Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,328)

Search Parameters:
Keywords = life-cycle assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 986 KB  
Article
Structure–Optical Properties and Sustainability Assessment of Carbon Dots Derived from Laurus nobilis Leaves
by Valeria De Matteis, Cristina Baglivo, Silvia Tamborino, Mariafrancesca Cascione, Marco Anni, Paolo Vitali, Giuseppe Negro, Mariaenrica Frigione, Paolo Maria Congedo and Rosaria Rinaldi
Appl. Nano 2025, 6(3), 19; https://doi.org/10.3390/applnano6030019 (registering DOI) - 2 Sep 2025
Abstract
Carbon dots (CDs) derived from renewable biomass are emerging as sustainable alternatives to traditional nanomaterials for applications in bioimaging, sensing, and photonics. In this study, we reported a one-step synthesis of photoluminescent CDs from Laurus nobilis leaves particularly spread in the Mediterranean area. [...] Read more.
Carbon dots (CDs) derived from renewable biomass are emerging as sustainable alternatives to traditional nanomaterials for applications in bioimaging, sensing, and photonics. In this study, we reported a one-step synthesis of photoluminescent CDs from Laurus nobilis leaves particularly spread in the Mediterranean area. The resulting nanoparticles (NPs) exhibited average diameters of 3–5 nm and high colloidal stability in water. Structural analysis by X-Rays Diffraction revealed the presence of amorphous graphitic domains, while infrared spectroscopy confirmed oxygenated functional groups on the CD surface. Spectrofluorimetric analysis showed excitation-dependent blue–green emission with a maximum at 490 nm that can be applied also as label agents for cells. The environmental sustainability of the synthetic procedure was evaluated through a Life Cycle Assessment (LCA), highlighting that the current impacts were primarily associated with electricity consumption, due to the laboratory-scale nature of the process. These impacts are expected to decrease significantly with future scale-up and process optimization. Full article
Show Figures

Figure 1

16 pages, 1584 KB  
Article
Assessing the Social and Environmental Impact of a Clothing Reuse Business Model: The Case of Circular Thrift—An Innovative, Community-Based Startup
by Iva Jestratijevic and Ragul Senthil
Sustainability 2025, 17(17), 7868; https://doi.org/10.3390/su17177868 (registering DOI) - 1 Sep 2025
Abstract
To contribute to the emerging knowledge on the sustainability impacts of small, circular clothing reuse businesses in the US, we employed a case study research methodology to empirically test the case of Circular Thrift, an innovative, community-based startup business model with potential to [...] Read more.
To contribute to the emerging knowledge on the sustainability impacts of small, circular clothing reuse businesses in the US, we employed a case study research methodology to empirically test the case of Circular Thrift, an innovative, community-based startup business model with potential to create a circular fashion ecosystem on the firm level. Primary data on circular activities were collected on site within the first year of business operation. The Life Cycle Assessment methodology was conducted to assess environmental impact avoidance. The social impact of reused products was assessed to contribute to a more comprehensive understanding of the benefits of born circular business models. Tangible environmental benefits accounted for the collection of 10,772 apparel units and resulted in the diversion of 2311.05 kg (approximately 5095 pounds) of clothing from the local landfill. Social impact accounted for 45.86% of the collected items that were given back to the local community. Empirical testing of the environmental benefits of a Circular Thrift business model makes a strong case for scaling up reusable efforts as a means to address post-consumer textile waste at the local community level within the US, where formal and government-regulated resource collection and recovery systems still do not exist. Full article
(This article belongs to the Special Issue Small Business Strategies for Sustainable and Circular Economy)
Show Figures

Figure 1

30 pages, 1990 KB  
Review
Real-Time Digital Twins for Intelligent Fault Diagnosis and Condition-Based Monitoring of Electrical Machines
by Shahin Hedayati Kia, Larisa Dunai, José Alfonso Antonino-Daviu and Hubert Razik
Energies 2025, 18(17), 4637; https://doi.org/10.3390/en18174637 (registering DOI) - 31 Aug 2025
Abstract
This article presents an overview of selected research focusing on digital real-time simulation (DRTS) in the context of digital twin (DT) realization with the primary aim of enabling the intelligent fault diagnosis (FD) and condition-based monitoring (CBM) of electrical machines. The concept of [...] Read more.
This article presents an overview of selected research focusing on digital real-time simulation (DRTS) in the context of digital twin (DT) realization with the primary aim of enabling the intelligent fault diagnosis (FD) and condition-based monitoring (CBM) of electrical machines. The concept of standalone DTs in conventional multiphysics digital offline simulations (DoSs) is widely utilized during the conceptualization and development phases of electrical machine manufacturing and processing, particularly for virtual testing under both standard and extreme operating conditions, as well as for aging assessments and lifecycle analysis. Recent advancements in data communication and information technologies, including virtual reality, cloud computing, parallel processing, machine learning, big data, and the Internet of Things (IoT), have facilitated the creation of real-time DTs based on physics-based (PHYB), circuit-oriented lumped-parameter (COLP), and data-driven approaches, as well as physics-informed machine learning (PIML), which is a combination of these models. These models are distinguished by their ability to enable real-time bidirectional data exchange with physical electrical machines. This article proposes a predictive-level framework with a particular emphasis on real-time multiphysics modeling to enhance the efficiency of the FD and CBM of electrical machines, which play a crucial role in various industrial applications. Full article
Show Figures

Figure 1

34 pages, 5186 KB  
Article
Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters
by Giulia Farnocchia, Carlos E. Gómez-Camacho, Giuseppe Pipitone, Roland Hischier, Raffaele Pirone and Samir Bensaid
Sustainability 2025, 17(17), 7856; https://doi.org/10.3390/su17177856 (registering DOI) - 31 Aug 2025
Abstract
Globally, winery wastewaters (WWWs) are estimated to account for about 62.5 billion L annually (2021), with COD levels up to 300,000 mg O2/L primarily attributed to residual ethanol, posing serious environmental concerns. Conventional treatments are effective in COD removal, but they [...] Read more.
Globally, winery wastewaters (WWWs) are estimated to account for about 62.5 billion L annually (2021), with COD levels up to 300,000 mg O2/L primarily attributed to residual ethanol, posing serious environmental concerns. Conventional treatments are effective in COD removal, but they often miss opportunities for energy recovery and resource valorization. This study investigates the aqueous phase reforming (APR) of ethanol-rich wastewater as an alternative treatment for both COD reduction and energy generation. Two scenarios were assessed: electricity and heat cogeneration (S1) and hydrogen production (S2). Process simulations in Aspen Plus® V14, based on lab-scale APR data, provided upscaled material and energy flows for techno-economic analysis, life cycle assessment, and energy sustainability analysis of a 2.5 m3/h plant. At 75% ethanol conversion, the minimum selling price (MSP) was USD0.80/kWh with a carbon footprint of 0.08 kg CO2-eq/kWh for S1 and USD7.00/kg with 2.57 kg CO2-eq/kg H2 for S2. Interestingly, S1 revealed a non-linear trade-off between APR performance and energy integration, with higher ethanol conversion leading to a higher electricity selling price because of the increased heat reactor duty. In both cases, the main contributors to global warming potential (GWP) were platinum extraction/recovery and residual COD treatment. Both scenarios achieved a positive energy balance, with an energy return on investment (EROI) of 1.57 for S1 and 2.71 for S2. This study demonstrates the potential of APR as a strategy for self-sufficient energy valorization and additional revenue generation in wine-producing regions. Full article
Show Figures

Figure 1

25 pages, 2237 KB  
Article
How Does Methanogenic Inhibition Affect Large-Scale Waste-to-Energy Anaerobic Digestion Processes? Part 1—Techno-Economic Analysis
by Denisse Estefanía Díaz-Castro, Ever Efraín García-Balandrán, Alonso Albalate-Ramírez, Carlos Escamilla-Alvarado, Sugey Ramona Sinagawa-García, Pasiano Rivas-García and Luis Ramiro Miramontes-Martínez
Fermentation 2025, 11(9), 510; https://doi.org/10.3390/fermentation11090510 (registering DOI) - 31 Aug 2025
Abstract
This two-part study assesses the impact of biogas inhibition on large-scale waste-to-energy anaerobic digestion (WtE-AD) plants through techno-economic and life cycle assessment approaches. The first part addresses technical and economic aspects. An anaerobic co-digestion system using vegetable waste (FVW) and meat waste (MW) [...] Read more.
This two-part study assesses the impact of biogas inhibition on large-scale waste-to-energy anaerobic digestion (WtE-AD) plants through techno-economic and life cycle assessment approaches. The first part addresses technical and economic aspects. An anaerobic co-digestion system using vegetable waste (FVW) and meat waste (MW) was operated at laboratory scale in a semi-continuous regime with daily feeding to establish a stable process and induce programmed failures causing methanogenic inhibition, achieved by removing MW from the reactor feed and drastically reducing the protein content. Experimental data, combined with bioprocess scale-up models and cost engineering methods, were then used to evaluate the effect of inhibition periods on the profitability of large-scale WtE-AD processes. In the experimental stage, the stable process achieved a yield of 521.5 ± 21 mL CH4 g−1 volatile solids (VS) and a biogas productivity of 0.965 ± 0.04 L L−1 d−1 (volume of biogas generated per reactor volume per day), with no failure risk detected, as indicated by the volatile fatty acids/total alkalinity ratio (VFA/TA, mg VFA L−1/mg L−1) and the VFA/productivity ratio (mg VFA L−1/L L−1 d−1), both recognized as effective early warning indicators. However, during the inhibition period, productivity decreased by 64.26 ± 11.81% due to VFA accumulation and gradual TA loss. With the progressive reintroduction of the FVW:MW management and the addition of fresh inoculum to the reaction medium, productivity recovered to 96.7 ± 1.70% of its pre-inhibition level. In WtE-AD plants processing 60 t d−1 of waste, inhibition events can reduce net present value (NPV) by up to 40.2% (from 0.98 M USD to 0.55 M USD) if occurring once per year. Increasing plant capacity (200 t d−1), combined with higher revenues from waste management fees (99.5 USD t−1) and favorable electricity markets allowing higher selling prices (up to 0.23 USD kWh−1), can enhance resilience and offset inhibition impacts without significantly compromising profitability. These findings provide policymakers and industry stakeholders with key insights into the economic drivers influencing the competitiveness and sustainability of WtE-AD systems. Full article
Show Figures

Figure 1

23 pages, 1624 KB  
Article
Life Cycle Assessment of Spring Frost Protection Methods: High and Contrasted Environmental Consequences in Vineyard Management
by Vincent Baillet, Ronan Symoneaux and Christel Renaud-Gentié
Sustainability 2025, 17(17), 7835; https://doi.org/10.3390/su17177835 (registering DOI) - 31 Aug 2025
Abstract
Due to climate change, the risk of spring frosts has increased and may rise further in the near future. This is pushing winegrowers to adopt active spring frost protection methods (ASFPMs) in their vineyard management practices. This study analyzes the potential contribution of [...] Read more.
Due to climate change, the risk of spring frosts has increased and may rise further in the near future. This is pushing winegrowers to adopt active spring frost protection methods (ASFPMs) in their vineyard management practices. This study analyzes the potential contribution of the most commonly used ASFPMs to the environmental impacts of grape production in the Loire Valley region, using the Life Cycle Assessment (LCA) approach, while considering local mesoclimatic conditions. The environmental offsets of ASFPMs are modeled by comparing the viticulture stage impact with and without ASFPM technologies. Furthermore, the present paper proposes an original approach to integrate potential yield loss, simulating frost damage. This sensitivity analysis identifies the yield loss threshold at which the different ASFPMs are environmentally compensated under various mesoclimatic conditions. We show that the environmental contribution of instant ASFPMs varies most significantly based on the number of frost hours, but generally remains the highest across most environmental indicators compared to other impacts of viticulture, e.g., ranging from 35 to 92% for the climate change indicator. Wind machines contribute the least to the viticulture stage, regardless of frost hour occurrence. However, even permanent solutions have a significant impact on at least one environmental indicator, regardless of frost hour occurrence. Additionally, the environmental offset analysis outlines that the yield loss thresholds for ASFPM impact compensation are high, even for the most effective solutions in a frost-prone context. Future research should include passive spring frost protection methods and other types of vineyard management in LCA of the viticulture stage. Full article
Show Figures

Figure 1

12 pages, 1687 KB  
Article
Life Cycle Carbon Footprint Assessment of 12 kV C4F7N Gas-Insulated Switchgear Systems
by Juan Hu, Feng Hu, Shuangshuang Tian and Yingyu Wu
Appl. Sci. 2025, 15(17), 9576; https://doi.org/10.3390/app15179576 (registering DOI) - 30 Aug 2025
Viewed by 40
Abstract
The C4F7N eco-friendly switchgear shows significant application potential, and quantifying its carbon footprint can accelerate the low-carbon transition in the power industry. A life cycle assessment (LCA) model for a 12 kV C4F7N eco-friendly switchgear [...] Read more.
The C4F7N eco-friendly switchgear shows significant application potential, and quantifying its carbon footprint can accelerate the low-carbon transition in the power industry. A life cycle assessment (LCA) model for a 12 kV C4F7N eco-friendly switchgear is established in this study, and the carbon footprint across four stages—raw material acquisition, transportation, operation, and recycling—is accurately quantified. Sensitivity analysis of key raw material parameters and Monte Carlo simulation are used to further quantify the impact of uncertainty in these key sensitive parameters. Results indicate that the operational stage contributes the most to the switchgear’s carbon footprint, amounting to 24,794.77 kgCO2e, mainly due to electricity consumption. Within this stage, C4F7N gas leakage contributes minimally at 2.21 kgCO2e. The raw material acquisition stage follows with 3005.57 kgCO2e, where C4F7N gas, aluminum, and stainless steel are identified as the primary contributing materials. Sensitivity analysis shows that electricity, C4F7N, aluminum, and stainless steel are the resources that have the greatest impact on the switchgear’s carbon footprint. Compared with traditional SF6 switchgear, the C4F7N switchgear has a 23.8% lower total carbon footprint, with its total carbon footprint reaching 26,771.58 kgCO2e compared to 35,136.48 kgCO2e for SF6 switchgear. This advantage stems largely from C4F7N’s much lower global warming potential—2090 versus 25,200 for SF6—which reduces gas-related emissions by 96.6%. These findings substantiate the practical viability of C4F7N-based eco-friendly switchgear and provide strategies for the power sector to achieve a low-carbon transition. Full article
Show Figures

Figure 1

17 pages, 1460 KB  
Article
Life Cycle Assessment and Environmental Impact Evaluation of Demineralized Water Production at Al-Hilla Second Gas Power Plant, Iraq
by Qasim Mudher Modhehi and Haider Mohammed Zwain
Resources 2025, 14(9), 137; https://doi.org/10.3390/resources14090137 - 30 Aug 2025
Viewed by 43
Abstract
This study conducts a detailed and systematic Life Cycle Assessment (LCA) of demineralized (DEMI) water production at the Al-Hilla Second Gas Power Plant in Iraq, employing the Open LCA-ReCiPe 8 Midpoint (H) method to evaluate potential environmental impacts across 18 midpoint categories. The [...] Read more.
This study conducts a detailed and systematic Life Cycle Assessment (LCA) of demineralized (DEMI) water production at the Al-Hilla Second Gas Power Plant in Iraq, employing the Open LCA-ReCiPe 8 Midpoint (H) method to evaluate potential environmental impacts across 18 midpoint categories. The analysis focuses on the production of 1 cubic meter of high-purity water, offering a comprehensive evaluation of the environmental burdens associated with chemical usage, energy consumption, and resource depletion. The results indicate that terrestrial ecotoxicity is the most dominant impact category (20.383 kg 1,4-DCB-eq), largely driven by the extensive use of treatment chemicals such as coagulants, disinfectants, and antiscalants. Climate change follows as the second highest impact category (3.496 kg CO2-eq), primarily due to significant electricity consumption during energy-intensive stages, particularly reverse osmosis (RO) and electro-deionization (EDI). These stages also contribute notably to fossil resource depletion (1.097 kg oil-eq) and particulate matter formation, reflecting the heavy reliance on fossil fuel-based energy in the region. Additional environmental concerns identified include human toxicity (both carcinogenic and non-carcinogenic), freshwater and marine ecotoxicity, and metal/mineral resource depletion, all of which underscore the need for improved chemical and material management throughout the treatment process. While impacts from categories such as ozone layer depletion, ionizing radiation, and eutrophication are relatively low, their cumulative effect over time remains a concern for long-term sustainability. The energy assessment reveals that the RO and EDI units alone account for over 70% of the total energy consumption, estimated at 3.143 kWh/m3. This research provides insights into minimizing environmental burdens in water treatment systems, especially in regions facing energy and water stress. Full article
Show Figures

Figure 1

22 pages, 3275 KB  
Article
Comparative Life Cycle Assessment for the Fabrication of Polysulfone Membranes Using Slot Die Coating as a Scalable Fabrication Technique
by David Lu, Isaac Oluk, Minwoo Jung, Sophia Tseng, Diana M. Byrne, Tequila A. L. Harris and Isabel C. Escobar
Polymers 2025, 17(17), 2363; https://doi.org/10.3390/polym17172363 - 30 Aug 2025
Viewed by 45
Abstract
Despite the emergence of eco-friendly solvents and scalable methods for polymeric membrane fabrication, studies on the impacts of solvent synthesis and manufacturing scale-up have not been conducted. To this end, a life cycle assessment (LCA) was developed with the goal of determining the [...] Read more.
Despite the emergence of eco-friendly solvents and scalable methods for polymeric membrane fabrication, studies on the impacts of solvent synthesis and manufacturing scale-up have not been conducted. To this end, a life cycle assessment (LCA) was developed with the goal of determining the global environmental and health impacts of producing polysulfone (PSf) membranes with the solvents PolarClean and γ-valerolactone (GVL) via doctor blade extrusion (DBE) and slot die coating (SDC). Along with PolarClean and GVL, dimethylacetamide (DMAc) and N-methyl-2-pyyrolidone (NMP) were included in the LCA as conventional solvents for comparison. The dope solution viscosity had a major influence on the material inventories; to produce a normalized membrane unit on a surface area basis, a larger quantity of PSf-PolarClean-GVL materials was required due to its high viscosity. The life cycle impact assessment found electricity and PolarClean to be major contributing parameters to multiple impact categories during membrane fabrication. The commercial synthesis route of PolarClean selected in this study required hazardous materials derived from petrochemicals, which increased its impact on membrane fabrication. Due to more materials being required to fabricate membranes via SDC to account for tool fluid priming, the PSf-PolarClean-GVL membrane fabricated via SDC exhibited the highest impacts. The amount of electricity and concentration of PolarClean were the most sensitive parameters according to Spearman’s rank coefficient analysis. A scenario analysis in which the regional energy grid was substituted found that using the Swedish grid, which comprises far more renewable technologies than the global and US energy grids, significantly lowered impacts in most categories. Despite the reported eco-friendly benefits of using PolarClean and GVL as alternatives to conventional organic solvents, the results in this study provide a wider perspective of membrane fabrication process impacts, highlighting that upstream impacts can counterbalance the beneficial properties of alternative materials. Full article
(This article belongs to the Special Issue New Studies of Polymer Surfaces and Interfaces: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 3131 KB  
Article
Effects of Red and Blue Laser Irradiation on the Growth and Development of Ostrinia furnacalis
by Xuemei Liang, Xintong Dai, Li Qin, Xiao Feng, Ge Chen and Minglai Yang
Insects 2025, 16(9), 906; https://doi.org/10.3390/insects16090906 - 29 Aug 2025
Viewed by 106
Abstract
This study evaluated the effects of red and blue laser irradiation on the development and reproduction of the Asian corn borer (Ostrinia furnacalis (Guenée)) under controlled laboratory conditions, aiming to explore its potential for non-chemical pest control. Larvae were exposed to laser [...] Read more.
This study evaluated the effects of red and blue laser irradiation on the development and reproduction of the Asian corn borer (Ostrinia furnacalis (Guenée)) under controlled laboratory conditions, aiming to explore its potential for non-chemical pest control. Larvae were exposed to laser light at different wavelengths and intensities, and key biological parameters—including egg hatching, larval duration, pupation, adult emergence, and oviposition—were assessed. Red laser light slightly delayed egg hatching but had minimal effects on subsequent developmental stages. In contrast, blue laser irradiation significantly prolonged the larval period and reduced pupation rates. Combined red–blue treatments produced similar inhibitory effects to blue light alone, suggesting that blue wavelengths were the primary factor driving developmental delays. These findings demonstrate that blue and red–blue laser irradiation can effectively interfere with the life cycle of O. furnacalis, offering a promising approach for sustainable, light-based pest management strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

23 pages, 8324 KB  
Article
EmotiCloud: Cloud System to Monitor Patients Using AI Facial Emotion Recognition
by Ana-María López-Echeverry, Sebastián López-Flórez, Jovany Bedoya-Guapacha and Fernando De-La-Prieta
Systems 2025, 13(9), 750; https://doi.org/10.3390/systems13090750 (registering DOI) - 29 Aug 2025
Viewed by 99
Abstract
Comprehensive healthcare seeks to uphold the right to health by providing patient-centred care in both personal and work environments. However, the unequal distribution of healthcare services significantly restricts access in remote or underserved areas—a challenge that is particularly critical in mental health care [...] Read more.
Comprehensive healthcare seeks to uphold the right to health by providing patient-centred care in both personal and work environments. However, the unequal distribution of healthcare services significantly restricts access in remote or underserved areas—a challenge that is particularly critical in mental health care within low-income countries. On average, there is only one psychiatrist for every 200,000 people, which severely limits early diagnosis and continuous monitoring in patients’ daily environments. In response to these challenges, this research explores the feasibility of implementing an information system that integrates cloud computing with an intelligent Facial Expression Recognition (FER) module to enable psychologists to remotely and periodically monitor patients’ emotional states. This approach enhances comprehensive clinical assessments, supporting early detection, ongoing management, and personalised treatment in mental health care. This applied research follows a descriptive and developmental approach, aiming to design, implement, and evaluate an intelligent cloud-based solution that enables remote monitoring of patients’ emotional states through Facial Expression Recognition (FER). The methodology integrates principles of user-centred design, software engineering best practices, and machine learning model development, ensuring a robust and scalable solution aligned with clinical and technological requirements. The development process followed the Software Development Life Cycle (SDLC) and included functional, performance, and integration testing. To assess overall system quality, we defined an evaluation framework based on ISO/IEC 25010 quality characteristics: functional suitability, performance efficiency, usability, and security. The intelligent FER model achieved strong validation results, with a loss of 0.1378 and an accuracy of 96%, as confirmed by the confusion matrix and associated performance metrics. Full article
(This article belongs to the Section Artificial Intelligence and Digital Systems Engineering)
Show Figures

Figure 1

25 pages, 3388 KB  
Article
Rapid and Non-Invasive SoH Estimation of Lithium-Ion Cells via Automated EIS and EEC Models
by Ignacio Ezpeleta, Javier Fernández, David Giráldez and Lorena Freire
Batteries 2025, 11(9), 325; https://doi.org/10.3390/batteries11090325 - 29 Aug 2025
Viewed by 86
Abstract
The growing need for efficient battery reuse and recycling requires rapid, reliable methods to assess the state of health (SoH) of lithium-ion cells. Conventional SoH estimation based on full charge–discharge cycling is slow, energy-intensive, and unsuitable for dismantled cells with unknown histories. This [...] Read more.
The growing need for efficient battery reuse and recycling requires rapid, reliable methods to assess the state of health (SoH) of lithium-ion cells. Conventional SoH estimation based on full charge–discharge cycling is slow, energy-intensive, and unsuitable for dismantled cells with unknown histories. This work presents an automated diagnostic approach using Electrochemical Impedance Spectroscopy (EIS) combined with Electrical Equivalent Circuit (EEC) modeling for fast, non-invasive SoH estimation. A correlation between fitted EIS parameters and cell degradation stages was established through controlled aging tests on NMC-based lithium-ion cells. The methodology was implemented in custom software (BaterurgIA) integrated into a robotic testing bench, enabling automatic EIS acquisition, data fitting, and SoH determination. The system achieves SoH estimation with 5–10% accuracy for cells in intermediate and advanced degradation stages, while additional parameters improve sensitivity during early aging. Compared to conventional cycling methods, the proposed approach reduces diagnostic time from hours to minutes, minimizes energy consumption, and offers predictive insights into internal degradation mechanisms. This enables fast and reliable cell grading for reuse, reconditioning, or recycling, supporting the development of scalable solutions for battery second-life applications and circular economy initiatives. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Figure 1

14 pages, 2044 KB  
Article
Sustainable Valorization of Plastic Waste and Palm Fronds into Chemically Activated Carbon–Polymer Composite
by Junaid Saleem, Zubair Khalid Baig Moghal, Furqan Tahir and Gordon McKay
Polymers 2025, 17(17), 2356; https://doi.org/10.3390/polym17172356 - 29 Aug 2025
Viewed by 106
Abstract
Polyolefin waste is an abundant yet underutilized resource for developing value-added materials, while palm fronds (PF), a lignocellulosic biomass, offer a promising feedstock for activated carbon (AC) production. However, conventional AC from biomass is typically obtained in powdered form, making it difficult to [...] Read more.
Polyolefin waste is an abundant yet underutilized resource for developing value-added materials, while palm fronds (PF), a lignocellulosic biomass, offer a promising feedstock for activated carbon (AC) production. However, conventional AC from biomass is typically obtained in powdered form, making it difficult to handle and recover in aqueous systems without external support. Incorporating polyolefins during synthesis enables the formation of chemically activated polymer–carbon composite (PCC), which offers improved usability and recovery. This study aims to evaluate the environmental sustainability of producing PCC from PF and polyolefins, using Life Cycle Assessment (LCA) to quantify energy consumption and climate change impact. The LCA results show a net energy demand of 88.59 MJ and a climate change impact of 3.57 kg CO2 eq. per kg of PCC. Substituting conventional petroleum-based AC with PCC led to a 28% reduction in climate change impact and a 30% decrease in energy demand. By integrating biomass and plastic waste, this research supports sustainable material development and promotes circular economy practices in water treatment applications. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

15 pages, 408 KB  
Study Protocol
HIITing Anxiety and Depression in Parkinson’s Disease and Multiple Sclerosis—A Study Protocol of a Transdiagnostic Randomized Controlled Trial (HersenFIT)
by Arianne S. Gravesteijn, Marc B. Rietberg, Vincent de Groot, Mark A. Hirsch, Tim Vanbellingen, Richard T. Jaspers, Chris Vriend, Wilma D. J. van de Berg, Odile A. van den Heuvel, Erwin E. H. van Wegen and on behalf of the HersenFIT Consortium
Brain Sci. 2025, 15(9), 945; https://doi.org/10.3390/brainsci15090945 - 29 Aug 2025
Viewed by 196
Abstract
Background/Objectives: Parkinson’s disease (PD) and multiple sclerosis (MS) are neurological conditions that result in debilitating non-motor symptoms, such as anxiety and depression, which significantly reduce quality of life and often persist despite pharmacological treatment. As a result, effective alternative treatment strategies are needed. [...] Read more.
Background/Objectives: Parkinson’s disease (PD) and multiple sclerosis (MS) are neurological conditions that result in debilitating non-motor symptoms, such as anxiety and depression, which significantly reduce quality of life and often persist despite pharmacological treatment. As a result, effective alternative treatment strategies are needed. Exercise therapy—particularly aerobic training—has shown promise in alleviating non-motor symptoms, potentially through neuroplastic adaptations. However, traditional aerobic exercise is often time-consuming and monotonous, limiting long-term adherence. High-intensity interval training (HIIT) offers a time-efficient and potentially more engaging alternative, though its effects on non-motor symptoms in PD and MS remain understudied. Methods: This transdiagnostic randomized controlled trial will enroll 48 participants (24 PD, 24 MS) with clinically significant affective symptoms (hospital anxiety and depression scale [HADS] ≥ 8). The participants will be randomly assigned to one of three 8-week interventions: (1) HIIT, 5–6 intervals of 45 s of high-intensity cycling; (2) continuous aerobic training (CAT), 50 min of low-intensity cycling; (3) movement advice (MA), step goals, and physical education. The primary (affective symptoms) and secondary outcomes (cognition, fatigue, sleep, motor function) will be assessed at four time points: 4 and 1 weeks pre intervention, and 1 and 4 weeks post intervention. Weekly blood samples and pre/post brain imaging will be collected to study biofluid and MRI measures for potential neuroplasticity. Linear mixed models will analyze the time and group effects. Discussion: This trial will assess whether HIIT can more effectively improve non-motor and motor symptoms in PD and MS than CAT or MA. A multimodal approach will explore both the clinical outcomes and underlying mechanisms, informing scalable and engaging rehabilitation strategies. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Graphical abstract

32 pages, 6749 KB  
Article
Cement Carbonation Under Fermentation Conditions as a Tool for CO2 Emission Management—Technological, Environmental and Economic Analysis
by Michał Pyzalski, Michał Juszczyk, Karol Durczak, Dariusz Sala, Joanna Duda, Marek Dudek and Leonas Ustinovičius
Energies 2025, 18(17), 4588; https://doi.org/10.3390/en18174588 - 29 Aug 2025
Viewed by 89
Abstract
The aim of this study is an interdisciplinary assessment of the potential of cement pastes to permanently bind carbon dioxide (CO2) under anaerobic digestion conditions, considering technological, microstructural, environmental, and economic aspects. The research focused on three types of Portland cement: [...] Read more.
The aim of this study is an interdisciplinary assessment of the potential of cement pastes to permanently bind carbon dioxide (CO2) under anaerobic digestion conditions, considering technological, microstructural, environmental, and economic aspects. The research focused on three types of Portland cement: CEM I 52.5N, CEM I 42.5R-1, and CEM I 42.5R-2, differing in phase composition and reactivity, which were evaluated in terms of their carbonation potential and resistance to chemically aggressive environments. The cement pastes were prepared with a water-to-cement ratio of 0.5 and subjected to 90-day exposure in two environments: a reference environment (tap water) and a fermentation environment (aqueous suspension of poultry manure simulating biogas reactor conditions). XRD, TG/DTA, SEM/EDS, and mercury intrusion porosimetry were applied to analyze CO2 mineralization, phase changes, and microstructural evolution. XRD results revealed a significant increase in calcite content (e.g., for CEM I 52.5N from 5.9% to 41.1%) and the presence of vaterite (19.3%), indicating intense carbonation under organic conditions. TG/DTA analysis confirmed a reduction in portlandite and C-S-H phases, suggesting their transformation into stable carbonate forms. SEM observations and EDS analysis revealed well-developed calcite crystals and the dominance of Ca, C, and O, confirming effective CO2 binding. In control samples, hydration products predominated without signs of mineralization. The highest sequestration potential was observed for CEM I 52.5N, while cements with higher C3A content (e.g., CEM I 42.5R-2) exhibited lower chemical resistance. The results confirm that carbonation under fermentation conditions may serve as an effective tool for CO2 emission management, contributing to improved durability of construction materials and generating measurable economic benefits in the context of climate policy and the EU ETS. The article highlights the need to integrate CO2 sequestration technologies with emission management systems and life cycle assessment (LCA) of biogas infrastructure, supporting the transition toward a low-carbon economy. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Carbon Dioxide Capture)
Show Figures

Figure 1

Back to TopTop