Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,890)

Search Parameters:
Keywords = land use change simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10305 KB  
Article
Prediction of Ecological Zoning and Optimization Strategies Based on Ecosystem Service Value and Ecological Risk
by Qing Liu, Yaoyao Zhao, Shuhai Zhuo, Yixian Mo and Peng Zhou
Land 2025, 14(9), 1824; https://doi.org/10.3390/land14091824 - 7 Sep 2025
Viewed by 166
Abstract
As a typical coastal tourist city, Sanya has experienced large-scale urbanization driven by tourism development, leading to landscape fragmentation, disorderly urban sprawl, and irrational resource utilization. These factors have intensified regional ecological risks and caused the degradation of ecosystem service functions, thereby constraining [...] Read more.
As a typical coastal tourist city, Sanya has experienced large-scale urbanization driven by tourism development, leading to landscape fragmentation, disorderly urban sprawl, and irrational resource utilization. These factors have intensified regional ecological risks and caused the degradation of ecosystem service functions, thereby constraining sustainable urban development. Therefore, establishing urban ecological zoning can identify the dynamic relationship between ecological conditions and urban growth, ease human-land conflicts, and promote high-quality urban development. This study employed the value equivalency method and the landscape ecological risk index method to calculate the ecosystem service value (ESV) and the ecological risk index (ERI) of Sanya City from 2000 to 2020 and to delineate ecological zones. The PLUS model was used to predict the changes in ecological zoning of Sanya City under a natural development scenario in 2030. The results demonstrate the following: (1) The ecological risk in the study area shows a distribution pattern of “high in the south and low in the north,” with low-risk areas being the dominant type, accounting for about 80% of the total area. Over time, the area of high-risk zones has shown an increasing trend, while that of low-risk zones has decreased year by year. (2) The ecosystem service value in the study area shows a distribution pattern of “high in the north and low in the south,” with a decreasing trend over time, with a cumulative reduction of 2.11 × 108 ten thousand yuan from 2000 to 2020. (3) Among the four ecological zones, the ecological protection zone is the dominant type, accounting for about 50%. The increase in the ecological early warning zone is the most significant. In contrast, the ecological optimization and improvement zones show a marked decrease. The prediction results show that by 2030, the ecological early warning and ecological protection zones will increase, while the other zones will decrease. This study adopts a temporal-dynamic approach by constructing a framework that integrates historical evolution with future simulation, providing scientific evidence for building Sanya’s ecological security pattern and spatial governance. It offers practical significance for coordinating regional ecological conservation with urban development. Full article
Show Figures

Figure 1

19 pages, 5017 KB  
Article
Spatiotemporal Dynamics and Future Projections of Land Use and Land Cover Change in Shihezi City, Xinjiang, China
by Yilin Chen, Wenhui Wang and Zhen’an Yang
Urban Sci. 2025, 9(9), 356; https://doi.org/10.3390/urbansci9090356 - 6 Sep 2025
Viewed by 231
Abstract
Land use and land cover change (LUCC) is central to regulating human–land relationships and crucial for urban planning and sustainable development in arid oasis cities. As a typical oasis city in Xinjiang, Shihezi City faces the triple challenges of agricultural protection, urban expansion, [...] Read more.
Land use and land cover change (LUCC) is central to regulating human–land relationships and crucial for urban planning and sustainable development in arid oasis cities. As a typical oasis city in Xinjiang, Shihezi City faces the triple challenges of agricultural protection, urban expansion, and ecological conservation. Taking Shihezi City as the research object, this study used the 30 m resolution China Land Cover Dataset and applied the land use dynamic degree, comprehensive index of land use degree, transfer matrix, Geodetector, and PLUS model to analyse the spatiotemporal dynamics of LUCC from 2002 to 2022, identify driving mechanisms, and predict the land use pattern from 2027 to 2032. The results showed that (1) from 2002 to 2022, farmland decreased by 86.1075 km2, man-made surfaces increased by 63.7389 km2 (annual expansion rate of 2.86%), grassland slightly increased by 24.5592 km2, and other land types remained stable; (2) the dynamics of land use showed a phased characteristic of “growth–equilibrium–acceleration”, and the land use degree index rose to 2.8639; natural factors (elevation, soil, temperature) dominated LUCC, and most interactions among factors showed enhancement effects; (3) the PLUS model predicted that by 2032, farmland would decrease to 224.347 km2 and man-made surfaces would increase to 111.941 km2. This study clarifies the laws of LUCC in Shihezi, demonstrates driving analysis and simulation prediction, and provides scientific support for balancing urban development, agricultural protection, and ecological security in arid oasis regions. Full article
Show Figures

Figure 1

28 pages, 19185 KB  
Article
Village-Level Spatio-Temporal Patterns and Key Drivers of Social-Ecological Vulnerability in a Resource-Exhausted Mining City: A Case Study of Xintai, China
by Yi Chen, Yuan Li, Tao Liu, Yong Lei and Yao Meng
Land 2025, 14(9), 1810; https://doi.org/10.3390/land14091810 - 5 Sep 2025
Viewed by 258
Abstract
Evaluation of socio-ecological vulnerability is crucial for sustainable management in mining cities. This study selected Xintai City, China, as a case and constructed a comprehensive vulnerability assessment framework based on 2010–2020 multi-source data. By integrating the Geodetector, spatial autocorrelation analysis, and ordered weighted [...] Read more.
Evaluation of socio-ecological vulnerability is crucial for sustainable management in mining cities. This study selected Xintai City, China, as a case and constructed a comprehensive vulnerability assessment framework based on 2010–2020 multi-source data. By integrating the Geodetector, spatial autocorrelation analysis, and ordered weighted averaging (OWA), we systematically explored the spatio-temporal patterns and driving mechanisms of socio-ecological vulnerability. The Theil index at the village level revealed finer spatial heterogeneity than large-scale analyses. The results show the following: (1) Socio-ecological vulnerability in Xintai City is generally moderate, with high-vulnerability areas concentrated in the urban center and former coal mining zones. Over the past decade, high—vulnerability levels in these areas have improved, whereas the urban-rural fringe has experienced a significant increase in vulnerability, primarily driven by industrial transfer and uneven resource allocation. (2) Geodetector analysis indicated a shift in dominant drivers from natural to socio-economic factors, with population density and construction land proportion surpassing natural conditions such as average annual rainfall by 2020. Additionally, mining land proportion, land use change, and the spatial distribution of social services played key roles in shaping vulnerability patterns, while ecological and public service factors showed weaker explanatory power. (3) Scenario simulation based on OWA demonstrated that an economic-priority pathway leads to the outward expansion of vulnerable areas into mountainous regions, while an ecological-priority approach promotes spatial contraction and optimization of vulnerability zones. These findings provide scientific guidance for identifying key vulnerable areas and formulating differentiated management strategies, offering reference value for the sustainable development of resource-exhausted mining cities. Full article
Show Figures

Figure 1

29 pages, 4197 KB  
Article
Spatiotemporal Evolution and Scenario-Based Simulation of Habitat Quality in a Coastal Mountainous City: A Case Study of Busan, South Korea
by Zheng Wang and Sanghyeun Heo
Land 2025, 14(9), 1805; https://doi.org/10.3390/land14091805 - 4 Sep 2025
Viewed by 369
Abstract
Urban economic development together with the concentration of population acts as a major stimulus for changes in land-use configurations, thereby reshaping local ecosystems and influencing habitat quality. Conducting a rigorous evaluation of the temporal–spatial dynamics and the mechanisms underlying these changes is crucial [...] Read more.
Urban economic development together with the concentration of population acts as a major stimulus for changes in land-use configurations, thereby reshaping local ecosystems and influencing habitat quality. Conducting a rigorous evaluation of the temporal–spatial dynamics and the mechanisms underlying these changes is crucial for refining spatial management strategies, improving urban livability, and steering cities toward sustainable pathways. In this research, we established a comprehensive analytical framework that integrates the PLUS model, the InVEST model, and the GeoDetector model to examine shifts in land-use patterns and habitat quality in Busan Metropolitan City during 1988–2019 to pinpoint the principal influencing factors and to project possible trajectories for 2029–2049 under multiple climate change scenarios. The key findings can be summarized as follows: (1) during the last thirty years, the city’s land-use structure underwent substantial transformation, with forested areas and built-up zones becoming the primary categories, indicating continuous urban encroachment and the reduction in ecological land; (2) the average habitat quality dropped by 18.23%, displaying a distinct spatial gradient from low values in plains and coastal areas to higher values in mountainous and inland zones; (3) results from the GeoDetector revealed that variations in land-use type and NDVI exerted the greatest influence on habitat quality differences, reflecting the combined impacts of environmental conditions and socio-economic pressures; (4) scenario projections show that the SSP1-2.6 pathway supports ecological land growth and leads to a notable improvement in habitat quality, while SSP5-8.5 causes ongoing deterioration driven by the expansion of construction land. The SSP2-4.5 pathway demonstrates a relatively moderate pattern, balancing urban development needs with ecological preservation and thus is more consistent with the long-term sustainability objectives of Busan. This study provides a robust scientific basis for understanding historical and projected changes in land cover and habitat quality in Busan and offers theoretical guidance for optimizing land-use structures, strengthening ecological protection, and fostering sustainable development in Busan and other coastal mountainous cities. Full article
(This article belongs to the Special Issue Coupled Man-Land Relationship for Regional Sustainability)
Show Figures

Figure 1

26 pages, 6875 KB  
Article
Dynamic Simulation of Land Use Change and Assessment of Ecosystem Services Under Climate Change Scenarios: A Case Study of Shanghai, China
by Yan Li, Chengdong Wang, Mingxing Sun and Hui Zhang
Land 2025, 14(9), 1791; https://doi.org/10.3390/land14091791 - 3 Sep 2025
Viewed by 350
Abstract
Climate change and rapid urbanization exert significant impacts on ecosystem services (ESs). The rational assessment and prediction of ESs are crucial for urban sustainable development. This study analyzes the spatiotemporal changes in land use in Shanghai from 2000 to 2020 and evaluates the [...] Read more.
Climate change and rapid urbanization exert significant impacts on ecosystem services (ESs). The rational assessment and prediction of ESs are crucial for urban sustainable development. This study analyzes the spatiotemporal changes in land use in Shanghai from 2000 to 2020 and evaluates the key ESs, including water yield, soil retention, carbon storage, and habitat quality. Furthermore, integrated “climate change-land use” scenarios were constructed to systematically simulate the response characteristics of ESs under different climate change and development pathways. The results indicate that Shanghai’s land use from 2000 to 2020 was characterized by continuous expansion of built-up land and a significant reduction in cropland. Ecological land exhibited a low and fragmented coverage. By 2040, the ecological protection (EP) scenario could effectively curb the disorderly expansion of built-up land and maintain the stability of cropland and woodland, whereas the natural development (ND) scenario would exacerbate urban sprawl towards the east and further fragment ecological land. From 2000 to 2020, water yield in Shanghai showed an increasing trend, soil retention initially decreased followed by a gradual recovery, carbon sequestration experienced minor fluctuations, and habitat quality exhibited a continuous decline. By 2040, the EP scenarios will effectively maintain water yield and soil retention functions, steadily enhance carbon sequestration and habitat quality, and mitigate the negative impacts of climate change. In contrast, the ND scenarios show an unstable trend of initial increase followed by decrease. Spatially, the western and northern regions consistently remain high-value ESs zones under both scenarios. In 2040, Shanghai’s ESs will exhibit distinct administrative district disparities, characterized by “peripheral sensitivity and central stability”. This pattern underscores the necessity for implementing zone-specific regulation strategies in future urban planning. Full article
(This article belongs to the Special Issue Land Resource Assessment (Second Edition))
Show Figures

Figure 1

27 pages, 15887 KB  
Article
Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications
by Yang Chen, Majid Amani-Beni and Laleh Dehghanifarsani
Land 2025, 14(9), 1787; https://doi.org/10.3390/land14091787 - 2 Sep 2025
Viewed by 259
Abstract
Rapid urbanization within ecologically fragile mountainous regions exacerbates tensions between development needs and land use sustainability, yet few studies have systematically quantified long-term land use/land cover (LULC) dynamics in large-scale mountainous urban agglomerations. Focusing on the Chengdu–Chongqing Urban Agglomeration (CCUA) in Southwest China—an [...] Read more.
Rapid urbanization within ecologically fragile mountainous regions exacerbates tensions between development needs and land use sustainability, yet few studies have systematically quantified long-term land use/land cover (LULC) dynamics in large-scale mountainous urban agglomerations. Focusing on the Chengdu–Chongqing Urban Agglomeration (CCUA) in Southwest China—an archetypal mountainous megaregion undergoing accelerated development—this study analyzed LULC evolution from 1985 to 2019 using multi-period data, identified dominant driving factors through logistic regression, and projected future LULC patterns under various scenarios via the Future Land Use Simulation (FLUS) model. The outcomes indicate that (1) over the past decades, construction land expanded by over 4000 km2, an increase of about 318%, while cultivated land decreased by nearly 8600 km2, a reduction of 6.86%; (2) the dominant transformation type was the conversion of cultivated land to forest, followed by its conversion to construction land; (3) elevation, slope, and average annual temperature emerged as significant predictors of LULC change, highlighting the critical influence of topographical and climatic conditions; and (4) natural development scenarios (NDS) and ecology and cultivated protection scenarios (ECPS) represent suitable development pathways. These findings contribute to evidence-based spatial governance and provide policy guidance for ecological protection in the CCUA and other similarly vulnerable areas. Full article
Show Figures

Figure 1

19 pages, 7824 KB  
Article
Modeling Multi-Objective Synergistic Development Scenarios for Wetlands in the International Wetland City: A Case Study of Haikou, China
by Ye Cao, Rongli Ye, Shengtian Chen, Guang Fu and Hui Fu
Water 2025, 17(17), 2565; https://doi.org/10.3390/w17172565 - 30 Aug 2025
Viewed by 649
Abstract
Wetland ecosystems are critical for biodiversity conservation and carbon sequestration, underpinning climate regulation and sustainable development. Accurate prediction of wetland evolution is therefore essential for informed regional planning, particularly in International Wetland Cities. As one of the first designated International Wetland Cities, Haikou [...] Read more.
Wetland ecosystems are critical for biodiversity conservation and carbon sequestration, underpinning climate regulation and sustainable development. Accurate prediction of wetland evolution is therefore essential for informed regional planning, particularly in International Wetland Cities. As one of the first designated International Wetland Cities, Haikou exemplifies the intensifying pressures faced by coastal wetlands in rapidly urbanizing regions, balancing economic development imperatives with ecological conservation. This study addresses this challenge by employing the PLUS model to simulate the spatiotemporal dynamics of wetland evolution in Haikou from 2010 to 2030 under four distinct scenarios: Business-as-Usual (BAU), Ecological Conservation (EC), Economic Development (ED), and Multi-Objective Development (MOD). The integrated approach combines landscape pattern dynamics analysis, land-use transition matrices, and quantitative assessment of driving factor contributions. Key findings reveal significant historical wetland loss between 2010 and 2020 (21.01 km2), characterized by substantial declines in artificial wetlands (paddy fields: −14.43 km2; agricultural ponds: −8.99 km2) alongside resilient growth in natural wetlands (rivers: +2.70 km2; mangroves: +1.25 km2), highlighting fundamental trade-offs between economic and ecological priorities. Scenario projections indicate that unregulated development (ED) would exacerbate wetland loss (−26.33 km2; dynamic change rate: −0.61%), including unprecedented river fragmentation (−16.0%). Conversely, strict conservation (EC) achieves near net-zero wetland loss (−0.05%) but constrains economic development capacity by 24%. Critically, the MOD scenario demonstrates an effective balance, maintaining 86% of EC’s wetland preservation efficacy while satisfying 73% of ED’s development demand. This is achieved through strategic interventions including establishing wetland protection constraints and optimizing bidirectional land conversion rules, yielding synergistic benefits. Spatial analysis identifies key conflict hotspots such as Nandu River shoreline, Dongzhai Port mangroves, necessitating targeted management strategies aligned with the heterogeneity of driving factors. This study advances the framework for sustainable wetland governance by demonstrating how multi-objective spatial planning can transform ecological-economic trade-offs into synergistic co-benefits. It provides a transferable methodological approach for coastal cities in the Global South and other International Wetland City. Full article
(This article belongs to the Special Issue Impacts of Climate Change & Human Activities on Wetland Ecosystems)
Show Figures

Figure 1

29 pages, 7800 KB  
Article
Quantification of Urticating Setae of Oak Processionary Moth (Thaumetopoea processionea) and Exposure Hazards
by Paula Halbig, Horst Delb and Axel Schopf
Int. J. Environ. Res. Public Health 2025, 22(9), 1361; https://doi.org/10.3390/ijerph22091361 - 29 Aug 2025
Viewed by 581
Abstract
Potential climatic and land-use changes may favor an increase in the population densities and range expansion of oak processionary moth (OPM) in Central and Western Europe in the future. This could lead to more significant threats to human and animal health, caused by [...] Read more.
Potential climatic and land-use changes may favor an increase in the population densities and range expansion of oak processionary moth (OPM) in Central and Western Europe in the future. This could lead to more significant threats to human and animal health, caused by the urticating setae released by OPM larvae, and more severe oak defoliation by the larvae. To cope with the public health issue, a basis for OPM hazard assessment and management was created by quantifying the setae formation potential of OPM. While a single larva forms ca. 857,000 setae during its lifespan, a single infested oak tree may be contaminated with up to 10–24 billion (109) setae during an OPM outbreak. Moreover, the possible setae contamination threat to humans through airborne setae dispersal was studied in worst-case exposure simulations in the field. The highest airborne setae concentration was straight downwind, but turbulences up to 150° from the air flow were observed. The findings of this study will improve biohazard quantification as a basis for decision-making on preventive or mechanical control measures and enable an effective protection of human health. This study provides applicable information to derive warnings and recommendations for the public, as well as land managers and authorities. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Exposure and Toxicology)
Show Figures

Figure 1

23 pages, 3991 KB  
Article
Spatiotemporal Analysis, Driving Force, and Simulation of Urban Expansion Along the Ethio–Djibouti Trade Corridor: The Cases of Dire Dawa City, Eastern Ethiopia
by Abduselam Mohamed Ebrahim, Abenezer Wakuma Kitila, Tegegn Sishaw Emiru and Solomon Asfaw Beza
Sustainability 2025, 17(17), 7760; https://doi.org/10.3390/su17177760 - 28 Aug 2025
Viewed by 502
Abstract
Urbanization has emerged as one of the most significant global challenges and opportunities of the 21st century, driven by a complex interplay of dynamic processes. In Ethiopia, cities have undergone rapid expansion in recent decades, largely due to state-led economic reforms and infrastructure [...] Read more.
Urbanization has emerged as one of the most significant global challenges and opportunities of the 21st century, driven by a complex interplay of dynamic processes. In Ethiopia, cities have undergone rapid expansion in recent decades, largely due to state-led economic reforms and infrastructure development. This study aims to investigate the spatiotemporal dynamics, driving forces, and future projections of urban expansion along the Ethio–Djibouti trade corridor, with a focus on Dire Dawa City in eastern Ethiopia. Landsat imagery from 1993, 2003, 2013, and 2023 was utilized to detect land use and land cover (LULC) changes and analyze urban growth patterns. Additionally, maps illustrating the city’s demographic, economic, and topographic characteristics were developed to identify the key driving factors behind land conversion and urban expansion. The spatial matrix and landscape expansion index were employed to examine the spatial patterns of urban growth. Furthermore, the study applied the Multi-Layer Perceptron–Markov Chain (MLP–MC) model to simulate future LULC changes and urban expansion. The results indicate that the built-up area in Dire Dawa has increased significantly over the past three decades, growing from 6.21 km2 in 1993 to 21.54 km2 in 2023. This urban growth is predominantly characterized by edge expansion, reflecting a pattern of unidirectional, unsustainable development that has consumed large areas of agricultural land. The analysis shows that socioeconomic development and population growth have had a greater influence on LULC conversion and urban expansion than physical factors. Based on these identified drivers, the study projected land conversion and simulated urban expansion for the years 2043 and 2064. The findings underscore the urgent need for context-sensitive urban growth strategies that harmonize local realities with national development policies and the Sustainable Development Goals. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

35 pages, 15457 KB  
Article
The Impact of the Continental Environment on Boundary Layer Evolution for Landfalling Tropical Cyclones
by Gabriel J. Williams
J 2025, 8(3), 31; https://doi.org/10.3390/j8030031 - 28 Aug 2025
Viewed by 391
Abstract
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the [...] Read more.
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the land–ocean interface. This study examines the impact of different continental environments on the thermodynamic evolution of the TCBL during the landfall transition using high-resolution, full-physics numerical simulations. During landfall, the changes in the wind field within the TCBL due to the development of the internal boundary layer (IBL), combined with the formation of a surface cold pool, generates a pronounced thermal asymmetry in the boundary layer. As a result, the maximum thermodynamic boundary layer height occurs in the rear-right quadrant of the storm relative to its motion. In addition, azimuthal and vertical advection by the mean flow lead to enhanced turbulent kinetic energy (TKE) in front of the vortex (enhancing dissipative heating immediately onshore) and onshore precipitation to the left of the storm track (stabilizing the environment). The strength and depth of thermal asymmetry in the boundary layer depend on the contrast in temperature and moisture between the continental and storm environments. Dry air intrusion enhances cold pool formation and stabilizes the onshore boundary layer, reducing mechanical mixing and accelerating the decay of the vortex. The temperature contrast between the continental and storm environments establishes a coastal baroclinic zone, producing stronger baroclinicity and inflow on the left of the track and weaker baroclinicity on the right. The resulting gradient imbalance in the front-right quadrant triggers radial outflow through a gradient adjustment process that redistributes momentum and mass to restore dynamical balance. Therefore, the surface thermodynamic conditions over land play a critical role in shaping the evolution of the TCBL during landfall, with the strongest asymmetries in thermodynamic boundary layer height emerging when there are large thermal contrasts between the hurricane and the continental environment. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

23 pages, 13291 KB  
Article
Integrated Carbon Stock Simulation in Jiangsu Province Using InVEST and Random Forest Under Multi-Scenario Climate and Productivity Pathways
by Ting Shi, Wei Yan and Weixiao Chen
Sustainability 2025, 17(17), 7705; https://doi.org/10.3390/su17177705 - 27 Aug 2025
Viewed by 418
Abstract
Carbon stock plays a crucial role in regulating atmospheric carbon dioxide concentrations and represents a vital ecological function for mitigating climate change and supporting long-term environmental sustainability. Jiangsu Province, a typical region experiencing rapid urbanization and land-use transformation in eastern China, serves as [...] Read more.
Carbon stock plays a crucial role in regulating atmospheric carbon dioxide concentrations and represents a vital ecological function for mitigating climate change and supporting long-term environmental sustainability. Jiangsu Province, a typical region experiencing rapid urbanization and land-use transformation in eastern China, serves as a representative case for regional-scale carbon assessment. This study employs the InVEST model, integrated with multi-source remote sensing data, a random forest algorithm, and a control variable approach, to simulate the spatiotemporal dynamics of carbon stock in Jiangsu Province under a set of climate, productivity, and population scenarios. Three scenario groups were designed to isolate the individual effects of climate change, gross primary productivity, and population density from 2020 to 2060, enabling a clearer understanding of the dominant drivers. The results indicate that the coupled model estimates Jiangsu’s 2020 carbon stock at 1.52 × 109 t C, slightly below the 1.82 × 109 t C estimated by the standalone InVEST model, with the coupled results closer to previous estimates. Compared with InVEST alone, the integrated model significantly improves numerical accuracy and spatial resolution, allowing for finer-scale pattern recognition. By 2060, carbon stock is projected to decline by approximately 24.4% across all scenarios. Among the features, climate change exerts the most significant influence, with an elasticity coefficient range of −37.76–1.01, followed by productivity, while population density has minimal impact. These findings underscore the dominant role of climate drivers and highlight that model integration improves both predictive accuracy and spatial detail, offering a more robust basis for scenario-based assessment. The proposed approach provides valuable insights for supporting sustainable carbon management, real-time monitoring, and provincial-scale decarbonization planning. Full article
Show Figures

Figure 1

22 pages, 14719 KB  
Article
Assessing Subsidence and Coastal Inundation in the Yellow River Delta Using TS-InSAR and Active Inundation Algorithm
by Shubo Zhang, Beibei Chen, Huili Gong, Dexin Meng, Xincheng Wang, Chaofan Zhou, Kunchao Lei, Haigang Wang, Fengxin Kang and Yabin Yang
Remote Sens. 2025, 17(17), 2942; https://doi.org/10.3390/rs17172942 - 24 Aug 2025
Viewed by 603
Abstract
The extensive distribution of quaternary sediments and the extraction of underground resources in the Yellow River Delta (YRD) have resulted in significant land subsidence, which accelerates relative sea level (RSL) rise and heightens the risk of coastal inundation. This study uses Sentinel-1A (S1A) [...] Read more.
The extensive distribution of quaternary sediments and the extraction of underground resources in the Yellow River Delta (YRD) have resulted in significant land subsidence, which accelerates relative sea level (RSL) rise and heightens the risk of coastal inundation. This study uses Sentinel-1A (S1A) imagery and the time-series synthetic aperture radar interferometry (TS-InSAR) method to obtain subsidence information for the YRD. By integrating data from groundwater level monitoring wells, hydrogeological conditions, extensometer monitoring, and drilling wells, we analyze the causes of subsidence and the deformation response to the groundwater level changes in the corresponding aquifers. For the first time in the YRD, this study introduces the high accuracy CoastalDEM v2.1 digital elevation model, combined with absolute sea level (ASL) data, to construct a coastal inundation simulation. This simulation maps the land inundation caused by RSL rise along the YRD in different scenarios. The results indicate significant subsidence bowls in coastal and inland regions, primarily attributed to shallow brine and deep groundwater extraction, respectively. The main subsidence layers in inland towns have been identified, and residual deformation has been observed. Currently, land subsidence has caused a maximum elevation loss of 141 mm/yr in coastal YRD areas, significantly contributing to RSL rise. Seawater inundation simulations suggest that if subsidence continues unabated, 12.84% of the YRD region will be inundated by 2100, with 8.74% of the built-up areas expected to be inundated. Compared to global warming-induced ASL rise, ongoing subsidence is the primary driver of inundation in the YRD coastal areas. Full article
Show Figures

Graphical abstract

21 pages, 9974 KB  
Article
Optimizing Spatial Pattern of Water Conservation Services Using Multi-Scenario Land Use/Cover Simulation and Bayesian Network in China’s Saihanba Region
by Chong Liu, Liren Xu, Fuqing Kang, Zhaoxuan Ge, Jing Zhang, Jinglei Liao, Xuanrui Huang and Zhidong Zhang
Land 2025, 14(8), 1679; https://doi.org/10.3390/land14081679 - 20 Aug 2025
Viewed by 384
Abstract
Optimizing the spatial pattern of water conservation services (WCSs) is essential for enhancing regional water retention and promoting sustainable water resource management. The Saihanba region, a critical ecological barrier in northern China, has experienced severe degradation due to historical over-logging, leading to weakened [...] Read more.
Optimizing the spatial pattern of water conservation services (WCSs) is essential for enhancing regional water retention and promoting sustainable water resource management. The Saihanba region, a critical ecological barrier in northern China, has experienced severe degradation due to historical over-logging, leading to weakened WCS functions. This study used remote sensing techniques to interpret land use/land cover change (LULC) and combined it with meteorological and basic ecological data to assess changes in WCS capacity in the Saihanba region, China, under multiple 2035 scenarios using CA-Markov and Bayesian network models. The Bayesian belief network identified priority areas for spatial optimization. Results showed the following: (1) The spatial distribution patterns of WCSs showed a strong dependence on land-use types, with both forest and grassland areas demonstrating superior water conservation capacity compared to other land cover categories; (2) although total WCS capacity varied across scenarios, spatial distribution remained consistent—high-value zones were mainly in the south and central-east, while lower values occurred in the west; and (3) WCS areas were categorized into key optimization, ecological protection, and general management zones. Notably, the Sandaohekou Forest Farm and the western Qiancengban Forest Farm emerged as critical areas requiring urgent optimization. These findings offer practical guidance for spatial planning, ecological protection, and water resource governance, supporting long-term WCS sustainability in the region. The study also contributes to cleaner production strategies by aligning ecosystem service management with sustainable development goals. Full article
Show Figures

Figure 1

27 pages, 9426 KB  
Article
Unpacking Park Cool Island Effects Using Remote-Sensed, Measured and Modelled Microclimatic Data
by Bill Grace, Julian Bolleter, Maassoumeh Barghchi and James Lund
Land 2025, 14(8), 1686; https://doi.org/10.3390/land14081686 - 20 Aug 2025
Viewed by 489
Abstract
There is increasing interest in the role of parks as potential cool refuges in the age of climate change. Such potential refuges result from the Park Cool Island (PCI) effect, reflecting the temperature differential between the park and surrounding urban areas. However, this [...] Read more.
There is increasing interest in the role of parks as potential cool refuges in the age of climate change. Such potential refuges result from the Park Cool Island (PCI) effect, reflecting the temperature differential between the park and surrounding urban areas. However, this study of different park typologies in Perth, Australia, illustrates that while surface temperatures are 10–15 °C lower in parks during summer afternoons (much less than at other times), air temperatures are generally no different from the adjacent streetscape for the smaller parks. Only the largest park in the study had 1–2 °C lower morning and mid-afternoon air temperature differentials. The study illustrates that while the PCI is a real phenomenon, the magnitude in terms of air temperature is small, and it is of less relevance to the conditions felt by humans in average summer daytime conditions than the direct effects of solar radiation. Many studies have assessed the PCI effect, an indicator that has shown a wide range across different studies and measurement techniques. However, this novel paper utilises satellite remote-sensed land surface temperatures, on-ground measurements of surface temperatures, air temperatures, and humidity, as well as modelling using the microclimatic simulation software ENVI-met version 5.0. A reliance on land surface temperature, which in isolation has a marginal correlation with human experience of thermal comfort, has led some researchers to overstate the PCI effect and its influence on adjoining urban areas. The research reported in this paper illustrates that it is the shade provided by the canopy in parks, rather than parks themselves, that provides meaningful thermal comfort benefits. Accordingly, adaptation to increasing temperatures requires the creation of a continuous canopy, ideally over parks, streetscapes, and private lots in an interconnected network. Full article
Show Figures

Figure 1

22 pages, 7314 KB  
Article
Multi-Scenario Response of Ecosystem Service Value in High-Groundwater-Level Coal–Grain Overlapping Areas Under Dual Objective Constraints
by Qian Niu, Di Zhu, Yinghong Wang, Zhongyi Ding and Guoqiang Qiu
Appl. Sci. 2025, 15(16), 9172; https://doi.org/10.3390/app15169172 - 20 Aug 2025
Viewed by 280
Abstract
Ecosystem services (ES) are a key bridge connecting natural ecosystems with human social development. The core significance of ecosystem service value (ESV) is to quantify the contribution of ecosystems to human well-being. The mining of mineral resources causes disturbance to the structure, function, [...] Read more.
Ecosystem services (ES) are a key bridge connecting natural ecosystems with human social development. The core significance of ecosystem service value (ESV) is to quantify the contribution of ecosystems to human well-being. The mining of mineral resources causes disturbance to the structure, function, and value of ecosystems. This study focuses on the high groundwater level coal–grain overlapping areas in eastern China, the mining of mineral resources has led to widespread loss of cropland and carbon sinks in the region. Considering the particularity of ecosystem evolution caused by coal mining subsidence, we developed multiple land use demand scenarios under dual objective constraints based on PIM and Markov chain, including Inertial Development (ID), Food Security (FS), Urban Expansion (UE), Ecological Restoration (ER). The PLUS model was used to simulate the spatial changes of land use and the equivalent factor method was used to calculate the changes in ESV, exploring the best path to improve the ecological benefits of the coal–grain overlapping areas. The results indicate that: (1) By 2030, the study area will add 54,249.09 ha of coal mining subsidence, mainly mild and moderate subsidence, and cropland being the most affected by subsidence among all land types. (2) In the multi-scenarios, the total ESV is ranked as follows: ecological governance scenario (CNY 51.21199 billion) > ID scenario (CNY 51.0898 billion) > food security scenario (CNY 48.4767 billion) > UE scenario (CNY 48.27157 billion). Among them, the ER scenario achieves all individual ESV gains and has the highest overall ESV. (3) Spatial analysis shows that in the ER scenario, the ESV of mining townships significantly increases and the ESV gap between other townships has decreased. However, the FS scenario and UE scenario have led to widespread degradation of ESV between various townships in eastern mountainous areas, and severe degradation of ESV in some urban townships. This study validated the accuracy and applicability of the PLUS model in medium scale and plain regions. The study has confirmed our hypothesis that reasonable land use and ecological restoration methods can achieve Pareto improvement in regional ESV, provided a holistic and local dialectical perspective for related research, and a scientific basis for the sustainable development of coal grain overlapping areas. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Environmental Monitoring)
Show Figures

Figure 1

Back to TopTop