considering that biological activity synthesizes compounds such as enzymes and proteins that react and adhere to the mineral fraction affecting aggregate stability. The C content stored in the soil is consequently a key indicator with which to regulate SOM and protect SOC. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

13 pages, 2759 KB  
Article
Linking Soil Properties and Bacterial Communities with Organic Matter Carbon During Vegetation Succession
by Bin Yang, Jie Zhai, Mengjie He, Ruihao Ma, Yusong Li, Hanyu Zhang, Jiachang Guo, Zhenhua Hu, Wenhui Zhang and Jinhua Bai
Plants 2025, 14(6), 937; https://doi.org/10.3390/plants14060937 - 17 Mar 2025
Viewed by 844
Abstract
Land use change driven by vegetation succession significantly enhances soil carbon storage, yet the microbial mechanisms underlying this process remain poorly understood. This study aims to elucidate the mechanistic linkages between bacterial community dynamics and organic matter carbon stabilization across four vegetation succession [...] Read more.
Land use change driven by vegetation succession significantly enhances soil carbon storage, yet the microbial mechanisms underlying this process remain poorly understood. This study aims to elucidate the mechanistic linkages between bacterial community dynamics and organic matter carbon stabilization across four vegetation succession stages on the Loess Plateau: abandoned farmland (AF), grassland stage (GS), shrub-land stage (SS), and forest stage (FS). We analyzed soil organic matter carbon (SOM_C) fractions, physicochemical properties, and bacterial communities (16S rRNA sequencing), employing structural equation modeling to quantify causal pathways. The results showed that the content of soil total organic matter carbon (TOM_C), labile organic matter carbon (LOM_C), dissolved organic matter carbon (DOM_C), and microbial biomass carbon (MBC) increased progressively with succession, peaking in the FS, with 23.87 g/kg, 4.13 g/kg, 0.33 mg/kg, and 0.14 mg/kg, respectively. Furthermore, vegetation succession also led to heterogeneity in the bacterial community structure. The number of soil bacterial operational taxonomic units (OTUs) for the four succession stages was 9966, 13,463, 14,122, and 10,413, with the shrub-land stage showcasing the highest OTUs. Nine bacterial taxa were strongly correlated with SOM_C stabilization. Affected by soil bacteria, soil physicochemical properties and litter biomass directly influence SOM_C, with the physicochemical pathway (path coefficient: 0.792, p < 0.001) having a greater impact on organic matter carbon than the litter pathway (path coefficient: 0.221, p < 0.001). This study establishes that vegetation succession enhances SOM_C content not only through increased litter inputs but also by reshaping bacterial communities toward taxa that stabilize carbon via physicochemical interactions. Full article
(This article belongs to the Collection Feature Papers in Plant Ecology)
Show Figures

Figure 1

Back to TopTop