Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = layered Fabry-Perot interferometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9119 KB  
Article
SiNx/SiO2-Based Fabry–Perot Interferometer on Sapphire for Near-UV Optical Gas Sensing of Formaldehyde in Air
by Reinoud Wolffenbuttel, Declan Winship, David Bilby, Jaco Visser, Yutao Qin and Yogesh Gianchandani
Sensors 2024, 24(11), 3597; https://doi.org/10.3390/s24113597 - 3 Jun 2024
Cited by 1 | Viewed by 3953
Abstract
Fabry–Perot interferometers (FPIs), comprising foundry-compatible dielectric thin films on sapphire wafer substrates, were investigated for possible use in chemical sensing. Specifically, structures comprising two vertically stacked distributed Bragg reflectors (DBRs), with the lower DBR between a sapphire substrate and a silicon-oxide (SiO2 [...] Read more.
Fabry–Perot interferometers (FPIs), comprising foundry-compatible dielectric thin films on sapphire wafer substrates, were investigated for possible use in chemical sensing. Specifically, structures comprising two vertically stacked distributed Bragg reflectors (DBRs), with the lower DBR between a sapphire substrate and a silicon-oxide (SiO2) resonator layer and the other DBR on top of this resonator layer, were investigated for operation in the near-ultraviolet (near-UV) range. The DBRs are composed of a stack of nitride-rich silicon-nitride (SiNx) layers for the higher index and SiO2 layers for the lower index. An exemplary application would be formaldehyde detection at sub-ppm concentrations in air, using UV absorption spectroscopy in the 300–360 nm band, while providing spectral selectivity against the main interfering gases, notably NO2 and O3. Although SiNx thin films are conventionally used only for visible and near-infrared optical wavelengths (above 450 nm) because of high absorbance at lower wavelengths, this work shows that nitride-rich SiNx is suitable for near-UV wavelengths. The interplay between spectral absorbance, transmittance and reflectance in a FPI is presented in a comparative study between one FPI design using stoichiometric material (Si3N4) and two designs based on N-rich compositions, SiN1.39 and SiN1.49. Spectral measurements confirm that if the design accounts for phase penetration depth, sufficient performance can be achieved with the SiN1.49-based FPI design for gas absorption spectroscopy in near-UV, with peak transmission at 330 nm of 64%, a free spectral range (FSR) of 20 nm and a full-width half-magnitude spectral resolution (FWHM) of 2 nm. Full article
(This article belongs to the Special Issue Optical Sensors for Gas Monitoring)
Show Figures

Figure 1

15 pages, 10680 KB  
Article
Characterization of Thin AlN/Ag/AlN-Reflector Stacks on Glass Substrates for MEMS Applications
by Christian Behl, Regine Behlert, Jan Seiler, Christian Helke, Alexey Shaporin and Karla Hiller
Micro 2024, 4(1), 142-156; https://doi.org/10.3390/micro4010010 - 29 Feb 2024
Cited by 2 | Viewed by 1461
Abstract
Thin metal layers such as silver (Ag) are being utilized for various optical and plasmonic applications as well as for electrical purposes, e.g., as transparent electrodes in display devices or solar cells. This paper focuses on optical MEMS applications such as the Fabry–Pérot [...] Read more.
Thin metal layers such as silver (Ag) are being utilized for various optical and plasmonic applications as well as for electrical purposes, e.g., as transparent electrodes in display devices or solar cells. This paper focuses on optical MEMS applications such as the Fabry–Pérot interferometer (FPI). Within such filters, reflector materials such as distributed Bragg reflectors (DBRs) or subwavelength gratings (SWGs) have been widely used so far, whereas metallic thin films (MTFs) were limited in application due to their comparatively higher absorption. In this paper, thin sputtered Ag layers with thicknesses of 20, 40 and 60 nm on glass substrates have been investigated, and it is shown that the absorption is very low in the visible spectral range (VIS) and increases only in near-infrared (NIR) with increasing wavelength. Thus, we consider Ag-thin layers to be an interesting reflector material at least for the VIS range, which can be easily fabricated and integrated. However, Ag is not inert and stable when exposed to the atmosphere. Hence, it needs a passivation material. For this purpose, AlN has been chosen in this contribution, which can be deposited by sputtering as well. In this contribution, we have chosen thin AlN layers for this purpose, which can also be deposited by sputtering. Thus, various AlN/Ag/AlN-reflector stacks were created and patterned by lift-off technology preferably. The fabricated reflectors were characterized with respect to adhesion, stress, cohesion, homogeneity, and most importantly, their optical properties. It was found that the thickness of the AlN can be used to adjust the reflectance–transmittance ratio in the VIS range, and influences the adsorption in the NIR range as well. Based on the measured values of the reflectors with 40 nm Ag, an exemplary transmission filter characteristics has been predicted for a wavelength range from 400 to 800 nm. Both the maximum transmittance and the full width at half maximum (FWHM) can be tuned by variation of the AlN thickness from 20 to 60 nm. Full article
Show Figures

Figure 1

10 pages, 9933 KB  
Communication
High-Temperature Fiber-Optic Fabry–Perot Vibration Sensor Based on Single-Crystal Sapphire
by Hua Liu, Pinggang Jia, Chengxin Su, Aihao Zhao, Jia Liu, Qianyu Ren and Jijun Xiong
Sensors 2023, 23(10), 4952; https://doi.org/10.3390/s23104952 - 21 May 2023
Cited by 9 | Viewed by 3111
Abstract
In this paper, a fiber-optic Fabry–Perot (F–P) vibration sensor that can work at 800 °C is proposed. The F–P interferometer is composed of an upper surface of inertial mass placed parallel to the end face of the optical fiber. The sensor was prepared [...] Read more.
In this paper, a fiber-optic Fabry–Perot (F–P) vibration sensor that can work at 800 °C is proposed. The F–P interferometer is composed of an upper surface of inertial mass placed parallel to the end face of the optical fiber. The sensor was prepared by ultraviolet-laser ablation and three-layer direct-bonding technology. Theoretically, the sensor has a sensitivity of 0.883 nm/g and a resonant frequency of 20.911 kHz. The experimental results show that the sensitivity of the sensor is 0.876 nm/g in the range of 2 g to 20 g at an operating frequency of 200 Hz at 20 °C. The nonlinearity was evaluated from 20 °C to 800 °C with a nonlinear error of 0.87%. In addition, the z-axis sensitivity of the sensor was 25 times higher than that of the x-axis and y-axis. The vibration sensor will have wide high-temperature engineering-application prospects. Full article
Show Figures

Figure 1

63 pages, 10142 KB  
Review
Brillouin Light Scattering from Magnetic Excitations
by Akira Yoshihara
Materials 2023, 16(3), 1038; https://doi.org/10.3390/ma16031038 - 24 Jan 2023
Cited by 10 | Viewed by 3906
Abstract
Brillouin light scattering (BLS) has been established as a standard technique to study thermally excited sound waves with frequencies up to ~100 GHz in transparent materials. In BLS experiments, one usually uses a Fabry–Pérot interferometer (FPI) as a spectrometer. The drastic improvement of [...] Read more.
Brillouin light scattering (BLS) has been established as a standard technique to study thermally excited sound waves with frequencies up to ~100 GHz in transparent materials. In BLS experiments, one usually uses a Fabry–Pérot interferometer (FPI) as a spectrometer. The drastic improvement of the FPI contrast factor over 1010 by the development of the multipass type and the tandem multipass type FPIs opened a gateway to investigate low energy excitations (ħω ≤ 1 meV) in various research fields of condensed matter physics, including surface acoustic waves and spin waves from opaque surfaces. Over the last four decades, the BLS technique has been successfully applied to study collective spin waves (SWs) in various types of magnetic structures including thin films, ultrathin films, multilayers, superlattices, and artificially arranged dots and wires using high-contrast FPIs. Now, the BLS technique has been fully established as a unique and powerful technique not only for determination of the basic magnetic constants, including the gyromagnetic ratio, the magnetic anisotropy constants, the magnetization, the SW stiffness constant, and other features of various magnetic materials and structures, but also for investigations into coupling phenomena and surface and interface phenomena in artificial magnetic structures. BLS investigations on the Fe/Cr multilayers, which exhibit ferromagnetic-antiferromagnetic arrangements of the adjacent Fe layer’s magnetizations depending on the Cr layer’s thickness, played an important role to open the new field known as “spintronics” through the discovery of the giant magnetoresistance (GMR) effect. In this review, I briefly surveyed the historical development of SW studies using the BLS technique and theoretical background, and I concentrated our BLS SW studies performed at Tohoku University and Ishinomaki Senshu University over the last thirty five years. In addition to the ferromagnetic SW studies, the BLS technique can be also applied to investigations of high-frequency magnetization dynamics in superparamagnetic (SPM) nanogranular films in the frequency domain above 10 GHz. One can excite dipole-coupled SPM excitations under external magnetic fields and observe them via the BLS technique. The external field strength determines the SPM excitations’ frequencies. By performing a numerical analysis of the BLS spectrum as a function of the external magnetic field and temperature, one can investigate the high-frequency magnetization dynamics in the SPM state and determine the magnetization relaxation parameters. Full article
(This article belongs to the Special Issue 100th Anniversary of Brillouin Scattering)
Show Figures

Figure 1

15 pages, 17854 KB  
Article
Design and Development of a MOEMS Accelerometer Using SOI Technology
by José Mireles, Ángel Sauceda, Abimael Jiménez, Manuel Ramos and Rafael Gonzalez-Landaeta
Micromachines 2023, 14(1), 231; https://doi.org/10.3390/mi14010231 - 16 Jan 2023
Cited by 12 | Viewed by 4588
Abstract
The micro-electromechanical system (MEMS) sensors are suitable devices for vibrational analysis in complex systems. The Fabry–Pérot interferometer (FPI) is used due to its high sensitivity and immunity to electromagnetic interference (EMI). Here, we present the design, fabrication, and characterization of a silicon-on-insulator (SOI) [...] Read more.
The micro-electromechanical system (MEMS) sensors are suitable devices for vibrational analysis in complex systems. The Fabry–Pérot interferometer (FPI) is used due to its high sensitivity and immunity to electromagnetic interference (EMI). Here, we present the design, fabrication, and characterization of a silicon-on-insulator (SOI) MEMS device, which is embedded in a metallic package and connected to an optical fiber. This integrated micro-opto-electro-mechanical system (MOEMS) sensor contains a mass structure and handle layers coupled with four designed springs built on the device layer. An optical reading system using an FPI is used for displacement interrogation with a demodulation technique implemented in LabVIEW®. The results indicate that our designed MOEMS sensor exhibits a main resonant frequency of 1274 Hz with damping ratio of 0.0173 under running conditions up to 7 g, in agreement with the analytical model. Our experimental findings show that our designed and fabricated MOEMS sensor has the potential for engineering application to monitor vibrations under high-electromagnetic environmental conditions. Full article
Show Figures

Figure 1

16 pages, 1747 KB  
Article
Photothermal Responsivity of van der Waals Material-Based Nanomechanical Resonators
by Myrron Albert Callera Aguila, Joshoua Condicion Esmenda, Jyh-Yang Wang, Yen-Chun Chen, Teik-Hui Lee, Chi-Yuan Yang, Kung-Hsuan Lin, Kuei-Shu Chang-Liao, Sergey Kafanov, Yuri A. Pashkin and Chii-Dong Chen
Nanomaterials 2022, 12(15), 2675; https://doi.org/10.3390/nano12152675 - 4 Aug 2022
Viewed by 2762
Abstract
Nanomechanical resonators made from van der Waals materials (vdW NMRs) provide a new tool for sensing absorbed laser power. The photothermal response of vdW NMRs, quantified from the resonant frequency shifts induced by optical absorption, is enhanced when incorporated in a Fabry–Pérot (FP) [...] Read more.
Nanomechanical resonators made from van der Waals materials (vdW NMRs) provide a new tool for sensing absorbed laser power. The photothermal response of vdW NMRs, quantified from the resonant frequency shifts induced by optical absorption, is enhanced when incorporated in a Fabry–Pérot (FP) interferometer. Along with the enhancement comes the dependence of the photothermal response on NMR displacement, which lacks investigation. Here, we address the knowledge gap by studying electromotively driven niobium diselenide drumheads fabricated on highly reflective substrates. We use a FP-mediated absorptive heating model to explain the measured variations of the photothermal response. The model predicts a higher magnitude and tuning range of photothermal responses on few-layer and monolayer NbSe2 drumheads, which outperform other clamped vdW drum-type NMRs at a laser wavelength of 532 nm. Further analysis of the model shows that both the magnitude and tuning range of NbSe2 drumheads scale with thickness, establishing a displacement-based framework for building bolometers using FP-mediated vdW NMRs. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanomaterials: Selected Papers from CCMR)
Show Figures

Figure 1

12 pages, 2734 KB  
Article
Evaluation of Mesoporous TiO2 Layers as Glucose Optical Sensors
by David Ortiz de Zárate, Sara Serna, Salvador Ponce-Alcántara and Jaime García-Rupérez
Sensors 2022, 22(14), 5398; https://doi.org/10.3390/s22145398 - 20 Jul 2022
Cited by 1 | Viewed by 2219
Abstract
Porous materials are currently the basis of many optical sensors because of their ability to provide a higher interaction between the light and the analyte, directly within the optical structure. In this study, mesoporous TiO2 layers were fabricated using a bottom-up synthesis [...] Read more.
Porous materials are currently the basis of many optical sensors because of their ability to provide a higher interaction between the light and the analyte, directly within the optical structure. In this study, mesoporous TiO2 layers were fabricated using a bottom-up synthesis approach in order to develop optical sensing structures. In comparison with more typical top-down fabrication strategies where the bulk constitutive material is etched in order to obtain the required porous medium, the use of a bottom-up fabrication approach potentially allows increasing the interconnectivity of the pore network, hence improving the surface and depth homogeneity of the fabricated layer and reducing production costs by synthesizing the layers on a larger scale. The sensing performance of the fabricated mesoporous TiO2 layers was assessed by means of the measurement of several glucose dilutions in water, estimating a limit of detection even below 0.15 mg/mL (15 mg/dL). All of these advantages make this platform a very promising candidate for the development of low-cost and high-performance optical sensors. Full article
(This article belongs to the Special Issue Porous Nanomaterials in High Performance Sensors)
Show Figures

Figure 1

10 pages, 3704 KB  
Communication
Optical Fiber Interferometric Humidity Sensor by Using Hollow Core Fiber Interacting with Gelatin Film
by Yusong Zhong, Pengbai Xu, Jun Yang and Xinyong Dong
Sensors 2022, 22(12), 4514; https://doi.org/10.3390/s22124514 - 15 Jun 2022
Cited by 16 | Viewed by 2923
Abstract
An optical fiber Fabry–Perot interferometer (FPI) is constructed for relative humidity measurement by fusion splicing a short hollow core fiber (HCF) to the end of a single-mode fiber and coating the tip of the HCF with a layer of gelatin. The thickness of [...] Read more.
An optical fiber Fabry–Perot interferometer (FPI) is constructed for relative humidity measurement by fusion splicing a short hollow core fiber (HCF) to the end of a single-mode fiber and coating the tip of the HCF with a layer of gelatin. The thickness of the gelatin film changes with ambient humidity level and modulates cavity length of the FPI. Humidity measurement is therefore realized by measuring the wavelength shift of the interreference fringe. RH sensitivity of 0.192 nm/%RH is achieved within a measurement range of 20–80%RH. Dynamic measurement shows a response and recovery time of 240 and 350 ms, respectively. Sensor performance testing shows good repeatability and stability at room temperature but also reveals slight dependence of the RH sensitivity on environmental temperature. Therefore, a fiber Bragg grating is cascaded to the FPI sensing probe to monitor temperature simultaneously with temperature sensitivity of 10 pm/°C. Full article
(This article belongs to the Special Issue Optical Fiber Sensors for Chemical and Biomedical Applications)
Show Figures

Figure 1

27 pages, 22251 KB  
Article
Asymptotic Modeling of Three-Dimensional Radar Backscattering from Oil Slicks on Sea Surfaces
by Nicolas Pinel, Christophe Bourlier, Irina Sergievskaya, Nicolas Longépé and Guillaume Hajduch
Remote Sens. 2022, 14(4), 981; https://doi.org/10.3390/rs14040981 - 17 Feb 2022
Cited by 4 | Viewed by 2317
Abstract
This paper presents new results of a simulation of radar backscatter from oil slick areas on a real three-dimensional sea surface, based on a physical hydrodynamic model of surface wave damping in the presence of oil films, the local equilibrium model (MLB). To [...] Read more.
This paper presents new results of a simulation of radar backscatter from oil slick areas on a real three-dimensional sea surface, based on a physical hydrodynamic model of surface wave damping in the presence of oil films, the local equilibrium model (MLB). To solve this problem, the modelling was carried out by using the first-order small-slope approximation (SSA1) model. It presents the advantage of having a very good compromise between rapidity and accuracy of the calculation. The choice of the model is justified by solving the two-dimensional problem with several asymptotic methods and further comparing the results with a rigorous numerical method, based on the Method of Moments (MoM). Two approaches called “thin-layer” (TL) and “classical” were used to deal with the double layer (air/oil/sea) problem. The TL approach assumes that this double-layer problem can be seen locally as a Fabry–Pérot interferometer, which implies that the Kirchhoff-tangent plane approximation (KA) is valid. The classical approach consists in neglecting the presence of the oil layer for dealing with electromagnetic backscattering, which is valid for very thin oil films compared to the electromagnetic (EM) wavelength. It is shown that these two approaches have rather complementary validity domains: The TL approach is always valid for small observation angles, which makes it suitable for near nadir sensors such as altimeters, whereas the classical approach is valid for moderate observation angles, which makes it suitable for most satellite applications. The 3D modelling results are compared with C-band and X-band measured data (CSK experiment and OOW NOFO experiment) in VV polarization. The calculation takes into account that the oil film on the sea surface is mainly in an emulsion state. The results highlighted the relevance of the MLB hydrodynamic model, as well as the SSA1 EM model combined wit the classical approach, for quantifying NRCS in seas contaminated with marine oil or surfactants. The agreement is indeed very good in the X-band range. Full article
(This article belongs to the Special Issue Electromagnetic Modeling in Microwave Remote Sensing)
Show Figures

Figure 1

18 pages, 7343 KB  
Article
Study of Atomic Oxygen Airglow Intensities and Air Temperature near Mesopause Obtained by Ground-Based and Satellite Instruments above Baikal Natural Territory
by Andrei Saunkin, Roman Vasilyev and Olga Zorkaltseva
Remote Sens. 2022, 14(1), 112; https://doi.org/10.3390/rs14010112 - 28 Dec 2021
Cited by 3 | Viewed by 2593
Abstract
The research studied the comparison of the night air temperatures and the atomic oxygen airglow intensities at the mesopause obtained with satellite and ground-based instruments. Satellite data used in this study were obtained with the SABER limb-scanning radiometer operating aboard the TIMED satellite. [...] Read more.
The research studied the comparison of the night air temperatures and the atomic oxygen airglow intensities at the mesopause obtained with satellite and ground-based instruments. Satellite data used in this study were obtained with the SABER limb-scanning radiometer operating aboard the TIMED satellite. Data of ground-based monitoring were obtained using the KEO Scientific “Arinae” Fabry–Pérot interferometer adapted for aeronomic research. Since an interferometer detects parameters of the 557.7 nm line for the entire emission layer, it is not quite appropriate to perform a direct comparison between the upper atmospheric temperature obtained from ground-based observations and that from a satellite at a particular height. To compare temperatures correctly, the effective temperature must be calculated based on satellite data. The effective temperature is a height-averaged temperature profile with the weight factors equal to the 557.7 nm line intensity at relevant heights. The height profile of intensity of this natural green airglow of the upper atmosphere is calculated from the height profile of atomic oxygen concentration. Data on chemical composition and air temperature at the mesopause from SABER were used to calculate the profiles. The night intensity of the 557.7 nm emission obtained from satellite data in this way was in good accordance with the results of ground-based observations, but the temperatures were different. The reason for temperature discrepancy was assumed to lie in the incorrect position of the intensity maximum of the reconstructed emission layer. According to our calculations based on SABER data, the intensity peak was observed at the height of 94–95 km. By shifting it relative to the SABER temperature height profile, we re-calculated the effective temperatures and compared them with the interferometer data. The best coincidence between seasonal temperature variations obtained using the proposed method was achieved when the maximum of the reconstructed 557.7 nm intensity height profile was shifted to 97 km, but it could not eliminate minor local differences in temperature behavior. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

1 pages, 129 KB  
Abstract
Fiber Optic Sensor for Detecting Neoplastic Lesions in Biological Tissues—A Preliminary Study
by Anna Sękowska-Namiotko
Eng. Proc. 2021, 4(1), 38; https://doi.org/10.3390/Micromachines2021-09595 - 16 Apr 2021
Viewed by 903
Abstract
Tissues affected by neoplastic lesions differ from healthy tissues in terms of functionality and anatomy. These changes affect light’s propagation in tissue by modifying the refractive index, and scattering and absorption coefficients. The primary purpose of this research was to create a system [...] Read more.
Tissues affected by neoplastic lesions differ from healthy tissues in terms of functionality and anatomy. These changes affect light’s propagation in tissue by modifying the refractive index, and scattering and absorption coefficients. The primary purpose of this research was to create a system to detect local changes in the refractive index using a fiber optic sensor. A prototype of a micromachine for biomedical applications has been developed. The measurements were performed using the low-coherence interferometry method, i.e., a measurement technique based on the interference of light waves from a broadband light source. The constructed optical system uses a light source with a central wavelength of 1550 nm, a spectrum analyzer, a fiber optic sensor operating on the basis of a Fabry–Perot interferometer and a silver mirror acting as a reflective layer. Measurements of the interference spectrum of reference oils, used for calibration due to the high stability of their parameters, were performed. It has been shown that the developed fiber optic sensor is able to detect changes in the refractive index based on a shift in the position of the central peak in the interference spectrum. It is also sensitive to changes of the absorption coefficient. Full article
(This article belongs to the Proceedings of The 1st International Conference on Micromachines and Applications)
19 pages, 6328 KB  
Article
Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements
by Aleksandra M. Kamińska, Marcin R. Strąkowski and Jerzy Pluciński
Sensors 2020, 20(19), 5653; https://doi.org/10.3390/s20195653 - 2 Oct 2020
Cited by 7 | Viewed by 3617
Abstract
The main goal of this research was to assess if it is possible to evaluate the thickness of thin layers (both thin films on the surface and thin layers below the surface of the tested object) and foils using optical coherence tomography (OCT) [...] Read more.
The main goal of this research was to assess if it is possible to evaluate the thickness of thin layers (both thin films on the surface and thin layers below the surface of the tested object) and foils using optical coherence tomography (OCT) for thickness assessment under the resolution of the standard commercially available OCT measurement system. In the proposed solution, light backscattered from the evaluated thin layer has been expressed as a multiple beam interference. Therefore, the OCT system was modeled as a two-beam interferometer (e.g., Michelson), in which one beam propagates from the reference arm and the other comes from a Fabry–Pérot interferometer. As a consequence, the mathematical model consists of the main Michelson interferometer, in which the measuring arm represents the Fabry–Pérot interferometer. The parameters of the layer (or foil) are evaluated by analyzing the minimum value of the interference contrast. The model developed predicts the behavior of the thin layers made from different materials (with different refractive indexes) with different thickness and located at different depths. To verify the correctness of the proposed model, an experiment with a wedge cell has been carried out. The wedge cell was shifted across the scanning beam using a linear translation stage with a micrometer screw under the scanning head. The relationship between the thickness of the gap of the wedge cell and the OCT output signal is presented. For the additional verification of the proposed model, the results of the measurements of the thickness of the thin foil were compared with the theoretical results of the simulations. The film thickness was evaluated based on the calculated positions of the minimum value of interference contrast. A combination of the standard potentialities of OCT with the proposed approach to analyzing the signal produces new metrological possibilities. The method developed allows us to evaluate thickness under the resolution of the system and the location of the layer as well. This produces the possibility of measuring a layer which is covered by another layer. Moreover, it is possible to create a thickness map with high sensitivity to thickness changes. These experiments and simulations are the culmination of preliminary research for evaluating the potential of the proposed measurement method. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

9 pages, 4707 KB  
Article
Tuning of Fiber Optic Surface Reflectivity through Graphene Oxide-Based Layer-by-Layer Film Coatings
by Catarina S. Monteiro, Maria Raposo, Paulo A. Ribeiro, Susana O. Silva and Orlando Frazão
Photonics 2020, 7(1), 11; https://doi.org/10.3390/photonics7010011 - 18 Jan 2020
Cited by 6 | Viewed by 3657
Abstract
The use of graphene oxide-based coatings on optical fibers are investigated, aiming to tune the reflectivity of optical fiber surfaces for use in precision sensing devices. Graphene oxide (GO) layers are successfully deposited onto optical fiber ends, either in cleaved or hollow microspheres, [...] Read more.
The use of graphene oxide-based coatings on optical fibers are investigated, aiming to tune the reflectivity of optical fiber surfaces for use in precision sensing devices. Graphene oxide (GO) layers are successfully deposited onto optical fiber ends, either in cleaved or hollow microspheres, by mounting combined bilayers of polyethylenimine (PEI) and GO layers using the Layer-by-Layer (LbL) technique. The reflectivity of optical fibers coated with graphene oxide layers is investigated for the telecom region allowing to both monitor layer growth kinetics and cavity characterization. Tunable reflective surfaces are successfully attained in both cleaved optical fibers and hollow microsphere fiber-based sensors by simply coating them with PEI/GO layers through the LbL film technique. Full article
(This article belongs to the Special Issue Advanced Optical Materials and Devices)
Show Figures

Figure 1

20 pages, 19432 KB  
Article
Low-Coherence Interferometric Fiber Optic Sensor for Humidity Monitoring Based on Nafion® Thin Film
by Erwin Maciak
Sensors 2019, 19(3), 629; https://doi.org/10.3390/s19030629 - 2 Feb 2019
Cited by 33 | Viewed by 7636
Abstract
The main aim of this work was the design and development simple fiber optic Fabry-Perot interferometer (FPI) sensor devices for relative humidity (RH) sensing with emphasis on high sensitivity and good stability. The RH fiber FPI sensor is fabricated by coating the end [...] Read more.
The main aim of this work was the design and development simple fiber optic Fabry-Perot interferometer (FPI) sensor devices for relative humidity (RH) sensing with emphasis on high sensitivity and good stability. The RH fiber FPI sensor is fabricated by coating the end of a cleaved standard multi-mode (MM) fiber with hydrophilic Nafion® sensing film. The Nafion® thin film acts as an active resonance cavity of the low-coherence interferometric sensing structure. The fringe pattern, which is caused by interfering light beam in the Nafion® thin film will shift as the RH changes because the water molecules will swell the Nafion® film and thus change optical pathlength of the sensing structure. The operating principle of a FPI sensor based on the adsorption and desorption of water vapour in the Nafion® and the limitations of this sensor type are discussed in this work. The fiber optic hygrometer was tested in the visible (400–900 nm) region of spectra for measurement of relative humidity (RH) in the range of 5.5–80% at room temperature (RT) in air. The fiber optic humidity sensor has a very short response time (t90 = 5–80 s) and a fast regeneration time (t10 = 5–12 s) as good as commercial sensors. Full article
(This article belongs to the Special Issue Fiber Optic Sensors for Industrial Applications)
Show Figures

Figure 1

12 pages, 5051 KB  
Article
Tunable Fabry-Perot Interferometer Designed for Far-Infrared Wavelength by Utilizing Electromagnetic Force
by Dong Geon Jung, Jun Yeop Lee, Jae Keon Kim, Daewoong Jung and Seong Ho Kong
Sensors 2018, 18(8), 2572; https://doi.org/10.3390/s18082572 - 6 Aug 2018
Cited by 5 | Viewed by 5771
Abstract
A tunable Fabry-Perot interferometer (TFPI)-type wavelength filter designed for the long-wavelength infrared (LWIR) region is fabricated using micro electro mechanical systems (MEMS) technology and the novel polydimethylsiloxane (PDMS) micro patterning technique. The structure of the proposed infrared sensor consists of a Fabry-Perot interferometer [...] Read more.
A tunable Fabry-Perot interferometer (TFPI)-type wavelength filter designed for the long-wavelength infrared (LWIR) region is fabricated using micro electro mechanical systems (MEMS) technology and the novel polydimethylsiloxane (PDMS) micro patterning technique. The structure of the proposed infrared sensor consists of a Fabry-Perot interferometer (FPI)-based optical filter and infrared (IR) detector. An amorphous Si-based thermal IR detector is located under the FPI-based optical filter to detect the IR-rays filtered by the FPI. The filtered IR wavelength is selected according to the air etalon gap between reflectors, which is defined by the thickness of the patterned PDMS. The 8 μm-thick PDMS pattern is fabricated on a 3 nm-thick Al layer used as a reflector. The air etalon gap is changed using the electromagnetic force between the permanent magnet and solenoid. The measured PDMS gap height is about 2 μm, ranging from 8 μm to 6 μm, with driving current varying from 0 mA to 600 mA, resulting in a tunable wavelength range of 4 μm. The 3-dB bandwidth (full width at half maximum, FWHM) of the proposed filter is 1.5 nm, while the Free Spectral Range (FSR) is 8 μm. Experimental results show that the proposed TFPI can detect a specific wavelength at the long LWIR region. Full article
(This article belongs to the Special Issue Infrared Sensors and Technologies)
Show Figures

Figure 1

Back to TopTop