Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = limb viewing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1029 KB  
Article
Topography of Cortical Activation with Mirror Visual Feedback and Electromyography-Triggered Electrical Stimulation: A Functional Near-Infrared Spectroscopy Study in Healthy Older Adults
by Yuji Inagaki, Miku Nakatsuka, Yumene Naito and Daisuke Sawamura
Brain Sci. 2025, 15(10), 1074; https://doi.org/10.3390/brainsci15101074 - 2 Oct 2025
Abstract
Background/Objectives: Stroke often results in lasting upper limb deficits. Mirror visual feedback (MVF) supports motor recovery, and electromyography-triggered electrical stimulation (ES) could enhance engagement. However, the effects in healthy older adults, age-matched to typical patient cohorts, remain insufficiently understood. We tested MVF and [...] Read more.
Background/Objectives: Stroke often results in lasting upper limb deficits. Mirror visual feedback (MVF) supports motor recovery, and electromyography-triggered electrical stimulation (ES) could enhance engagement. However, the effects in healthy older adults, age-matched to typical patient cohorts, remain insufficiently understood. We tested MVF and MVF + ES using functional near-infrared spectroscopy. Methods: Seventeen right-handed older adults performed left-wrist flexion under three visual conditions: circle fixation, viewing the right hand at rest, and mirror viewing, with/without electrical stimulation to the right-wrist flexors time-locked to left-forearm electromyography. Oxygenated hemoglobin (oxy-Hb) was recorded over the bilateral inferior frontal gyrus (IFG), precentral gyrus (PrG), postcentral gyrus (PoG), supramarginal gyrus (SMG), superior parietal lobule (SPL), and supplementary motor area. Effects were assessed with linear mixed-effects models (stimulation × visual condition); pairwise comparisons of estimated marginal means used Fisher’s least significant difference. Left-forearm electromyography verified comparable effort across conditions. Results: Linear mixed-effects models revealed left-lateralized increases in oxy-Hb, most prominently under mirror viewing with stimulation. Post hoc tests showed high oxy-Hb in the left IFG, PrG, PoG, SMG, and SMA. The left EMG did not differ. Conclusions: In healthy older adults, MVF paired with EMG-triggered ES enhances frontoparietal–motor engagement beyond MVF alone, with recruitment shaped by visuo–proprioceptive congruence. These findings support mechanistic plausibility and motivate dose–response optimization and patient-focused trials testing behavioral transfer in stroke. Full article
(This article belongs to the Section Neurorehabilitation)
Show Figures

Figure 1

26 pages, 2196 KB  
Article
Morphofunctional Spaces from the Astragalus: Exploring Angular Excursions and Mechanical Efficiency in Caraguatypotherium munozi (Notoungulata, Mesotheriidae)
by Paul Medina-González
Biology 2025, 14(9), 1290; https://doi.org/10.3390/biology14091290 - 18 Sep 2025
Viewed by 911
Abstract
The astragalus is a key biomechanical link between the autopodium and limb in mammals, modulating stability and mobility during stance. Its morphology provides reliable proxies for inferring posture, body mass, and locomotor behavior in extinct taxa. Mesotheriids (Notoungulata, Mesotheriidae) have traditionally been regarded [...] Read more.
The astragalus is a key biomechanical link between the autopodium and limb in mammals, modulating stability and mobility during stance. Its morphology provides reliable proxies for inferring posture, body mass, and locomotor behavior in extinct taxa. Mesotheriids (Notoungulata, Mesotheriidae) have traditionally been regarded as fossorial generalists, yet their functional diversity remains poorly tested. The astragali of Caraguatypotherium munozi (Miocene, Chile) and Trachytherus spegazzinianus (early Miocene, Argentina) were analyzed, integrating osteological measurements and functional indices to explore their locomotor ecology. Principal component analyses were performed to compare their morphofunctional spaces with those of 38 extant terrestrial mammals grouped by posture, body mass, top speed, and locomotor habit. Total Angular Excursion (TAE) and Angular Efficiency Index (AEI) were estimated using a comparative dataset of 182 terrestrial mammals spanning 15 taxonomic orders, focused on stance-phase mechanics during comfortable locomotion. C. munozi shows a deeper trochlea and moderately expanded navicular facets, whereas T. spegazzinianus presents a shallower trochlea and narrower articular proportions. Despite these morphological differences, both species share broadly overlapping stance-phase kinematic ranges, reflecting a conserved plantigrade locomotor module optimized for stability and energy-efficient weight support. These findings challenge the view of mesotheriids as functionally uniform and highlight ecological diversification through subtle morphological adjustments within a constrained locomotor framework. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

20 pages, 1427 KB  
Article
Performance Insights in Speed Climbing: Quantitative and Qualitative Analysis of Key Movement Metrics
by Dominik Pandurević, Paweł Draga, Alexander Sutor and Klaus Hochradel
Bioengineering 2025, 12(9), 957; https://doi.org/10.3390/bioengineering12090957 - 6 Sep 2025
Viewed by 605
Abstract
This study presents a comprehensive analysis of Speed Climbing athletes by examining motion parameters critical to elite performance. As such, several key values are extracted from about 900 competition recordings in order to generate a dataset for the identification of patterns in athletes’ [...] Read more.
This study presents a comprehensive analysis of Speed Climbing athletes by examining motion parameters critical to elite performance. As such, several key values are extracted from about 900 competition recordings in order to generate a dataset for the identification of patterns in athletes’ technique and efficiency. A CNN-based framework is used to automate the detection of human keypoints and features, enabling a large-scale evaluation of climbing dynamics. The results revealed significant variations in performance for single sections of the wall, particularly in relation to start reaction times (with differences of up to 0.27 s) and increased split times the closer the athletes are to the end of the Speed Climbing wall (from 0.39 s to 0.45 s). In addition, a more detailed examination of the movement sequences was carried out by analyzing the velocity trajectories of hands and feet. The results showed that coordinated and harmonic movements, especially of the lower limbs, correlate strongly with the performance outcome. To ensure an individualized view of the data points, a comparison was made between multiple athletes, revealing insights into the influence of individual biomechanics on the efficiency of movements. The findings provide both trainers and athletes with interesting insights in relation to tailoring training methods by including split time benchmarks and limb coordination. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

10 pages, 1427 KB  
Communication
Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation
by Yingcui Li, Alexander Tress, Peter Maye, Kemar Edwards, Asiona Findletar, Nathaniel A. Dyment, Yu Yamaguchi, David W. Rowe, Gengyun Le-Chan, Sunny S. K. Chan and Kevin W.-H. Lo
Biomedicines 2025, 13(6), 1324; https://doi.org/10.3390/biomedicines13061324 - 28 May 2025
Viewed by 879
Abstract
Hyaluronan, a key component of the extracellular matrix, plays a crucial role in joint development and maintenance. In order to determine the role of hyaluronan function in joint development and homeostasis, conditional loss-of-function experiments of Hyaluronan Synthase 2 (Has2) were carried [...] Read more.
Hyaluronan, a key component of the extracellular matrix, plays a crucial role in joint development and maintenance. In order to determine the role of hyaluronan function in joint development and homeostasis, conditional loss-of-function experiments of Hyaluronan Synthase 2 (Has2) were carried out in mice. Has2 depletion in limb mesenchymal cells led to severely shortened limbs with appendicular joints that are deformed, decreased proteoglycan content as characterized by Safranin-O staining, and severely pitted epiphyseal ends of long bones and deformed joints as viewed by micro-CT reconstructions. The embryonic deletion of Has2 in mesoderm mesenchyme of limbs by Prx1-Cre confirmed its involvement in joint development, while in situ hybridization and hyaluronan staining confirmed Has2 expression and abundant accumulation of hyaluronan in the onset of joint formation, the joint interzone. These findings position Has2 as the main hyaluronan-making enzyme in articular cartilage and highlight its essential function in joint formation and retention of proteoglycans of the extracellular matrix of the cartilage. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

15 pages, 1447 KB  
Article
Acute Physiological and Perceptual Responses to Six Body-Weight Squat Exercise Variations
by Daniel Santarém, Andreia Teixeira, António Amaral, Jaime Sampaio and Catarina Abrantes
Sensors 2025, 25(7), 2018; https://doi.org/10.3390/s25072018 - 23 Mar 2025
Viewed by 2596
Abstract
Adequate exercise prescription requires a deep understanding of the body’s response to exercise. This study explored the responses of heart rate (HR), muscle oxygen saturation (SmO2), and perceived exertion (RPE) during six body-weight squat exercise variations. A total of 15 recreationally [...] Read more.
Adequate exercise prescription requires a deep understanding of the body’s response to exercise. This study explored the responses of heart rate (HR), muscle oxygen saturation (SmO2), and perceived exertion (RPE) during six body-weight squat exercise variations. A total of 15 recreationally active participants (age: 28.2 ± 8.0 years; body mass: 71.1 ± 11.2 kg; height: 1.73 ± 0.08 m) were recruited. Six body-weight squat variations (deep, jumping, single-leg, uneven, unstable, and wall-sit) were randomly performed for 90 s. Results revealed that the jumping squat promoted a higher average and peak HR (165.3 ± 14.5 and 146.1 ± 14.8 bpm, respectively), and a lower average SmO2 and higher deoxygenation SmO2 in the soleus muscle (40.3 ± 15.4 and 46.0 ± 11.4%, accordingly). No differences were observed in recovery time or in the same SmO2 derived-parameters in the vastus lateralis muscle. The jumping variation promoted a greater response at a physiological level, both centrally, related to cardiovascular response, and peripherally, related to soleus SmO2. It was also the more demanding variation at both the overall and lower limb muscular level of RPE. This holistic view allows a precise identification of the response patterns in body-weight squat exercise variations to an acute session, with a training intervention providing additional information. Full article
Show Figures

Figure 1

28 pages, 5912 KB  
Article
Utility of Weight-Bearing Computed Tomography in the Postoperative Assessment of Ankle Fractures
by Mateusz Malik, Jakub Kwiatkowski, Artur Gądek, Agnieszka Lechowska-Liszka and Henryk Liszka
Diagnostics 2025, 15(6), 750; https://doi.org/10.3390/diagnostics15060750 - 17 Mar 2025
Viewed by 963
Abstract
Background: Ankle fractures are among the most common injuries requiring surgical intervention. Standard radiographs are typically used for postoperative assessment; however, some patients continue to experience residual symptoms despite satisfactory radiographic outcomes. Weight-bearing computed tomography (WBCT), though not yet widely integrated into clinical [...] Read more.
Background: Ankle fractures are among the most common injuries requiring surgical intervention. Standard radiographs are typically used for postoperative assessment; however, some patients continue to experience residual symptoms despite satisfactory radiographic outcomes. Weight-bearing computed tomography (WBCT), though not yet widely integrated into clinical practice, offers potential advantages in evaluating lower-limb deformities, injuries, and arthritis. This study explores the utility of WBCT for the midterm assessment following ankle fracture fixation and compares its findings with those obtained from standard radiographs. Methods: In this retrospective case study, we analyzed the correlations between the functional outcome scores approximately one year post-surgery and parameters assessed using WBCT. Pearson’s correlation coefficient was used to evaluate these correlations, and a t-test was performed to assess their statistical significance, with a threshold p-value of 0.05. Additionally, Spearman’s rank correlation coefficient was calculated as a supplementary descriptive measure, without significance testing. These correlations were then compared with those obtained from standard ankle radiographic views (anteroposterior, lateral, and mortise). Results: Several correlations were identified between WBCT parameters and functional scales, with certain parameters demonstrating high statistical significance (p < 0.05). Overall, the correlations observed for WBCT were stronger than those for standard radiographs. Conclusions: Although the study cohort was limited, the findings suggest that WBCT may provide additional insights beyond conventional radiography. Further research with larger patient groups is needed to establish its clinical relevance. Full article
(This article belongs to the Special Issue Advances in Foot and Ankle Surgery: Diagnosis and Management)
Show Figures

Figure 1

19 pages, 5449 KB  
Article
Space-Based Limb-Imaging Spectrometer for Atmospheric O2 Airglow Detection
by Minjie Zhao, Haijin Zhou, Yu Jiang, Shuhua Huang, Xin Zhao, Yi Zeng, Jun Chen, Fenglei Liu, Xiaohan Qiu, Quan Zhang, Lei Zhu, Shimei Wang, Kai Zhan, Ge Yan and Fuqi Si
Atmosphere 2025, 16(2), 214; https://doi.org/10.3390/atmos16020214 - 13 Feb 2025
Viewed by 944
Abstract
This paper presents a space-based limb-imaging spectrometer (LIS) for detecting atmospheric O2 airglow; it scans the atmosphere with a vertical range of 10–100 km and has a vertical resolution of 2 km. The LIS’s detection performance needs to be examined before launch. [...] Read more.
This paper presents a space-based limb-imaging spectrometer (LIS) for detecting atmospheric O2 airglow; it scans the atmosphere with a vertical range of 10–100 km and has a vertical resolution of 2 km. The LIS’s detection performance needs to be examined before launch. A forward radiative transfer model (RTM) of airglow is studied to determine the airglow emission intensity. Spectral and radiation calibration is conducted to obtain the response parameters. Based on the airglow emission intensity, calibration results, and airglow spectral lines, the LIS’s simulated spectra are obtained, and then an optimal estimation inversion method for the LIS is studied. The results show that the LIS’s spectral range is 498.1 nm–802.3 nm, with a spectral resolution of 1.38 nm. Simulation results show that the LIS can detect airglow emission spectral lines, which characterize their dependence on temperature. The digital number response value is 20% to 50% of the saturation value. An inversion error analysis shows that, when the signal-to-noise ratio (SNR) of the LIS is 1000 and the prior temperature error is 10%, the inversion errors are 6.2 and 3 K at 63 and 77 km, respectively. This study shows that the LIS can achieve good SNR detection for airglow. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

32 pages, 4716 KB  
Review
A Chronological Review of the Transmission and Effects of Mechanical Vibrations on the Hand—Arm System in an Occupational Workplace
by Aurora Felicia Cristea, Monica Carmen Bӑlcӑu and Simion Haragâṣ
Appl. Sci. 2025, 15(3), 1182; https://doi.org/10.3390/app15031182 - 24 Jan 2025
Viewed by 1936
Abstract
This paper aims to review researchers’ concerns over time (from the 1980s to the present) regarding the transmission of mechanical vibrations in the workplace to the limbs, with a preponderant focus on the hand–arm system and some of the effects over time. These [...] Read more.
This paper aims to review researchers’ concerns over time (from the 1980s to the present) regarding the transmission of mechanical vibrations in the workplace to the limbs, with a preponderant focus on the hand–arm system and some of the effects over time. These concerns are strictly approached from the point of view of their effects on different races, types of jobs, and forms of tools handled in the workplace. In this regard, when we refer to unwanted vibrations (harmful to a person) in the industrial environment, these are vibrations that can produce harmful effects on an individual’s health, leading to occupational diseases such as white finger syndrome. Some of the terms specific to the studies reviewed, such as vibration perception and biodynamic force, among others, are explained in this paper as needed. Studies in the field have shown that vibrations are transmitted differently when the arm is bent at the elbow joint compared to when it is outstretched; also, the transmission of vibrations is influenced by other factors, such as the temperature of the working environment, the gender and age of the person who is using the vibrating devices, and last but not least, the time of their use and the frequency. The conclusions presented by the specialized literature often refer to existing standards, in particular SR EN ISO 5349/2003. Finally, in this paper, conclusions are drawn regarding how to analyze the transmission of vibrations over time, and some recommendations are given for avoiding or minimizing them, which can be added to the already-existing standards. Full article
(This article belongs to the Special Issue Predictive Analytics in Healthcare)
Show Figures

Figure 1

18 pages, 2213 KB  
Article
Modeling of Shoulder–Elbow Movement with Exponential Parameter Identification During Walking Gaits for Healthy Subjects and Patients with Parkinson’s Disease
by Luca Pietrosanti, Giovanni Saggio, Martina Patera, Antonio Suppa, Franco Giannini and Cristiano Maria Verrelli
Appl. Sci. 2025, 15(2), 668; https://doi.org/10.3390/app15020668 - 11 Jan 2025
Viewed by 939
Abstract
Background: This paper aims to complement the latest contribution in the literature that provides estimates of physiological parameters of a dynamic model for the elbow time profile during walking while linking them to a neurodegenerative disorder (Parkinsons’s disease) characterized by motor symptoms. An [...] Read more.
Background: This paper aims to complement the latest contribution in the literature that provides estimates of physiological parameters of a dynamic model for the elbow time profile during walking while linking them to a neurodegenerative disorder (Parkinsons’s disease) characterized by motor symptoms. An upper limb model is here proposed in which an active contractile element is included within a model, viewing the arm as a double pendulum system and muscles as represented by a Kelvin–Voight system. All model parameters characterizing both the shoulder and the elbow of each subject are estimated via a gradient-like identifier whose exponential convergence properties are determined by a non-anticipative Lyapunov function, ensuring robustness features. Methods: Joint angle data from different walking subjects (healthy subjects and patients with Parkinson’s disease) have been recorded using an IMU sensor system and compared with the joint angles obtained by means of the proposed model, which was adapted to each subject using available anthropometric knowledge and relying on the estimated parameters. Results: Experiments show that the reconstruction of shoulder and elbow time profiles can be definitely achieved through the proposed procedure with the estimated stiffness parameters turning out to constitute objective and quantitative indices of muscle stiffness (as a pivotal symptom of the pathology), which are able to track changes due to the therapy. Conclusions: The same dynamic model is actually able to capture the main features of the upper limb movement of both (healthy and pathological) walking subjects, with its parameters, in turn, characterizing the nature and progress of the pathology. Full article
Show Figures

Figure 1

17 pages, 7398 KB  
Article
Inter-Calibration and Limb Correction of FY-3D/E MWTS for Long-Term Gridded Microwave Brightness Temperature Dataset
by Xinlu Xia, Mingjian Zeng, Xiaochun Luo, Xiao Shi, Rongsheng Jiang, Xinyi Yuan, Xiaozhuo Sang, Fei Tang and Xu Xu
Remote Sens. 2025, 17(1), 158; https://doi.org/10.3390/rs17010158 - 5 Jan 2025
Viewed by 931
Abstract
The Microwave Temperature Sounder-3 (MWTS-3) onboard the Chinese FengYun-3E (FY-3E) satellite is the third generation of Chinese microwave temperature sounder. Based on MWTS-2, the number of MWTS-3 channels has been increased from 13 to 17, which can observe the atmospheric temperature and water [...] Read more.
The Microwave Temperature Sounder-3 (MWTS-3) onboard the Chinese FengYun-3E (FY-3E) satellite is the third generation of Chinese microwave temperature sounder. Based on MWTS-2, the number of MWTS-3 channels has been increased from 13 to 17, which can observe the atmospheric temperature and water vapor profiles from the surface to the lower stratosphere. In this study, two generations of MWTSs onboard FY-3D/3E were inter-calibrated by the Double Difference (DD) method to eliminate bias. The results showed that the biases of tropospheric channels were stable (within 1 K) and the biases of stratospheric channels were relatively large (over 2 K). In addition, the weighting functions of all MWTS channels varied with fields of view (FOVs) due to different optical paths, causing the brightness temperature (TB) observations to display strong scan-dependent features, i.e., the limb effect. This work used a limb correction method to remove scan-dependent patterns so that the underlying weather signals could be uncovered. After inter-calibration and limb correction, this work converted the TB observations from MWTS-2/3 onto a global gridded dataset at 0.5° × 0.5° latitudinal and longitudinal resolutions using a method of nested interpolation. Based on this research, more long-term FengYun series satellite climate datasets can be established in the future. Full article
Show Figures

Figure 1

23 pages, 5798 KB  
Article
Ultrasound Examination of Skin, Fasciae and Subcutaneous Tissue: Optimizing Rehabilitation for Secondary Upper Limb Lymphedema
by Carmelo Pirri, Chiara Ferraretto, Nina Pirri, Lara Bonaldo, Raffaele De Caro, Stefano Masiero and Carla Stecco
Diagnostics 2024, 14(24), 2824; https://doi.org/10.3390/diagnostics14242824 - 15 Dec 2024
Cited by 1 | Viewed by 1989
Abstract
Background: Lymphedema represents a frequent cause of disability for patients undergoing oncological treatments and, being a chronic, non-reversible pathology, requires targeted and continuous rehabilitation treatments. To date, the studies available on the use of ultrasound in patients with lymphedema mainly report descriptive data; [...] Read more.
Background: Lymphedema represents a frequent cause of disability for patients undergoing oncological treatments and, being a chronic, non-reversible pathology, requires targeted and continuous rehabilitation treatments. To date, the studies available on the use of ultrasound in patients with lymphedema mainly report descriptive data; therefore, with this study, we wanted to describe in a more objective way the typical ultrasound alterations found in these patients, measuring the thickness of the different superficial structures, and defining subcutis echogenicity. Methods: 14 patients affected by secondary lymphedema of the upper limbs were enrolled in this cross-sectional observational study (12 had breast cancer and 2 with melanoma as their primary diagnosis). All patients were classified as stage II according to the ISL classification. Patients were examined between March and July 2023 with a clinical and an ultrasound evaluation. Ultrasound evaluation was performed following a protocol and took into consideration thickness of the cutis, subcutis, superficial and deep fascia, and subcutis echogenicity. Results: The cutis of the affected limbs was thicker in the distal anterior region of the arm and throughout the anterior region of the forearm. The subcutaneous tissue was thicker in the posterior region of the distal arm and throughout the forearm, including the dorsum of the hand and excluding only the proximal posterior region of the forearm. Fascial structures did not demonstrate statistically significant differences in thickness between pathological and healthy limbs, despite undergoing significant changes from a qualitative point of view (loss of the trilaminar skin appearance and the development of anechoic areas due to fluid accumulation around the hyperechoic adipose lobule). A statistically significant difference in the echogenicity of subcutaneous tissue was found at the distal anterior region of the arm and at the entire anterior forearm. Conclusions: High-resolution ultrasound has been confirmed to be a tool capable of supporting the diagnosis of lymphedema and identifying the most compromised regions of the limb. A tailored rehabilitation plan can be developed based on the non-uniform alterations in subcutaneous tissue, where some areas are affected earlier than others. This compartmentalization should be considered in lymphedema staging and management. Ultrasound may provide early detection of these changes, guiding a more precise therapeutic approach. Full article
(This article belongs to the Special Issue Diagnostic Imaging in Musculoskeletal Diseases)
Show Figures

Figure 1

18 pages, 4209 KB  
Article
Validity Analysis of Monocular Human Pose Estimation Models Interfaced with a Mobile Application for Assessing Upper Limb Range of Motion
by Rayele Moreira, Silmar Teixeira, Renan Fialho, Aline Miranda, Lucas Daniel Batista Lima, Maria Beatriz Carvalho, Ana Beatriz Alves, Victor Hugo Vale Bastos and Ariel Soares Teles
Sensors 2024, 24(24), 7983; https://doi.org/10.3390/s24247983 - 14 Dec 2024
Cited by 2 | Viewed by 1703
Abstract
Human Pose Estimation (HPE) is a computer vision application that utilizes deep learning techniques to precisely locate Key Joint Points (KJPs), enabling the accurate description of a person’s pose. HPE models can be extended to facilitate Range of Motion (ROM) assessment by leveraging [...] Read more.
Human Pose Estimation (HPE) is a computer vision application that utilizes deep learning techniques to precisely locate Key Joint Points (KJPs), enabling the accurate description of a person’s pose. HPE models can be extended to facilitate Range of Motion (ROM) assessment by leveraging patient photographs. This study aims to evaluate and compare the performance of HPE models for assessing upper limbs ROM. A physiotherapist evaluated the degrees of ROM in shoulders (flexion, extension, and abduction) and elbows (flexion and extension) for fifty-two participants using both Universal Goniometer (UG) and five HPE models. Participants were instructed to repeat each movement three times to obtain measurements with the UG, then positioned while photos were captured using the NLMeasurer mobile application. The paired t-test, bias, and error measures were employed to evaluate the difference and agreement between measurement methods. Results indicated that the MoveNet Thunder INT16 model exhibited superior performance. Root Mean Square Errors obtained through this model were <10° in 8 of 10 analyzed movements. HPE models demonstrated better performance in shoulder flexion and abduction movements while exhibiting unsatisfactory performance in elbow flexion. Challenges such as image perspective distortion, environmental lighting conditions, images in monocular view, and complications in the pose may influence the models’ performance. Nevertheless, HPE models show promise in identifying KJPs and facilitating ROM measurements, potentially enhancing convenience and efficiency in assessments. However, their current accuracy for this application is unsatisfactory, highlighting the need for caution when considering automated upper limb ROM measurement with them. The implementation of these models in clinical practice does not diminish the crucial role of examiners in carefully inspecting images and making adjustments to ensure measurement reliability. Full article
(This article belongs to the Special Issue e-Health Systems and Technologies)
Show Figures

Figure 1

12 pages, 4363 KB  
Case Report
Small Complex Rearrangement in HINT1-Related Axonal Neuropathy
by Alessandra Tessa, Mariapaola Schifino, Eliana Salvo, Rosanna Trovato, Luca Cesana, Silvia Frosini, Rosa Pasquariello, Giada Sgherri, Roberta Battini, Maria Clara Bonaglia, Filippo Maria Santorelli and Guja Astrea
Genes 2024, 15(11), 1483; https://doi.org/10.3390/genes15111483 - 19 Nov 2024
Viewed by 1826
Abstract
Background: Autosomal recessive inherited pathogenetic variants in the histidine triad nucleotide-binding protein 1 (HINT1) gene are responsible for an axonal Charcot-Marie-Tooth neuropathy associated with neuromyotonia, a phenomenon resulting from peripheral nerve hyperexcitability that causes a spontaneous muscle activity such as persistent [...] Read more.
Background: Autosomal recessive inherited pathogenetic variants in the histidine triad nucleotide-binding protein 1 (HINT1) gene are responsible for an axonal Charcot-Marie-Tooth neuropathy associated with neuromyotonia, a phenomenon resulting from peripheral nerve hyperexcitability that causes a spontaneous muscle activity such as persistent muscle contraction, impaired relaxation and myokymias. Methods: Herein, we describe two brothers in whom biallelic HINT1 variants were identified following a multidisciplinary approach. Results: The younger brother came to our attention for clinical evaluation of moderate intellectual disability, language developmental delay, and some behavioral issues. His elder brother presented mild intellectual disability, hyperactivity, tiptoe walking, and gait ataxia. At first evaluation, motor impairment with frequent falls, pes cavus, and distal hyposthenia with reduced osteotendinous reflexes were found in both. Grip myotonic phenomenon was also noted. Blood tests revealed mildly elevated creatine kinase, and neurophysiology investigations revealed predominantly axonal polyneuropathy. Muscle MRI highlighted fibro-adipose infiltration, prevalent in the lower limbs. Gene panel testing detected a heterozygous HINT1 variant (c.355C>T/p.(Arg119Trp)) on the paternal allele. A further in-depth analysis using Integrative Genomics Viewer and Optical Genome Mapping led us to identify an additional variant in HINT1 represented by a complex rearrangement located in the region 5′UTR-exon 1-intron 1, not previously described. Conclusions: This complex rearrangement could have been overlooked if the clinical picture had not been evaluated as a whole (from a clinical, neurophysiological, and neuroimaging point of view). Neuropsychiatric manifestations (intellectual disability, hyperactivity, etc.) are part of the picture of HINT1-related neuromyotonia. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 3210 KB  
Article
Limb Temperature Observations in the Stratosphere and Mesosphere Derived from the OMPS Sensor
by Pedro Da Costa Louro, Philippe Keckhut, Alain Hauchecorne, Mustapha Meftah, Glen Jaross and Antoine Mangin
Remote Sens. 2024, 16(20), 3878; https://doi.org/10.3390/rs16203878 - 18 Oct 2024
Viewed by 1497
Abstract
Molecular scattering (Rayleigh scattering) has been extensively used from the ground with lidars and from space to observe the limb, thereby deriving vertical temperature profiles between 30 and 80 km. In this study, we investigate how temperature can be measured using the new [...] Read more.
Molecular scattering (Rayleigh scattering) has been extensively used from the ground with lidars and from space to observe the limb, thereby deriving vertical temperature profiles between 30 and 80 km. In this study, we investigate how temperature can be measured using the new Ozone Mapping and Profiler Suite (OMPS) sensor, aboard the Suomi NPP and NOAA-21 satellites. The OMPS consists of three instruments whose main purpose is to study the composition of the stratosphere. One of these, the Limb Profiler (LP), measures the radiance of the limb of the middle atmosphere (stratosphere and mesosphere, 12 to 90 km altitude) at wavelengths from 290 to 1020 nm. This new data set has been used with a New Simplified Radiative Transfer Model (NSRTM) to derive temperature profiles with a vertical resolution of 1 km. To validate the method, the OMPS-derived temperature profiles were compared with data from four ground-based lidars and the ERA5 and MSIS models. The results show that OMPS and the lidars are in agreement within a range of about 5 K from 30 to 80 km. Comparisons with the models also show similar results, except for ERA5 beyond 50 km. We investigated various sources of bias, such as different attenuation sources, which can produce errors of up to 120 K in the UV range, instrumental errors around 0.8 K and noise problems of up to 150 K in the visible range for OMPS. This study also highlighted the interest in developing a new miniaturised instrument that could provide real-time observation of atmospheric vertical temperature profiles using a constellation of CubeSats with our NSRTM. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

27 pages, 2184 KB  
Review
The “What” and “How” of Pantomime Actions
by Raymond R. MacNeil and James T. Enns
Vision 2024, 8(4), 58; https://doi.org/10.3390/vision8040058 - 26 Sep 2024
Viewed by 2382
Abstract
Pantomimes are human actions that simulate ideas, objects, and events, commonly used in conversation, performance art, and gesture-based interfaces for computing and controlling robots. Yet, their underlying neurocognitive mechanisms are not well understood. In this review, we examine pantomimes through two parallel lines [...] Read more.
Pantomimes are human actions that simulate ideas, objects, and events, commonly used in conversation, performance art, and gesture-based interfaces for computing and controlling robots. Yet, their underlying neurocognitive mechanisms are not well understood. In this review, we examine pantomimes through two parallel lines of research: (1) the two visual systems (TVS) framework for visually guided action, and (2) the neuropsychological literature on limb apraxia. Historically, the TVS framework has considered pantomime actions as expressions of conscious perceptual processing in the ventral stream, but an emerging view is that they are jointly influenced by ventral and dorsal stream processing. Within the apraxia literature, pantomimes were historically viewed as learned motor schemas, but there is growing recognition that they include creative and improvised actions. Both literatures now recognize that pantomimes are often created spontaneously, sometimes drawing on memory and always requiring online cognitive control. By highlighting this convergence of ideas, we aim to encourage greater collaboration across these two research areas, in an effort to better understand these uniquely human behaviors. Full article
Show Figures

Figure 1

Back to TopTop