Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = lichen symbiosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3592 KB  
Review
Little Giants: Lichens in Tropical Dry Forests
by María Cristina Martínez-Habibe, Pierine Espana-Puccini and Ricardo Miranda-González
Forests 2025, 16(9), 1364; https://doi.org/10.3390/f16091364 - 22 Aug 2025
Viewed by 124
Abstract
Lichens, complex symbiotic associations between fungi and photosynthetic partners, are widespread in terrestrial ecosystems but remain poorly studied in tropical dry forests (TDFs). This review synthesizes current knowledge on the diversity, ecological roles, adaptive traits, and ethnobotanical uses of lichens in TDFs, with [...] Read more.
Lichens, complex symbiotic associations between fungi and photosynthetic partners, are widespread in terrestrial ecosystems but remain poorly studied in tropical dry forests (TDFs). This review synthesizes current knowledge on the diversity, ecological roles, adaptive traits, and ethnobotanical uses of lichens in TDFs, with a focus on the Neotropics. As most lichens discussed here are crustose species that inhabit tree bark, this paper also provides a thoughtful review of the origin, distribution, and highly heterogeneous floristic composition of TDFs, which directly shape lichen habitats. It discusses how lichens have evolved to cope with seasonal water stress, emphasizing desiccation tolerance as a key feature of the symbiosis. This review also explores lichen community composition, interactions with host trees, microclimatic conditions, herbivory, and soil crust formation. Despite evidence of high species richness, functional diversity, and ecological importance, lichens in TDFs are largely overlooked in conservation strategies. Moreover, several regions remain vastly understudied, and many species likely remain undescribed. Ethnolichenological practices, though scarce, underscore the cultural and medicinal value of these organisms. Given the high rates of habitat loss and endemism in TDFs, there is a pressing need to expand research on lichen diversity and to investigate the evolutionary origins of their survival strategies. The conservation of these lichens is inseparable from the conservation of TDFs themselves. Understanding how lichens adapt to the harsh and variable conditions of TDFs is essential for integrating them into biodiversity conservation and ecosystem restoration frameworks. Full article
(This article belongs to the Special Issue The Importance of Lichen Diversity in Forests)
Show Figures

Figure 1

23 pages, 7312 KB  
Article
Comparative Antagonistic Activities of Endolichenic Fungi Isolated from the Fruticose Lichens Ramalina and Usnea
by Lloyd Christian Jamilano-Llames and Thomas Edison E. dela Cruz
J. Fungi 2025, 11(4), 302; https://doi.org/10.3390/jof11040302 - 10 Apr 2025
Viewed by 1113
Abstract
Persistent fungal pathogens remain a threat to global food security as these pathogens continue to infect crops despite different mitigating strategies. Traditionally, synthetic fungicides are used to combat these threats, but their environmental and health impacts have spurred interest in a more sustainable, [...] Read more.
Persistent fungal pathogens remain a threat to global food security as these pathogens continue to infect crops despite different mitigating strategies. Traditionally, synthetic fungicides are used to combat these threats, but their environmental and health impacts have spurred interest in a more sustainable, eco-friendly approach. Endolichenic fungi (ELF) are a relatively underexplored group of microorganisms found thriving inside the lichen thalli. They are seen as promising alternatives for developing sustainable plant disease management strategies. Hence, in this study, a total of forty ELF isolates from two fruticose lichen hosts—Ramalina and Usnea, were tested and compared for their antagonistic activities against three economically important filamentous fungal pathogens—Colletotrichum gloeosporioides, Cladosporium cladosporioides, and Fusarium oxysporum. The results of the dual culture assay showed that all ELF isolates successfully reduced the growth of the three filamentous fungal pathogens with varying degrees, and with direct contact inhibition as the predominant trait among the endolichenic fungi. Comparing the antagonistic activities between the different endolichenic fungi from the two lichen hosts, ELF isolates from Ramalina generally demonstrated a higher percentage inhibition of growth of the test fungi as compared to ELF isolates from Usnea. This study underscores the importance of endolichenic fungi as an efficient biocontrol agent. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection, 2nd Edition)
Show Figures

Figure 1

23 pages, 55462 KB  
Review
Lichens and Health—Trends and Perspectives for the Study of Biodiversity in the Antarctic Ecosystem
by Tatiana Prado, Wim Maurits Sylvain Degrave and Gabriela Frois Duarte
J. Fungi 2025, 11(3), 198; https://doi.org/10.3390/jof11030198 - 4 Mar 2025
Cited by 2 | Viewed by 1386
Abstract
Lichens are an important vegetative component of the Antarctic terrestrial ecosystem and present a wide diversity. Recent advances in omics technologies have allowed for the identification of lichen microbiomes and the complex symbiotic relationships that contribute to their survival mechanisms under extreme conditions. [...] Read more.
Lichens are an important vegetative component of the Antarctic terrestrial ecosystem and present a wide diversity. Recent advances in omics technologies have allowed for the identification of lichen microbiomes and the complex symbiotic relationships that contribute to their survival mechanisms under extreme conditions. The preservation of biodiversity and genetic resources is fundamental for the balance of ecosystems and for human and animal health. In order to assess the current knowledge on Antarctic lichens, we carried out a systematic review of the international applied research published between January 2019 and February 2024, using the PRISMA model (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Articles that included the descriptors “lichen” and “Antarctic” were gathered from the web, and a total of 110 and 614 publications were retrieved from PubMed and ScienceDirect, respectively. From those, 109 publications were selected and grouped according to their main research characteristics, namely, (i) biodiversity, ecology and conservation; (ii) biomonitoring and environmental health; (iii) biotechnology and metabolism; (iv) climate change; (v) evolution and taxonomy; (vi) reviews; and (vii) symbiosis. Several topics were related to the discovery of secondary metabolites with potential for treating neurodegenerative, cancer and metabolic diseases, besides compounds with antimicrobial activity. Survival mechanisms under extreme environmental conditions were also addressed in many studies, as well as research that explored the lichen-associated microbiome, its biodiversity, and its use in biomonitoring and climate change, and reviews. The main findings of these studies are discussed, as well as common themes and perspectives. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

20 pages, 3024 KB  
Article
Secondary Metabolites from Australian Lichens Ramalina celastri and Stereocaulon ramulosum Affect Growth and Metabolism of Photobiont Asterochloris erici through Allelopathy
by Martin Bačkor, Dajana Kecsey, Blažena Drábová, Dana Urminská, Martina Šemeláková and Michal Goga
Molecules 2024, 29(19), 4620; https://doi.org/10.3390/molecules29194620 - 29 Sep 2024
Viewed by 1251
Abstract
In the present work, the phytotoxic effects of secondary metabolites extracted from lichen Ramalina celastri (usnic acid) and lichen Stereocaulon ramulosum (a naturally occurring mixture of atranorin and perlatolic acid, approx. 3:1) on cultures of the aposymbiotically grown lichen photobiont Asterochloris erici were [...] Read more.
In the present work, the phytotoxic effects of secondary metabolites extracted from lichen Ramalina celastri (usnic acid) and lichen Stereocaulon ramulosum (a naturally occurring mixture of atranorin and perlatolic acid, approx. 3:1) on cultures of the aposymbiotically grown lichen photobiont Asterochloris erici were evaluated. Algae were cultivated on the surface of glass microfiber disks with applied crystals of lichen extracts for 14 days. The toxicity of each extract was tested at the two selected doses in quantities of 0.01 mg/disk and 0.1 mg/disk. Cytotoxicity of lichen extracts was assessed using selected physiological parameters, such as growth (biomass production) of photobiont cultures, content of soluble proteins, chlorophyll a fluorescence, chlorophyll a integrity, contents of chlorophylls and total carotenoids, hydrogen peroxide, superoxide anion, TBARS, ascorbic acid (AsA), reduced (GSH) and oxidized (GSSG) glutathione, and composition of selected organic acids of the Krebs cycle. The application of both tested metabolic extracts decreased the growth of photobiont cells in a dose-dependent manner; however, a mixture of atranorin and perlatolic acid was more effective when compared to usnic acid at the same dose tested. A higher degree of cytotoxicity of extracts from lichen S. ramulosum when compared to identical doses of extracts from lichen R. celastri was also confirmed by a more pronounced decrease in chlorophyll a fluorescence and chlorophyll a integrity, decreased content of chlorophylls and total carotenoids, increased production of hydrogen peroxide and superoxide anion, peroxidation of membrane lipids (assessed as TBARS), and a strong decrease in non-enzymatic antioxidants such as AsA, GSH, and GSSG. The cytotoxicity of lichen compounds was confirmed by a strong alteration in the composition of selected organic acids included in the Krebs cycle. The increased ratio between pyruvic acid and citric acid was a very sensitive parameter of phytotoxicity of lichen secondary metabolites to the algal partner of symbiosis. Secondary metabolites of lichens are potent allelochemicals and play significant roles in maintaining the balance between mycobionts and photobionts, forming lichen thallus. Full article
Show Figures

Figure 1

14 pages, 2894 KB  
Article
De Novo Genome Assembly of Toniniopsis dissimilis (Ramalinaceae, Lecanoromycetes) from Long Reads Shows a Comparatively High Composition of Biosynthetic Genes Putatively Involved in Melanin Synthesis
by Julia V. Gerasimova, Andreas Beck, Agnes Scheunert and Om Kulkarni
Genes 2024, 15(8), 1029; https://doi.org/10.3390/genes15081029 - 5 Aug 2024
Cited by 2 | Viewed by 1577
Abstract
Lichens have developed numerous adaptations to optimize their survival in various environmental conditions, largely by producing secondary compounds by the fungal partner. They often have antibiotic properties and are involved in protection against intensive UV radiation, pathogens, and herbivores. To contribute to the [...] Read more.
Lichens have developed numerous adaptations to optimize their survival in various environmental conditions, largely by producing secondary compounds by the fungal partner. They often have antibiotic properties and are involved in protection against intensive UV radiation, pathogens, and herbivores. To contribute to the knowledge of the arsenal of secondary compounds in a crustose lichen species, we sequenced and assembled the genome of Toniniopsis dissimilis, an indicator of old-growth forests, using Oxford Nanopore Technologies (ONT, Oxford, UK) long reads. Our analyses focused on biosynthetic gene clusters (BGCs) and specifically on Type I Polyketide (T1PKS) genes involved in the biosynthesis of polyketides. We used the comparative genomic approach to compare the genome of T. dissimilis with six other members of the family Ramalinaceae and twenty additional lichen genomes from the database. With only six T1PKS genes, a comparatively low number of biosynthetic genes are present in the T. dissimilis genome; from those, two-thirds are putatively involved in melanin biosynthesis. The comparative analyses showed at least three potential pathways of melanin biosynthesis in T. dissimilis, namely via the formation of 1,3,6,8-tetrahydroxynaphthalene, naphthopyrone, or YWA1 putative precursors, which highlights its importance in T. dissimilis. In addition, we report the occurrence of genes encoding ribosomally synthesized and posttranslationally modified peptides (RiPPs) in lichens, with their highest number in T. dissimilis compared to other Ramalinaceae genomes. So far, no function has been assigned to RiPP-like proteins in lichens, which leaves potential for future research on this topic. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

17 pages, 3383 KB  
Article
Geography, Climate, and Habitat Shape the Microbiome of the Endangered Rock Gnome Lichen (Cetradonia linearis)
by Julianna Paulsen, Jessica L. Allen, Nathan Morris, Jenna Dorey, Jenifer B. Walke and S. Elizabeth Alter
Diversity 2024, 16(3), 178; https://doi.org/10.3390/d16030178 - 13 Mar 2024
Viewed by 2482
Abstract
Bacterial symbionts are essential components of healthy biological systems. They are increasingly recognized as important factors in the study and management of threatened species and ecosystems. Despite management shifts at the ecosystem level, microbial communities are often neglected in discussions of holobiont conservation [...] Read more.
Bacterial symbionts are essential components of healthy biological systems. They are increasingly recognized as important factors in the study and management of threatened species and ecosystems. Despite management shifts at the ecosystem level, microbial communities are often neglected in discussions of holobiont conservation in favor of the primary members of a symbiosis. In this study, we addressed the bacterial community knowledge gap for one of two federally endangered lichen species in the United States, Cetradonia linearis (Cladoniaceae). We collected 28 samples of the endangered rock gnome lichen (Cetradonia linearis) from 13 sites and characterized bacterial communities in thalli using 16S rRNA metabarcoding to investigate the factors influencing the microbiome composition and diversity within the thallus. We found that Proteobacteria (37.8% ± 10.3) and Acidobacteria (25.9% ± 6.0) were the most abundant phyla recovered. Cyanobacteria were a major component of the microbiome in some individuals, despite this species associating with a green algal symbiont. Habitat, climate, and geography were all found to have significant influences on bacterial community composition. An analysis of the core microbiome at a 90% threshold revealed shared amplicon sequence variants in the microbiomes of other lichens in the family Cladoniaceae. We concluded that the bacterial microbiome of Cetradonia linearis is influenced by environmental factors and that some bacterial taxa may be core to this group. Further exploration into the microbiomes of rare lichen species is needed to understand the importance of bacterial symbionts to lichen diversity and distributions. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

49 pages, 8781 KB  
Review
Endolichenic Fungi: A Promising Medicinal Microbial Resource to Discover Bioactive Natural Molecules—An Update
by Wenge Zhang, Qian Ran, Hehe Li and Hongxiang Lou
J. Fungi 2024, 10(2), 99; https://doi.org/10.3390/jof10020099 - 25 Jan 2024
Cited by 8 | Viewed by 3453
Abstract
Lichens are some of the most unique fungi and are naturally encountered as symbiotic biological organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms (green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts, rocky coasts, Arctic tundra, [...] Read more.
Lichens are some of the most unique fungi and are naturally encountered as symbiotic biological organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms (green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts, rocky coasts, Arctic tundra, toxic slag piles, etc., they produce a variety of biologically meaningful and structurally novel secondary metabolites to resist external environmental stresses. The endofungi that live in and coevolve with lichens can also generate abundant secondary metabolites with novel structures, diverse skeletons, and intriguing bioactivities due to their mutualistic symbiosis with hosts, and they have been considered as strategically significant medicinal microresources for the discovery of pharmaceutical lead compounds in the medicinal industry. They are also of great importance in the fundamental research field of natural product chemistry. In this work, we conducted a comprehensive review and systematic evaluation of the secondary metabolites of endolichenic fungi regarding their origin, distribution, structural characteristics, and biological activity, as well as recent advances in their medicinal applications, by summarizing research achievements since 2015. Moreover, the current research status and future research trends regarding their chemical components are discussed and predicted. A systematic review covering the fundamental chemical research advances and pharmaceutical potential of the secondary metabolites from endolichenic fungi is urgently required to facilitate our better understanding, and this review could also serve as a critical reference to provide valuable insights for the future research and promotion of natural products from endolichenic fungi. Full article
(This article belongs to the Special Issue Diversity and Secondary Metabolites of Endophytic Fungi)
Show Figures

Graphical abstract

21 pages, 2290 KB  
Article
Myrmecia, Not Asterochloris, Is the Main Photobiont of Cladonia subturgida (Cladoniaceae, Lecanoromycetes)
by Raquel Pino-Bodas, Miguel Blázquez, Asunción de los Ríos and Sergio Pérez-Ortega
J. Fungi 2023, 9(12), 1160; https://doi.org/10.3390/jof9121160 - 2 Dec 2023
Cited by 2 | Viewed by 2740
Abstract
This study explores the diversity of photobionts associated with the Mediterranean lichen-forming fungus Cladonia subturgida. For this purpose, we sequenced the whole ITS rDNA region by Sanger using a metabarcoding method for ITS2. A total of 41 specimens from Greece, Italy, France, [...] Read more.
This study explores the diversity of photobionts associated with the Mediterranean lichen-forming fungus Cladonia subturgida. For this purpose, we sequenced the whole ITS rDNA region by Sanger using a metabarcoding method for ITS2. A total of 41 specimens from Greece, Italy, France, Portugal, and Spain were studied. Additionally, two specimens from Spain were used to generate four cultures. Our molecular studies showed that the genus Myrmecia is the main photobiont of C. subturgida throughout its geographic distribution. This result contrasts with previous studies, which indicated that the main photobiont for most Cladonia species is Asterochloris. The identity of Myrmecia was also confirmed by ultrastructural studies of photobionts within the lichen thalli and cultures. Photobiont cells showed a parietal chloroplast lacking a pyrenoid, which characterizes the species in this genus. Phylogenetic analyses indicate hidden diversity within this genus. The results of amplicon sequencing showed the presence of multiple ASVs in 58.3% of the specimens studied. Full article
(This article belongs to the Special Issue Lichen Forming Fungi—in Honour of Prof. Ana Rosa Burgaz)
Show Figures

Figure 1

16 pages, 2485 KB  
Article
Genome-Wide Analysis of the Cytochrome P450 Monooxygenases in the Lichenized Fungi of the Class Lecanoromycetes
by Gugulethu Mlambo, Tiara Padayachee, David R. Nelson and Khajamohiddin Syed
Microorganisms 2023, 11(10), 2590; https://doi.org/10.3390/microorganisms11102590 - 19 Oct 2023
Cited by 4 | Viewed by 2109
Abstract
Lichens are unique organisms that exhibit a permanent symbiosis between fungi and algae or fungi and photosynthetic bacteria. Lichens have been found to produce biotechnologically valuable secondary metabolites. A handful of studies showed that tailoring enzymes such as cytochrome P450 monooxygenases (CYPs/P450s) play [...] Read more.
Lichens are unique organisms that exhibit a permanent symbiosis between fungi and algae or fungi and photosynthetic bacteria. Lichens have been found to produce biotechnologically valuable secondary metabolites. A handful of studies showed that tailoring enzymes such as cytochrome P450 monooxygenases (CYPs/P450s) play a key role in synthesizing these metabolites. Despite the critical role of P450s in the biosynthesis of secondary metabolites, the systematic analysis of P450s in lichens has yet to be reported. This study is aimed to address this research gap. A genome-wide analysis of P450s in five lichens from the fungal class Lecanoromycetes revealed the presence of 434 P450s that are grouped into 178 P450 families and 345 P450 subfamilies. The study indicated that none of the P450 families bloomed, and 15 P450 families were conserved in all five Lecanoromycetes. Lecanoromycetes have more P450s and higher P450 family diversity compared to Pezizomycetes. A total of 73 P450s were found to be part of secondary metabolite gene clusters, indicating their potential involvement in the biosynthesis of secondary metabolites. Annotation of P450s revealed that CYP682BG1 and CYP682BG2 from Cladonia grayi and Pseudevernia furfuracea (physodic acid chemotype) are involved in the synthesis of grayanic acid and physodic acid, CYP65FQ2 from Stereocaulon alpinum is involved in the synthesis of atranorin, and CYP6309A2 from Cladonia uncialis is involved in the synthesis of usnic acid. This study serves as a reference for future annotation of P450s in lichens. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

17 pages, 2173 KB  
Article
Fungal–Algal Association Drives Lichens’ Mutualistic Symbiosis: A Case Study with Trebouxia-Related Lichens
by Ya-Bo Zuo, Da-Yong Han, Yan-Yan Wang, Qiu-Xia Yang, Qiang Ren, Xin-Zhan Liu and Xin-Li Wei
Plants 2023, 12(17), 3172; https://doi.org/10.3390/plants12173172 - 4 Sep 2023
Cited by 1 | Viewed by 4409
Abstract
Biotic and abiotic factors influence the formation of fungal–algal pairings in lichen symbiosis. However, the specific determinants of these associations, particularly when distantly related fungi are involved, remain poorly understood. In this study, we investigated the impact of different drivers on the association [...] Read more.
Biotic and abiotic factors influence the formation of fungal–algal pairings in lichen symbiosis. However, the specific determinants of these associations, particularly when distantly related fungi are involved, remain poorly understood. In this study, we investigated the impact of different drivers on the association patterns between taxonomically diverse lichenized fungi and their trebouxioid symbiotic partners. We collected 200 samples from four biomes and identified 41 species of lichenized fungi, associating them with 16 species of trebouxioid green algae, of which 62% were previously unreported. The species identity of both the fungal and algal partners had the most significant effect on the outcome of the symbiosis, compared to abiotic factors like climatic variables and geographic distance. Some obviously specific associations were observed in the temperate zone; however, the nestedness value was lower in arid regions than in cold, polar, and temperate regions according to interaction network analysis. Cophylogenetic analyses revealed congruent phylogenies between trebouxioid algae and associated fungi, indicating a tendency to reject random associations. The main evolutionary mechanisms contributing to the observed phylogenetic patterns were “loss” and “failure to diverge” of the algal partners. This study broadens our knowledge of fungal–algal symbiotic patterns in view of Trebouxia-associated fungi. Full article
(This article belongs to the Special Issue Phylogeny and Taxonomy of Lichen Symbionts)
Show Figures

Figure 1

21 pages, 4991 KB  
Article
Metabarcoding of Antarctic Lichens from Areas with Different Deglaciation Times Reveals a High Diversity of Lichen-Associated Communities
by Andreas Beck, Angélica Casanova-Katny and Julia Gerasimova
Genes 2023, 14(5), 1019; https://doi.org/10.3390/genes14051019 - 29 Apr 2023
Cited by 5 | Viewed by 3159
Abstract
Lichens have developed numerous adaptations to optimise their survival under harsh abiotic stress, colonise different substrates, and reach substantial population sizes and high coverage in ice-free Antarctic areas, benefiting from a symbiotic lifestyle. As lichen thalli represent consortia with an unknown number of [...] Read more.
Lichens have developed numerous adaptations to optimise their survival under harsh abiotic stress, colonise different substrates, and reach substantial population sizes and high coverage in ice-free Antarctic areas, benefiting from a symbiotic lifestyle. As lichen thalli represent consortia with an unknown number of participants, it is important to know about the accessory organisms and their relationships with various environmental conditions. To this end, we analysed lichen-associated communities from Himantormia lugubris, Placopsis antarctica, P. contortuplicata, and Ramalina terebrata, collected from soils with differing deglaciation times, using a metabarcoding approach. In general, many more Ascomycete taxa are associated with the investigated lichens compared to Basidiomycota. Given our sampling, a consistently higher number of lichen-associated eukaryotes are estimated to be present in areas with deglaciation times of longer than 5000 years compared to more recently deglaciated areas. Thus far, members of Dothideomycetes, Leotiomycetes, and Arthoniomycetes have been restricted to the Placopsis specimens from areas with deglaciation times longer than 5000 years. Striking differences between the associated organisms of R. terebrata and H. lugubris have also been discovered. Thus, a species-specific basidiomycete, Tremella, was revealed for R. terebrata, as was a member of Capnodiales for H. lugubris. Our study provides further understanding of the complex terricolous lichen-associated mycobiome using the metabarcoding approach. It also illustrates the necessity to extend our knowledge of complex lichen symbiosis and further improve the coverage of microbial eukaryotes in DNA barcode libraries, including more extended sampling. Full article
(This article belongs to the Special Issue Polar Genomics)
Show Figures

Figure 1

17 pages, 2159 KB  
Article
Biodiversity of Basidiomycetous Yeasts Associated with Cladonia rei Lichen in Japan, with a Description of Microsporomyces cladoniophilus sp. nov
by Ngoc-Hung Nguyen, Phuong-Thao Nguyen, Hitomi Otake, Ayana Nagata, Nobuharu Hirano, Yumi Imanishi-Shimizu and Kiminori Shimizu
J. Fungi 2023, 9(4), 473; https://doi.org/10.3390/jof9040473 - 14 Apr 2023
Cited by 4 | Viewed by 2836
Abstract
For more than a century, lichens have been used as an example of dual-partner symbiosis. Recently, this has been challenged by the discovery of various basidiomycetous yeasts that coexist in multiple lichen species, among which Cladonia lichens from Europe and the United States [...] Read more.
For more than a century, lichens have been used as an example of dual-partner symbiosis. Recently, this has been challenged by the discovery of various basidiomycetous yeasts that coexist in multiple lichen species, among which Cladonia lichens from Europe and the United States were discovered to be highly specifically associated with the basidiomycetous yeast of the family Microsporomycetaceae. To verify this highly specific relationship, we investigated the diversity of basidiomycetous yeasts associated with Cladonia rei, a widely distributed lichen in Japan, by applying two approaches: yeast isolation from the lichen thalli and meta-barcoding analysis. We obtained 42 cultures of Cystobasidiomycetous yeast which were grouped into six lineages within the family Microsporomycetaceae. Unexpectedly, although the cystobasidiomycetes-specific primer was used, not only the cystobasidiomycetous yeasts but species from other classes were also detected via the meta-barcoding dataset; in particular, pucciniomycetous yeasts were found at a high frequency in some samples. Further, Halobasidium xiangyangense, which was detected in every sample with high abundance, is highly likely a generalist epiphytic fungus that has the ability to associate with C. rei. In the pucciniomycetous group, most of the detected species belong to the scale insect-associated yeast Septobasidium genus. In conclusion, even though Microsporomyces species are not the only yeast group associated with Cladonia lichen, our study demonstrated that the thalli of Cladonia rei lichen could be a suitable habit for them. Full article
Show Figures

Figure 1

10 pages, 849 KB  
Article
Fungal Host Affects Photosynthesis in a Lichen Holobiont
by Meike Schulz, Imke Schmitt, Daniel Weber and Francesco Dal Grande
J. Fungi 2022, 8(12), 1267; https://doi.org/10.3390/jof8121267 - 30 Nov 2022
Cited by 5 | Viewed by 2499
Abstract
Corals and lichens are iconic examples of photosynthetic holobionts, i.e., ecological and evolutionary units resulting from the tightly integrated association of algae and prokaryotic microbiota with animal or fungal hosts, respectively. While the role of the coral host in modulating photosynthesis has been [...] Read more.
Corals and lichens are iconic examples of photosynthetic holobionts, i.e., ecological and evolutionary units resulting from the tightly integrated association of algae and prokaryotic microbiota with animal or fungal hosts, respectively. While the role of the coral host in modulating photosynthesis has been clarified to a large extent in coral holobionts, the role of the fungal host in this regard is far less understood. Here, we address this question by taking advantage of the recent discovery of highly specific fungal–algal pairings corresponding to climatically adapted ecotypes of the lichen-forming genus Umbilicaria. Specifically, we compared chlorophyll a fluorescence kinetics among lichen thalli consisting of different fungal–algal combinations. We show that photosynthetic performance in these lichens is not only driven by algal genotype, but also by fungal host species identity and intra-host genotype. These findings shed new light on the closely intertwined physiological processes of fungal and algal partners in the lichen symbiosis. Indeed, the specific combinations of fungal and algal genotypes within a lichen individual—and the resulting combined functional phenotype—can be regarded as a response to the environment. Our findings suggest that characterizing the genetic composition of both eukaryotic partners is an important complimentary step to understand and predict the lichen holobiont’s responses to environmental change. Full article
(This article belongs to the Special Issue Ecology and Evolution of Lichens and Associated Microorganisms)
Show Figures

Figure 1

13 pages, 12177 KB  
Review
Chronicle of Research into Lichen-Associated Bacteria
by Zichen He and Takeshi Naganuma
Microorganisms 2022, 10(11), 2111; https://doi.org/10.3390/microorganisms10112111 - 26 Oct 2022
Cited by 8 | Viewed by 4566
Abstract
Lichens are mutually symbiotic systems consisting of fungal and algal symbionts. While diverse lichen-forming fungal species are known, limited species of algae form lichens. Plasticity in the combination of fungal and algal species with different eco-physiological properties may contribute to the worldwide distribution [...] Read more.
Lichens are mutually symbiotic systems consisting of fungal and algal symbionts. While diverse lichen-forming fungal species are known, limited species of algae form lichens. Plasticity in the combination of fungal and algal species with different eco-physiological properties may contribute to the worldwide distribution of lichens, even in extreme habitats. Lichens have been studied systematically for more than 200 years; however, plasticity in fungal–algal/cyanobacterial symbiotic combinations is still unclear. In addition, the association between non-cyanobacterial bacteria and lichens has attracted attention in recent years. The types, diversity, and functions of lichen-associated bacteria have been studied using both culture-based and culture-independent methods. This review summarizes the history of systematic research on lichens and lichen-associated bacteria and provides insights into the current status of research in this field. Full article
(This article belongs to the Special Issue Feature Collection in Environmental Microbiology Section 2021-2022)
Show Figures

Figure 1

14 pages, 2746 KB  
Article
The Chloroplast Genome of the Lichen Photobiont Trebouxiophyceae sp. DW1 and Its Phylogenetic Implications
by Lidan Wang, Shenglu Zhang, Jinjin Fang, Xinjie Jin, Reyim Mamut and Pan Li
Genes 2022, 13(10), 1840; https://doi.org/10.3390/genes13101840 - 12 Oct 2022
Cited by 4 | Viewed by 2235
Abstract
Lichens are symbiotic associations of algae and fungi. The genetic mechanism of the symbiosis of lichens and the influence of symbiosis on the size and composition of the genomes of symbiotic algae have always been intriguing scientific questions explored by lichenologists. However, there [...] Read more.
Lichens are symbiotic associations of algae and fungi. The genetic mechanism of the symbiosis of lichens and the influence of symbiosis on the size and composition of the genomes of symbiotic algae have always been intriguing scientific questions explored by lichenologists. However, there were limited data on lichen genomes. Therefore, we isolated and purified a lichen symbiotic alga to obtain a single strain (Trebouxiophyceae sp. DW1), and then obtained its chloroplast genome information by next-generation sequencing (NGS). The chloroplast genome is 129,447 bp in length, and the GC content is 35.2%. Repetitive sequences with the length of 30–35 bp account for 1.27% of the total chloroplast genome. The simple sequence repeats are all mononucleotide repeats. Codon usage analysis showed that the genome tended to use codon ending in A/U. By comparing the length of different regions of Trebouxiophyceae genomes, we found that the changes in the length of exons, introns, and intergenic sequences affect the size of genomes. Trebouxiophyceae had an unstable chloroplast genome structure, with IRs repeatedly losing during evolution. Phylogenetic analysis showed that Trebouxiophyceae is paraphyletic, and Trebouxiophyceae sp. DW1 is sister to the clade of Koliella longiseta and Pabia signiensis. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Graphical abstract

Back to TopTop