Topography of Cortical Activation with Mirror Visual Feedback and Electromyography-Triggered Electrical Stimulation: A Functional Near-Infrared Spectroscopy Study in Healthy Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Overview
2.2.1. Experimental Condition Setup
2.2.2. Tasks
2.2.3. Electromyography-Triggered Electrical Stimulation
2.2.4. Functional Near-Infrared Spectroscopy Settings
2.3. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADL | Activities of daily living |
| MVF | Mirror visual feedback |
| ES | Electrical stimulation |
| SMD | Standardized mean difference |
| CI | Confidence interval |
| fMRI | Functional magnetic resonance imaging |
| MNS | Mirror neuron system |
| IFG | Inferior frontal gyrus |
| M1 | Primary motor cortex |
| TMS | Transcranial magnetic stimulation |
| EEG | Electroencephalography |
| fNIRS | Functional near-infrared spectroscopy |
| ETES | EMG-triggered electrical stimulation |
| EMG | Electromyographic |
| oxy-Hb | Oxygenated hemoglobin |
| deoxy-Hb | Deoxygenated hemoglobin |
| total-Hb | Total hemoglobin |
| PrG | Precentral gyrus |
| PoG | Postcentral gyrus |
| SMG | Supramarginal gyrus |
| SMA | Supplementary motor area |
| SPL | Superior parietal lobule |
| LMMs | linear mixed-effects models |
| LSD | least significant difference |
| ROI | Region of interest |
References
- GBD 2021 Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. [Google Scholar] [CrossRef]
- Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Vive-Larsen, J.; Støier, M.; Olsen, T.S. Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 1995, 76, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, E.S.; Coshall, C.; Dundas, R.; Stewart, J.; Rudd, A.G.; Howard, R.; Wolfe, C.D. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 2001, 32, 1279–1284. [Google Scholar] [CrossRef]
- Bernardo-Filho, M.; Bemben, M.G.; Taiar, R.; Sañudo, B.; Furness, T.; Clark, B.C. Editorial: Interventional strategies for enhancing quality of life and health span in older adults. Front. Aging Neurosci. 2020, 12, 253. [Google Scholar] [CrossRef]
- Xue, S.; Zhou, X.; Yang, Z.H.; Si, X.K.; Sun, X. Stroke-induced damage on the blood-brain barrier. Front. Neurol. 2023, 14, 1248970. [Google Scholar] [CrossRef]
- Lekoubou, A.; Nguyen, C.; Kwon, M.; Nyalundja, A.D.; Agrawal, A. Post-stroke everything. Curr. Neurol. Neurosci. Rep. 2023, 23, 785–800. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Rogers-Ramachandran, D. Synaesthesia in phantom limbs induced with mirrors. Proc. Biol. Sci. 1996, 263, 377–386. [Google Scholar] [CrossRef]
- Altschuler, E.L.; Wisdom, S.B.; Stone, L.; Foster, C.; Galasko, D.; Llewellyn, D.M.; Ramachandran, V.S. Rehabilitation of hemiparesis after stroke with a mirror. Lancet 1999, 353, 2035–2036. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, E.; Jung, J.; Lee, S. Utilization of mirror visual feedback for upper limb function in poststroke patients: A systematic review and meta-analysis. Vision 2023, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Guo, Y.; Wu, G.; Liu, X.; Fang, Q. Mirror therapy for motor function of the upper extremity in patients with stroke: A meta-analysis. J. Rehabil. Med. 2017, 50, 8–15. [Google Scholar] [CrossRef]
- Muñoz-Gómez, E.; Inglés, M.; Aguilar-Rodríguez, M.; Sempere-Rubio, N.; Mollà-Casanova, S.; Serra-Año, P. Effects of mirror therapy on spasticity and sensory impairment after stroke: Systematic review and meta-analysis. PM R 2023, 15, 1478–1492. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, W.; Zhang, X.; Sui, Y.; Yu, W.; Yuan, Y. Effects of contralateral controlled functional electrical stimulation combined with mirror therapy on motor recovery and negative mood in stroke patients. Am. J. Transl. Res. 2023, 15, 6159–6169. [Google Scholar] [PubMed] [PubMed Central]
- Qian, J.; Liang, C.; Liu, R.; Yu, J.; Yang, T.; Bai, D. Combination of robot-assisted glove and mirror therapy improves upper limb motor function in subacute stroke patients: A randomized controlled pilot study. Front. Neurol. 2025, 16, 1602896. [Google Scholar] [CrossRef]
- Choi, H.S.; Shin, W.S.; Bang, D.H. Mirror therapy using gesture recognition for upper limb function, neck discomfort, and quality of life after chronic stroke: A single-blind randomized controlled trial. Med. Sci. Monit. 2019, 25, 3271–3278. [Google Scholar] [CrossRef]
- Zhuang, J.Y.; Ding, L.; Shu, B.B.; Chen, D.; Jia, J. Associated mirror therapy enhances motor recovery of the upper extremity and daily function after stroke: A randomized control study. Neural Plast. 2021, 2021, 7266263. [Google Scholar] [CrossRef]
- Gurbuz, N.; Ikbali Afsar, S.; Ayaş, S.; Saracgil Cosar, S.N. Effect of mirror therapy on upper extremity motor function in stroke patients: A randomized controlled trial. J. Phys. Ther. Sci. 2016, 28, 2501–2506. [Google Scholar] [CrossRef]
- Yavuzer, G.; Selles, R.; Sezer, N.; Sutbeyaz, S.; Bussmann, J.B.; Koseoglu, F.; Atay, M.B.; Stam, H.J. Mirror therapy improves hand function in subacute stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2008, 89, 393–398. [Google Scholar] [CrossRef]
- Matthys, K.; Smits, M.; van der Geest, J.N.; van der Lugt, A.; Seurinck, R.; Stam, H.J.; Selles, R.W. Mirror-induced visual illusion of hand movements: A functional magnetic resonance imaging study. Arch. Phys. Med. Rehabil. 2009, 90, 675–681. [Google Scholar] [CrossRef]
- Zhang, K.; Ding, L.; Wang, X.; Zhuang, J.; Tong, S.; Jia, J.; Guo, X. Evidence of mirror therapy for recruitment of ipsilateral motor pathways in stroke recovery: A resting fMRI study. Neurotherapeutics 2024, 21, e00320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.Q.; Fong, K.N.K.; Welage, N.; Liu, K.P.Y. The activation of the mirror neuron system during action observation and action execution with mirror visual feedback in stroke: A systematic review. Neural Plast. 2018, 2018, 2321045. [Google Scholar] [CrossRef]
- Pan, H.; Liu, T.W.; Ng, S.S.M.; Chen, P.M.; Chung, R.C.K.; Lam, S.S.L.; Li, C.S.K.; Chan, C.C.C.; Lai, C.W.K.; Ng, W.W.L.; et al. Effects of mirror therapy with electrical stimulation for upper limb recovery in people with stroke: A systematic review and meta-analysis. Disabil. Rehabil. 2024, 46, 5660–5675. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, Y.; Seki, K.; Makino, H.; Matsuo, Y.; Miyamoto, T.; Ikoma, K. Exploring hemodynamic responses using mirror visual feedback with electromyogram-triggered stimulation and functional near-infrared spectroscopy. Front. Hum. Neurosci. 2019, 13, 60. [Google Scholar] [CrossRef]
- Cabeza, R. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol. Aging 2002, 17, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Brodoehl, S.; Klingner, C.; Stieglitz, K.; Witte, O.W. Age-related changes in the somatosensory processing of tactile stimulation: An fMRI study. Behav. Brain Res. 2013, 238, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Chapman, L.J.; Chapman, J.P. The measurement of handedness. Brain Cogn. 1987, 6, 175–183. [Google Scholar] [CrossRef]
- Futami, R.; Seki, K.; Kawanishi, T.; Sugiyama, T.; Cikajlo, I.; Handa, Y. Application of local EMG-driven FES to incompletely paralyzed lower extremities. In Proceedings of the 10th Annual Conference of IFESS, Montreal, QC, Canada, 5–8 July 2005; pp. 204–206. Available online: https://pdfs.semanticscholar.org/b536/c9db3b7a319eb3dab7d76d3ae799efb2c634.pdf (accessed on 17 August 2025).
- Tsuzuki, D.; Jurcak, V.; Singh, A.K.; Okamoto, M.; Watanabe, E.; Dan, I. Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage 2007, 34, 1506–1518. [Google Scholar] [CrossRef]
- Jasper, H.H. The ten–twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 371–375. [Google Scholar]
- Ye, J.C.; Tak, S.; Jang, K.E.; Jung, J.; Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage 2009, 44, 428–447. [Google Scholar] [CrossRef]
- McCormick, P.W.; Stewart, M.S.; Lewis, G.; Dujovny, M.; Ausman, J.I. Intracerebral penetration of infrared light. J. Neurosurg. 1992, 76, 315–318. [Google Scholar] [CrossRef]
- Murata, Y.; Sakatani, K.; Katayama, Y.; Fukaya, C. Increase in focal concentration of deoxyhaemoglobin during neuronal activity in cerebral ischaemic patients. J. Neurol. Neurosurg. Psychiatry 2002, 73, 182–184. [Google Scholar] [CrossRef]
- Murkin, J.M.; Arango, M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br. J. Anaesth. 2009, 103, i3–i13. [Google Scholar] [CrossRef]
- Fujiwara, N.; Sakatani, K.; Katayama, Y.; Murata, Y.; Hoshino, T.; Fukaya, C.; Yamamoto, T. Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors. NeuroImage 2004, 21, 1464–1471. [Google Scholar] [CrossRef]
- Seiyama, A.; Seki, J.; Tanabe, H.C.; Sase, I.; Takatsuki, A.; Miyauchi, S.; Eda, H.; Hayashi, S.; Imaruoka, T.; Iwakura, T.; et al. Circulatory basis of fMRI signals: Relationship between changes in the hemodynamic parameters and BOLD signal intensity. NeuroImage 2004, 21, 1204–1214. [Google Scholar] [CrossRef]
- Schroeter, M.L.; Zysset, S.; von Cramon, D.Y. Shortening intertrial intervals in event-related cognitive studies with near-infrared spectroscopy. NeuroImage 2004, 22, 341–346. [Google Scholar] [CrossRef]
- Kurth, R.; Villringer, K.; Curio, G.; Wolf, K.J.; Krause, T.; Repenthin, J.; Schwiemann, J.; Deuchert, M.; Villringer, A. fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex. Neuroreport 2000, 11, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Heinze, H.J.; Rotte, M. Seeing the hand being touched modulates the primary somatosensory cortex. Neuroreport 2005, 16, 1101–1105. [Google Scholar] [CrossRef]
- Calvo-Merino, B.; Glaser, D.E.; Grèzes, J.; Passingham, R.E.; Haggard, P. Action observation and acquired motor skills: An fMRI study with expert dancers. Cereb. Cortex 2005, 15, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Buccino, G.; Lui, F.; Canessa, N.; Patteri, I.; Lagravinese, G.; Benuzzi, F.; Porro, C.A.; Rizzolatti, G. Neural circuits involved in the recognition of actions performed by nonconspecifics: An fMRI study. J. Cogn. Neurosci. 2004, 16, 114–126. [Google Scholar] [CrossRef]
- Craighero, L.; Mele, S.; Gaifas, V.; Bonaguri, E.; Straudi, S. Evidence of Motor Resonance in Stroke Patients with Severe Upper Limb Function Impairments. Cortex 2023, 159, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Xing, B.; Li, J.; Yang, C.; Han, C.; Wang, Q. Mirror therapy versus action observation therapy: Effects on excitability of the cerebral cortex in patients after strokes. Int. J. Clin. Exp. Med. 2019, 12, 8763–8772. [Google Scholar]
- Cui, Y.; Cong, F.; Huang, F.; Zeng, M.; Yan, R. Cortical activation of neuromuscular electrical stimulation synchronized mirror neuron rehabilitation strategies: An fNIRS study. Front. Neurol. 2023, 14, 1232436. [Google Scholar] [CrossRef] [PubMed]
- Guirro, R.R.J.; Guirro, E.C.O.; de Sousa, N.T.A. Sensory and motor thresholds of transcutaneous electrical stimulation are influenced by gender and age. PM R 2015, 7, 42–47. [Google Scholar] [CrossRef] [PubMed]



| Region of Interest | Task | Estimate | SE | df | 95% CI | t | p | |
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Left IFG | Task5 > Task3 | 0.009 | 0.003 | 71 | 0.003 | 0.016 | 2.8 | 0.006 |
| Task6 > Task3 | 0.01 | 0.003 | 71 | 0.003 | 0.016 | 3.04 | 0.003 | |
| Left PoG | Task6 > Task1 | 0.006 | 0.003 | 96 | 0.000 | 0.008 | 2.09 | 0.039 |
| Left PrG | Task6 > Task1 | 0.004 | 0.002 | 96 | 0.000 | 0.008 | 2.00 | 0.049 |
| Task6 > Task3 | 0.004 | 0.002 | 96 | 0.000 | 0.008 | 2.03 | 0.046 | |
| Left SMA | Task6 > Task1 | 0.006 | 0.003 | 96 | 0.000 | 0.011 | 2.13 | 0.035 |
| Left SMG | Task6 > Task1 | 0.006 | 0.003 | 96 | 0.000 | 0.012 | 2.07 | 0.041 |
| Task6 > Task3 | 0.006 | 0.003 | 96 | 0.001 | 0.012 | 2.16 | 0.033 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inagaki, Y.; Nakatsuka, M.; Naito, Y.; Sawamura, D. Topography of Cortical Activation with Mirror Visual Feedback and Electromyography-Triggered Electrical Stimulation: A Functional Near-Infrared Spectroscopy Study in Healthy Older Adults. Brain Sci. 2025, 15, 1074. https://doi.org/10.3390/brainsci15101074
Inagaki Y, Nakatsuka M, Naito Y, Sawamura D. Topography of Cortical Activation with Mirror Visual Feedback and Electromyography-Triggered Electrical Stimulation: A Functional Near-Infrared Spectroscopy Study in Healthy Older Adults. Brain Sciences. 2025; 15(10):1074. https://doi.org/10.3390/brainsci15101074
Chicago/Turabian StyleInagaki, Yuji, Miku Nakatsuka, Yumene Naito, and Daisuke Sawamura. 2025. "Topography of Cortical Activation with Mirror Visual Feedback and Electromyography-Triggered Electrical Stimulation: A Functional Near-Infrared Spectroscopy Study in Healthy Older Adults" Brain Sciences 15, no. 10: 1074. https://doi.org/10.3390/brainsci15101074
APA StyleInagaki, Y., Nakatsuka, M., Naito, Y., & Sawamura, D. (2025). Topography of Cortical Activation with Mirror Visual Feedback and Electromyography-Triggered Electrical Stimulation: A Functional Near-Infrared Spectroscopy Study in Healthy Older Adults. Brain Sciences, 15(10), 1074. https://doi.org/10.3390/brainsci15101074

