Effects of Red and Blue Laser Irradiation on the Growth and Development of Ostrinia furnacalis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Source and Rearing Conditions
2.2. Lighting Equipment and Construction of Artificial Darkroom
2.3. Laser Light Source Parameters
2.4. Developmental Duration, Reproductive Period, and Reproductive Capacity
2.5. Data Analysis and Processing
3. Results
3.1. Effects of Red and Blue Lasers on the Hatching Time of the Corn Borer Eggs
3.2. Effects of Red and Blue Lasers on the Larval Stage of the Corn Borer
3.3. Effects of Red and Blue Lasers on the Pupation of the Asian Corn Borer
3.4. Effects of Red and Blue Laser Light on Oviposition in the Corn Borer
3.5. Effects of Red and Blue Laser Light on Hatching Rate in the Corn Borer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CK | Control group |
R4 | Exposed to red laser light at intensity level 4. |
R6 | Exposed to red laser light at intensity level 6. |
B2 | Exposed to blue laser light at intensity level 2. |
B4 | Exposed to blue laser light at intensity level 4. |
B6 | Exposed to blue laser light at intensity level 6. |
RB2 | Exposed to combined red and blue laser light with blue light intensity set at level 2. |
RB4 | Exposed to combined red and blue laser light with blue light intensity set at level 4. |
References
- Li, Y.Y. Studies on the Occurrence Trend, Damage Loss and Control Threshold of Corn Borer, Ostrinia furnacalis Guenée. Master’s Thesis, Northwest A&F University, Xianyang, China, 2021. [Google Scholar]
- Wang, Z.Y.; Lu, X.; He, K.L.; Zhou, D.R. Review of History Present Situation and Prospect of the Asian Maize Borer Research in China. J. Shenyang Agric. Univ. 2000, 31, 402–412. [Google Scholar]
- Li, Q.; Shi, J.; Huang, C.; Guo, J.; He, K.; Wang, Z. Asian Corn Borer (Ostrinia furnacalis) Infestation Increases Fusarium verticillioides Infection and Fumonisin Contamination in Maize and Reduces the Yield. Plant Dis. 2023, 107, 1557–1564. [Google Scholar] [CrossRef]
- Liu, S.M. Occurrence Patterns and Control Techniques for Major Corn Pests and Diseases in Jilin Province. Spec. Econ. Anim. Plan. 2024, 27, 129–131. [Google Scholar]
- Gong, S.S.; Liu, Y. Issues and Countermeasures in the Prevention and Control of Crop Pests and Diseases. J. Agric. Ind. 2024, 11, 95–98. [Google Scholar]
- Pu, C.L. Research on Pest and Disease Control in Forest Nursery Cultivation. Hebei Agric. Mach. 2024, 10, 136–138. [Google Scholar] [CrossRef]
- Xie, Y.F. Analysis of Allelopathy of Allium spp. Companion Against Meloidogyne incongnita and Heterodera glycines. Master’s Thesis, University of Chinese Academy of Sciences, Changchun, China, 2024. [Google Scholar]
- Lang, X.K.; Jia, P.; Chen, Y.Y.; Qin, L.; Liang, L.; Chen, C.; Wang, Y.B.; Shan, X.N.; Ning, Y.Q.; Wang, L.J. Advances in narrow linewidth diode lasers. Sci. Sin. Inf. 2019, 49, 649–662. [Google Scholar] [CrossRef]
- Ma, X.Y.; Zhang, N.L.; Zhong, L.; Liu, S.P.; Jing, H.Q. Research progress of high power semiconductor laser pump source. High Power Laser Part. Beams 2020, 32, 120–129. [Google Scholar]
- Feng, G.W.; Cheng, H.; Xu, H.; Lv, C.W.; Lv, J.; Zeng, X.X. Application of Laser Mutat ion Technology in Biology Breeding. Laser Optoelectron. Prog. 2007, 44, 56–61. [Google Scholar]
- Feng, Y.X. Application of New Technologies in Fruit Tree Breeding. Hebei Agric. 2022, 7, 49–50. [Google Scholar]
- Lan, Y.; Guo, Y.; Wang, T.; Chen, X.; Chu, Q. Design and test of a laser lighting device for plant growth. Appl. Opt. 2022, 61, 4238–4245. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, Y.; Shen, Z.; Han, R. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress. Protoplasma 2018, 255, 761–771. [Google Scholar] [CrossRef]
- Zhu, J.J. The Application and Prospects of Laser Technology in Agriculture. J. Agric. Mech. Res. 2009, 31, 222–225. [Google Scholar]
- Andreasen, C.; Vlassi, E.; Salehan, N. Laser weeding of common weed species. Front. Plant Sci. 2024, 15, 1375164. [Google Scholar] [CrossRef]
- Bayati, M.; Numaan, M.; Kadhem, A.; Salahshoor, Z.; Qasim, S.; Deng, H.; Lin, J.; Yan, Z.; Lin, C.-H.; Fidalgo de Cortalezzi, M. Adsorption of atrazine by laser induced graphitic material: An efficient, scalable and green alternative for pollution abatement. J. Environ. Chem. Eng. 2020, 8, 104407. [Google Scholar] [CrossRef]
- Dong, W.J. Effects of Different Light Sources on the Growth and Reproduction of Five Insects. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2018. [Google Scholar]
- Xu, Z.; Cui, J.; Bi, R.; Gao, Y.; Shi, S.S. Effects of light intensity on the growth, development and reproduction of Megacopta cribraria (Hemiptera: Plataspidae). Acta Entomol. Sin. 2019, 62, 645–652. [Google Scholar] [CrossRef]
- Chen, W.Z.; Huang, H.S.; Chen, X.H.; Chen, R.R.; Chen, S.F.; Cai, C.T. The influence of light on the hatching of Empoasca onukii Matsuda in tea gardens. Newsl. Seric. Tea 2016, 4, 22–24. [Google Scholar]
- Pathak, S. Effects of different photoperiods and wavelengths of light on the life-history traits of an aphidophagous ladybird, Coelophora saucia (Mulsant). J. Appl. Entomol. 2006, 130, 45–50. [Google Scholar] [CrossRef]
- Sang, W.; Yu, L.; He, L.; Ma, W.H.; Zhu, Z.H.; Zhu, F.; Wang, X.P.; Lei, C.L. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism. PLoS ONE 2016, 11, e0151831. [Google Scholar] [CrossRef]
- Whittaker, M.S.; Kirk, W.D.J. The effect of photoperiod on walking, feeding, and oviposition in the western flower thrips. Entomol. Exp. Et Appl. 2004, 111, 209–214. [Google Scholar] [CrossRef]
- Shimoda, M.; Honda, K.-i. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef]
- Van Langevelde, F.; Ettema, J.A.; Donners, M.; WallisDeVries, M.F.; Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 2011, 144, 2274–2281. [Google Scholar] [CrossRef]
- Hori, M.; Shibuya, K.; Sato, M.; Saito, Y. Lethal effects of short-wavelength visible light on insects. Sci. Rep. 2014, 4, 7383. [Google Scholar] [CrossRef]
- Sang, W.; Dong, W.J.; Huang, Q.Y.; Zhu, F.; Wang, X.P.; Guo, S.H.; Lei, C.L. Effects of different light wavelengths on the growth and reproduction of Mythimna separata. J. Appl. Entomol. 2018, 55, 810–816. [Google Scholar]
- Tian, T.A.; Liu, J.F.; Yu, X.F.; Dong, X.L.; Li, Z.M.; Yang, M.F. Effects of different light resources on the reproductive behavior of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Plant Prot. 2020, 47, 822–830. [Google Scholar] [CrossRef]
- Gegear, R.J.; Casselman, A.; Waddell, S.; Reppert, S.M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 2008, 454, 1014–1018. [Google Scholar] [CrossRef]
- Pan, X.Y.; Connacher, R.P.; O’Connor, M.B. Control of the insect metamorphic transition by ecdysteroid production and secretion. Curr. Opin. Insect Sci. 2021, 43, 11–20. [Google Scholar] [CrossRef]
- González-Tokman, D.; Villada-Bedoya, S.; Hernández, A.; Montoya, B. Antioxidants, oxidative stress and reactive oxygen species in insects exposed to heat. Curr. Res. Insect Sci. 2025, 7, 100114. [Google Scholar] [CrossRef]
- Santos, D.; Nunes, L.C.; de Carvalho, G.G.A.; Gomes, M.d.S.; de Souza, P.F.; Leme, F.d.O.; dos Santos, L.G.C.; Krug, F.J. Laser-induced breakdown spectroscopy for analysis of plant materials: A review. Spectrochim. Acta Part B At. Spectrosc. 2012, 71–72, 3–13. [Google Scholar] [CrossRef]
- Vogel, A.; Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 2003, 103, 577–644. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Companies/Manufacturers | Quantity |
---|---|---|
Wheat germ | Jiahui Feed, Shijiazhuang, China | 450 g |
Yeast powder | Xi’an Yibo Trading Co., Ltd., Xi’an, China | 150 g |
Sucrose | Tianjin Huasheng Chemical Reagent Co., Ltd., Tianjin, China | 45 g |
Agar powder | Taizhou Siqi Teaching Instrument Co., Ltd., Taizhou, China | 48 g |
Sorbic acid (C6H8O2) | Xuanhao Wen Food Shop, Fuping County, Baoding, China | 12 g |
Methylparaben (C8H8O3) | Henan Gaobao Industrial Co., Ltd., Zhengzhou, China | 12 g |
Ascorbic acid (C6H8O6) | Hefei Qianfang Animal Health Technology Co., Ltd., Hefei, China | 12 g |
Distilled water | Jinan Lixia Changlei Chemical Business Unit, Jinan, China | 1600 ± 100 mL |
Light Source | Laser Plant Filler Light | LED |
---|---|---|
(Greenhouse Application) | (Greenhouse Application) | |
Watt per acre (kW) | 0.2 (10 Units) | 30 kW (75 Units) |
Annual energy use per unit area (kWh/acre/year) | 564 | 43,800 |
Power per individual lamp (W) | 13–20 | 400 |
Photosynthetic photon flux (μmol/s) | 10–15 | 622–1655 |
PPFD (μmol/s/m2) | 0.2–0.6 | Calculation based on crop requirements |
Annual energy use per unit area (kWh/acre/year) | 0.2 (10 Units) | 30 kW (75 Units) |
Power per individual lamp (W) | 564 | 43800 |
Photosynthetic photon flux (μmol/s) | 13–20 | 400 |
Group | PAR | PPFD | PPFD Red | PPFD Blue | PPFDUVB | PPFD Green |
---|---|---|---|---|---|---|
CK | 274.776 | 10.877 | 3.275 | 3.196 | 0.211 | 4.406 |
R6 | 453.171 | 25.138 | 25.138 | 0 | 0 | 0 |
R4 | 249.381 | 13.851 | 13.851 | 0 | 0 | 0 |
RB4 | 500.952 | 24.116 | 16.813 | 7.303 | 0 | 0 |
RB2 | 392.796 | 17.129 | 9.489 | 7.640 | 0 | 0 |
B6 | 435.151 | 16.230 | 0 | 16.230 | 0 | 0 |
B4 | 318.814 | 12.114 | 0 | 12.114 | 0 | 0 |
B2 | 99.539 | 3.686 | 0 | 3.686 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Dai, X.; Qin, L.; Feng, X.; Chen, G.; Yang, M. Effects of Red and Blue Laser Irradiation on the Growth and Development of Ostrinia furnacalis. Insects 2025, 16, 906. https://doi.org/10.3390/insects16090906
Liang X, Dai X, Qin L, Feng X, Chen G, Yang M. Effects of Red and Blue Laser Irradiation on the Growth and Development of Ostrinia furnacalis. Insects. 2025; 16(9):906. https://doi.org/10.3390/insects16090906
Chicago/Turabian StyleLiang, Xuemei, Xintong Dai, Li Qin, Xiao Feng, Ge Chen, and Minglai Yang. 2025. "Effects of Red and Blue Laser Irradiation on the Growth and Development of Ostrinia furnacalis" Insects 16, no. 9: 906. https://doi.org/10.3390/insects16090906
APA StyleLiang, X., Dai, X., Qin, L., Feng, X., Chen, G., & Yang, M. (2025). Effects of Red and Blue Laser Irradiation on the Growth and Development of Ostrinia furnacalis. Insects, 16(9), 906. https://doi.org/10.3390/insects16090906