Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = lithium brine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3435 KB  
Article
Modeling of an Ideal Solar Evaporation Pond for Lithium Extraction from Brines
by Manuel Silva, María C. Ruiz, Diego Toro and Rafael Padilla
Minerals 2025, 15(10), 1078; https://doi.org/10.3390/min15101078 - 16 Oct 2025
Viewed by 91
Abstract
In the coming decades, anticipated population growth is projected to escalate the demand for essential resources such as NaCl, KCl, and LiCl, which are critical for human consumption, agriculture, and battery production. A substantial proportion of these salts is produced from brines using [...] Read more.
In the coming decades, anticipated population growth is projected to escalate the demand for essential resources such as NaCl, KCl, and LiCl, which are critical for human consumption, agriculture, and battery production. A substantial proportion of these salts is produced from brines using solar evaporation ponds. This article presents a one-dimensional surrogate mathematical model of an ideal solar evaporation pond working at a steady state. The ideal pond considers only water evaporation, with a uniform evaporation rate per unit area. The model’s equation, or the ideal solar evaporation law, allows calculating the ion concentration profile in an ideal pond just given the feed and discharge concentrations. The validation of the law was conducted with industrial data collected in the year 2023 in a lithium recovery plant throughout 15 ponds in series at the Salar de Atacama, Chile. The results verified that the model could accurately predict the monthly concentration profiles (R2 in the range 0.9646 to 0.9864) if lithium does not precipitate in the pond. The model provides accurate values of pond inventories and area requirements for designing stages. The model’s relevance extends beyond the lithium industry to encompass any solar evaporation processes for salt recovery or solution concentration. Full article
(This article belongs to the Special Issue Extraction of Valuable Elements from Salt Lake Brine)
Show Figures

Graphical abstract

35 pages, 2479 KB  
Article
Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods
by Olufisayo E. Ojo and Olanrewaju A. Oludolapo
Water 2025, 17(19), 2855; https://doi.org/10.3390/w17192855 - 30 Sep 2025
Viewed by 1021
Abstract
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, [...] Read more.
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, Br, B, Li, Rb, and Sr in comparison to conventional mining and chemical production of these commodities. Data from recent literature and case studies are compiled to quantify the composition of a typical SWRO brine and the potential yield of valuable products. A life-cycle cost framework is applied, incorporating capital expenditure (CAPEX), operational expenditure (OPEX), and total water cost (TWC) impacts. A representative simulation for a large 100,000 m3/day SWRO plant shows that integrated “brine mining” systems could recover on the order of 3.8 million tons of salts per year. At optimistic recovery efficiencies, the gross annual revenue from products (NaCl, Mg(OH)2/MgO, CaCO3, KCl, Br2, Li2CO3, etc.) can reach a few hundred million USD. This revenue is comparable to or exceeds the added costs of recovery processes under favorable conditions, potentially offsetting desalination costs by USD 0.5/m3 or more. We compare these projections with the economics of obtaining the same materials through conventional mining and chemical processes worldwide. Major findings indicate that recovery of abundant low-value salts (especially NaCl) can supply bulk revenue to cover processing costs, while extraction of scarce high-value elements (Li, Rb, Sr, etc.) can provide significant additional profit if efficient separation is achieved. The energy requirements and unit costs for brine recovery are analyzed against those of terrestrial or conventional mining; in many cases, brine-derived production is competitive due to avoided raw material extraction and potential use of waste or renewable energy. CAPEX for adding mineral recovery to a desalination plant is significant but can be justified by revenue and by strategic benefits such as reduced brine disposal. Our analysis, drawing on global data and case studies (e.g., projects in Europe and the Middle East), suggests that metals and salts recovery from SWRO brine is technically feasible and, at sufficient scale, economically viable in many regions. We provide detailed comparisons of cost, yield, and market value for each target element, along with empirical models and formulas for profitability. The results offer a roadmap for integrating brine mining into desalination operations and highlight key factors such as commodity prices, scale economies, energy integration, and policy incentives that influence the competitiveness of brine recovery against traditional mining. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

14 pages, 7246 KB  
Article
Fabrication of Spinel-Type H4Ti5O12 Ion Sieve for Lithium Recovery from Aqueous Resources: Adsorption Performance and Mechanism
by Weiwei Ma, Hongrong Huang, Guangjin Zhu, Xueqing Wang, Qiaoping Kong and Xueqing Shi
Processes 2025, 13(9), 2981; https://doi.org/10.3390/pr13092981 - 18 Sep 2025
Viewed by 450
Abstract
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological [...] Read more.
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological parameters in the preparation process of Li ion sieve and poor recycling efficiency limit its application. In this study, spinel-type H4Ti5O12 ion sieves (HTO) were successfully prepared through a high-temperature solid-state method for recovering Li+ from aqueous resources. Through the experiment of optimizing the key preparation process parameters of HTO, it was found that the optimum preparation conditions were as follows: lithium ion source of CH3COOLi‧H2O, calcination temperature of 800 °C, and acid (HCl) washing concentration of 0.3 mol/L. The uptake of Li+ by HTO aligned with the pseudo-second-order kinetic model, which was a chemical adsorption process controlled by reversible Li–H ion exchange reaction. HTO exhibited extremely high regeneration cycle characteristics, and after five cycles, it retained 96.06% of its initial adsorption capacity. The present work highlighted that spinel-type HTO has high industrial application potential in the field of Li+ recovery from oilfield brine. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 2483 KB  
Article
Inline Monitoring of Lithium Brines with Low-Field NMR
by Eric Schmid, Rahel Lerner, Thomas Rudszuck, Hermann Nirschl and Gisela Guthausen
Appl. Sci. 2025, 15(18), 9987; https://doi.org/10.3390/app15189987 - 12 Sep 2025
Viewed by 357
Abstract
The importance of and demand for lithium are high and are expected to further increase. Therefore, efficient lithium exploitation processes are essential, for example, Li extraction from brines. Powerful analytical methods are needed, especially with an inline capability. Nuclear Magnetic Resonance is a [...] Read more.
The importance of and demand for lithium are high and are expected to further increase. Therefore, efficient lithium exploitation processes are essential, for example, Li extraction from brines. Powerful analytical methods are needed, especially with an inline capability. Nuclear Magnetic Resonance is a widely used analytical tool with extensive possibilities. Low-field NMR is particularly suitable for inline quality control thanks to its customizable applications. This study investigates the possibilities of measuring the lithium content in aqueous solutions and brines using 1H and 7Li NMR based on transverse relaxation measurements, using two different low-field NMR instruments. Both static and measurements under flow are presented. The influence of other parameters, such as sample temperature and sodium content of the brine, has also been investigated. The results demonstrate the proof of concept of quantifying lithium content by low-field NMR and provide detailed insights, whilst showing the prerequisites for future industrial applications for inline quality control in lithium extraction processes. Full article
Show Figures

Figure 1

30 pages, 4102 KB  
Article
Integrating Species Richness, Distribution and Human Pressures to Assess Conservation Priorities in High Andean Salares
by Marcelo Hernández-Rojas, Rodrigo A. Estévez, Cristian Romero, Sebastián Pérez and Fabio A. Labra
Sustainability 2025, 17(18), 8139; https://doi.org/10.3390/su17188139 - 10 Sep 2025
Viewed by 526
Abstract
High Andean salares and their surrounding basins host unique ecosystems and rich biodiversity. Increasing global demand for lithium and brines in these environments have attracted significant international investment, raising both economic expectations and socio-environmental concerns. This poses major challenges for biodiversity conservation, governance [...] Read more.
High Andean salares and their surrounding basins host unique ecosystems and rich biodiversity. Increasing global demand for lithium and brines in these environments have attracted significant international investment, raising both economic expectations and socio-environmental concerns. This poses major challenges for biodiversity conservation, governance models, and the management of socio-environmental conflicts. One of the main challenges for effective conservation is the lack of systematic biodiversity inventories and an integrated conservation diagnosis. In this study, we leverage range–diversity plot analysis to describe the patterns of biological diversity and species distribution in High Andean salares. We then integrate this information with estimates of available suitable habitat area and degree of human pressure, to categorize the priorities for the salt flats. Our results show that many salt flats serve as biodiversity hotspots, dominated by species with wide distribution ranges. A significant number of salt flats host rare species, indicating the necessity for focused conservation initiatives. The studied salt flats warrant prioritisation for restoration, protection, and the enhancement of public policies and social awareness initiatives. Current conservation strategies should be consistent with the Network of Protected Salt Flats as outlined in the National Lithium Strategy, thereby enhancing socio-environmental governance in these delicate socio-ecosystems. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

12 pages, 1812 KB  
Article
Solubility and Thermodynamics of Lithium Carbonate in Its Precipitation Mother Liquors
by Haiwen Ge, Huaiyou Wang and Min Wang
Molecules 2025, 30(17), 3617; https://doi.org/10.3390/molecules30173617 - 4 Sep 2025
Viewed by 1265
Abstract
This study systematically investigated the dissolution equilibrium of lithium carbonate (Li2CO3) in mixed Na2CO3-NaCl aqueous solutions through isothermal dissolution experiments spanning 283.15–353.15 K. Precise solubility determinations were conducted using a gravimetric analysis under controlled thermodynamic [...] Read more.
This study systematically investigated the dissolution equilibrium of lithium carbonate (Li2CO3) in mixed Na2CO3-NaCl aqueous solutions through isothermal dissolution experiments spanning 283.15–353.15 K. Precise solubility determinations were conducted using a gravimetric analysis under controlled thermodynamic conditions. The obtained solubility data were successfully correlated with the Extended Debye–Hückel (E-DH) model, yielding residual standard deviations below 0.09, which validates the model’s applicability in this ternary system. Both experimental observations and theoretical predictions confirmed that increasing the salt molality enhances the synergistic suppression of the Li2CO3 solubility through combined common-ion and salt effects. The thermodynamic analysis revealed the dissolution process to be exothermic (ΔHd < 0), and entropy change dominates (ξS ≈ 78%), with negative entropy changes (ΔSd < 0) indicating predominant hydration ordering effects. These mechanistic insights establish critical thermodynamic benchmarks for optimizing lithium carbonate precipitation processes in brine lithium extraction operations. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

11 pages, 1951 KB  
Review
Recent Advances in Materials for Uranium Extraction from Salt Lake Brine: A Review
by Panting Wang, Miao Lei, Junhang Huang, Yuanhao Li, Ye Li and Junpeng Guo
Chemistry 2025, 7(5), 142; https://doi.org/10.3390/chemistry7050142 - 3 Sep 2025
Viewed by 735
Abstract
With the rising importance of nuclear energy in the global energy landscape, the sustainable development of uranium resources has garnered increasing attention. Salt lake brine, as an unconventional uranium source, holds significant potential due to its relatively high uranium concentration and the co-occurrence [...] Read more.
With the rising importance of nuclear energy in the global energy landscape, the sustainable development of uranium resources has garnered increasing attention. Salt lake brine, as an unconventional uranium source, holds significant potential due to its relatively high uranium concentration and the co-occurrence of valuable elements such as lithium, boron, and potassium. However, the high salinity and complex ionic composition of brine environments pose considerable challenges for the efficient and selective extraction of uranium. In recent years, the rapid advancement of novel adsorbent materials has provided promising technological pathways for uranium extraction from salt lake brine. This review systematically summarizes recent progress in the application of inorganic and carbon-based materials, organic polymers with functional group modifications, and biomass-derived and green adsorbents in this field. The construction strategies, performance characteristics, and adsorption mechanisms of these materials are discussed in detail, with particular emphasis on their selectivity and stability under complex saline conditions. Furthermore, the application status and future prospects of emerging materials and techniques—such as photocatalysis and electrochemistry—are also explored. This review aims to offer theoretical insights and technical references to support the sustainable exploitation of uranium resources from salt lake brines. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Graphical abstract

26 pages, 3138 KB  
Article
Understanding the Geology of Mountain Foothills Through Hydrogeochemistry: Evaluating Critical Raw Materials’ Potential for the Energy Transition in the Salsomaggiore Structure (Northwestern Apennines, Italy)
by Simone Cioce, Andrea Artoni, Tiziano Boschetti, Alessandra Montanini, Stefano Segadelli, Maria Teresa de Nardo, Nicolò Chizzini, Luca Lambertini and Aasiya Qadir
Minerals 2025, 15(9), 936; https://doi.org/10.3390/min15090936 - 2 Sep 2025
Viewed by 838
Abstract
The energy transition is an issue of fundamental importance in the current global context, as an increasing number of countries are committed to searching for minerals and elements essential for the storage, distribution, and supply of energy derived from new renewable and sustainable [...] Read more.
The energy transition is an issue of fundamental importance in the current global context, as an increasing number of countries are committed to searching for minerals and elements essential for the storage, distribution, and supply of energy derived from new renewable and sustainable sources. In some countries, these elements (such as boron, lithium, and strontium) are considered to be critical raw materials (CRMs) because of their limited occurrence within their own borders and are commonly found in minerals and geothermal–formation waters, especially in brackish to brine waters. In the Italian territory, CRM-rich waters have already been identified by previously published studies (i.e., with mean concentrations in the Salsomaggiore Terme of 390 mg/L of boron, 76 mg/L of lithium, and 414 mg/L of strontium); however, their extraction is hampered by several knowledge gaps. In particular, a comprehensive understanding of the origin, accumulation processes, and migration pathways of these CRM-rich waters is still lacking. These factors are closely linked to the geological framework and evolutionary history of each specific area. To address these gaps, we investigated the Salsomaggiore Structure that is located at the northwestern front of the Apennine in Italy by integrating geological data with hydrogeochemical results. We constructed new preliminary distribution maps of the most significant CRMs around the Salsomaggiore Structure, which can be used in the future for the National Mineral Exploration Program drawn up in accordance with the European Critical Raw Materials Act. These maps, combined with the interpretation of seismic reflection profiles calibrated with surface geology and wells, allowed us to establish a close relationship between water geochemistry/CRM contents and the geological evolution of the Salsomaggiore Structure. This structure can be considered representative of the frontal ranges of the Northwestern Apennine and other mountain chains associated with the foreland basin systems. Full article
Show Figures

Figure 1

14 pages, 2445 KB  
Article
Effects of Operational Parameters on Mg2+/Li+ Separation Performance in Electrodialysis System
by Zhijuan Zhao, Jianhua Yang, Dexin Kong, Yunyan Peng and Dong Jin
Membranes 2025, 15(9), 260; https://doi.org/10.3390/membranes15090260 - 29 Aug 2025
Viewed by 550
Abstract
Brine with a high magnesium-to-lithium ratio was separated by electrodialysis equipped with a monovalent cation exchange membrane under differing operational parameters. The ionic concentration variations, separation coefficients, lithium recovery ratio, permselectivity coefficient, and Li+ flux were analyzed to evaluate the effect of [...] Read more.
Brine with a high magnesium-to-lithium ratio was separated by electrodialysis equipped with a monovalent cation exchange membrane under differing operational parameters. The ionic concentration variations, separation coefficients, lithium recovery ratio, permselectivity coefficient, and Li+ flux were analyzed to evaluate the effect of the initial Li+/Mg2+ mass concentration ratio, applied voltage, and initial volume ratio between the dilute and concentrated compartments on the separation performance of magnesium and lithium. The results showed that the increase in initial Li+/Mg2+ concentration ratio significantly increased the separation coefficient, lithium recovery ratio, and Li+ flux, demonstrating an improvement in the separation performance since the Li+ migration was accelerated when less Mg2+ competed with Li+. As the applied voltage increased from 10 V to 15 V, the separation coefficient increased, and the lithium recovery ratio and Li+ flux increased within 60 min; however, as the applied voltage increased to 20 V, the separation coefficient, the lithium recovery ratio, and the Li+ flux did not increase, which indicated that an increase in the applied voltage within the limits would contribute to the separation performance. The increase in the initial volume ratio between the dilute and concentrated compartments decreased the separation coefficient and lithium recovery ratio, indicating that the separation performance had declined. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

42 pages, 1483 KB  
Review
An Overview of Applications, Toxicology and Separation Methods of Lithium
by Ma. del Rosario Moreno-Virgen, Blanca Paloma Escalera-Velasco, Hilda Elizabeth Reynel-Ávila, Herson Antonio González-Ponce, Alvaro Rodrigo Videla-Leiva, Arturo Ignacio Morandé-Thompson, Marco Ludovico-Marques, Noemi Sogari and Adrián Bonilla-Petriciolet
Minerals 2025, 15(9), 917; https://doi.org/10.3390/min15090917 - 28 Aug 2025
Viewed by 1339
Abstract
Lithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable [...] Read more.
Lithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable energy sources. This metal also has other industrial applications and is projected to support future developments in semiconductor and aerospace technology. However, the exponential growth in global Li demand driven by energy transition and technological innovation requires a resilient and sustainable supply chain where both technological and environmental challenges should be addressed. This review discusses and analyzes some of current challenges associated with the Li supply chain given a particular emphasis on its separation methods. First, statistics of the Li market and its applications are provided, including the main sources from which to recover Li and the environmental impact associated with conventional Li extraction techniques from mineral ores and salar brines. Different separation methods (e.g., solvent extraction, adsorption, ion exchange, membrane technology) to recover Li from different sources are reviewed. Recent advances and developments in these separation strategies are described, including a brief analysis of their main limitations and capabilities. The importance and potential of recycling strategies for end-of-life batteries and industrial residues are also highlighted. A perspective on the gaps to be resolved with the aim of consolidating the Li supply chain to support the energy transition agenda is provided in this review. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 2786 KB  
Article
Membrane-Assisted Electrochemical Removal of Mg2+ and Ca2+ from Lithium Brines: Effects of Temperature and Current Density Through a Zeta Potential Approach
by Alonso González, Geovanna Choque, Mario Grágeda and Svetlana Ushak
Membranes 2025, 15(9), 250; https://doi.org/10.3390/membranes15090250 - 25 Aug 2025
Viewed by 1091
Abstract
Understanding surface charge behavior is essential for improving ion separation during lithium brine treatment. This paper investigates the performance of a three-compartment electrodialysis system designed for the selective removal of divalent cations (Mg2+ and Ca2+). The relationship between zeta potential [...] Read more.
Understanding surface charge behavior is essential for improving ion separation during lithium brine treatment. This paper investigates the performance of a three-compartment electrodialysis system designed for the selective removal of divalent cations (Mg2+ and Ca2+). The relationship between zeta potential and the recovery of Li+, Na+, and K+ is analyzed. Zeta potential measurements at various pH values showed that Mg(OH)2 particles maintained a positive charge. The system facilitated the precipitation of Mg(OH)2 and Ca(OH)2 via electrochemically generated OH ions. The specific electrical energy consumption was evaluated for each operating condition. The results showed that the zeta potential of the precipitates was affected by both the current density and temperature. This influenced lithium losses due to brine entrapment within the precipitated solids. At 600 A/m2 and 50 °C, more than 99% of Mg2+ and Ca2+ were removed, and more than 90% of lithium was recovered, with a specific electric energy consumption of 2.58 kWh per kilogram of Li recovered. The system also generates HCl as a valuable by-product, which improves the sustainability of the process. This study provides a new framework for improving the energy efficiency of lithium purification from brines and lithium recovery. Full article
(This article belongs to the Special Issue Electrochemical Membranes for Micropollutant Removal)
Show Figures

Graphical abstract

12 pages, 1147 KB  
Article
Sorption Extraction of Lithium from the Brines of the Pre-Aral Region Using Ion-Exchangers Under Static Conditions
by Yelena Bochevskaya, Elmira Sargelova, Ainash Sharipova, Salikha Kilibayeva and Zhansaya Yakhiyayeva
Appl. Sci. 2025, 15(17), 9248; https://doi.org/10.3390/app15179248 - 22 Aug 2025
Viewed by 494
Abstract
Samples of gel-type cation exchangers of the TOKEM nomenclature were tested for lithium extraction from multicomponent natural brines. The dependencies of the extraction of Li and other impurities—Na, Ca, and Mg—on the duration of the sorption process for the tested ion-exchange resins under [...] Read more.
Samples of gel-type cation exchangers of the TOKEM nomenclature were tested for lithium extraction from multicomponent natural brines. The dependencies of the extraction of Li and other impurities—Na, Ca, and Mg—on the duration of the sorption process for the tested ion-exchange resins under static conditions are presented. Metal ions can be arranged according to the degree of extraction for each ion exchanger in a row: Ca2+ < Mg2+ < Li+, Na+. Testing of ion exchangers under static conditions on technological Li-containing solutions confirms the applicability of TOKEM-140 and TOKEM-160 cation exchangers for lithium extraction. For TOKEM-140, lithium extraction over time varies from 76.2% to 73.8% and for TOKEM-160—from 73.8% to 72.4%. The ionic background of natural brines has a significant effect on the capacity of ion exchangers for lithium and forms the following series Li+ << Mg2+ < Ca2+ << Na+ relative to the obtained concentrations of metal ions in natural brine. The overlay of IR spectra of TOKEM-140 and TOKEM-160 ion exchangers before and after saturation shows slight changes in their appearance, indicating that the lithium sorption process has occurred. The values of static exchange capacity (SEC) for TOKEM-140 and TOKEM-160 cation exchangers are identical. Full article
Show Figures

Figure 1

18 pages, 7705 KB  
Article
Mineral Liberation Analysis (MLA)-Based Characterization of Lithium Source: Biotite and Associated Minerals in Nepheline Syenites
by Zeynep Üçerler-Çamur, Ozgul Keles and Murat Olgaç Kangal
Minerals 2025, 15(8), 876; https://doi.org/10.3390/min15080876 - 20 Aug 2025
Viewed by 535
Abstract
Due to the rapid advancement of technology, lithium carbonate has become a crucial raw material for battery storage applications. Brines remain the primary source, while lithium carbonate production from ores is limited. Therefore, expanding resources, identifying potential deposits, and characterizing existing sources are [...] Read more.
Due to the rapid advancement of technology, lithium carbonate has become a crucial raw material for battery storage applications. Brines remain the primary source, while lithium carbonate production from ores is limited. Therefore, expanding resources, identifying potential deposits, and characterizing existing sources are essential. Direct lithium detection via MLA is challenging due to its atomic number being below 6; however, it can be indirectly identified through lithium-bearing biotite. This study characterizes lithium-bearing biotite in nepheline syenite ore, considering biotite as the primary lithium source. Analytical methods included MLA, modal mineralogy, XRD, ICP-OES, XRF, SEM-BSE, and EDS. The ore contained 4% biotite, with a liberation degree exceeding 70% in particles finer than 500 µm. Biotite formed binary, ternary, and complex associations with K-feldspar, nepheline, and albite. Finer particle sizes increased biotite liberation while reducing associations; no binary biotite–nepheline associations were detected below 75 µm. EDS spectra confirmed biotite as the sole lithium-bearing mineral. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

37 pages, 2042 KB  
Review
Energy-Efficient Ion Recovery from Water Using Electro-Driven Membranes: A Comprehensive Critical Review
by Akeem Adeyemi Oladipo and Mehdi Ahmad
Water 2025, 17(16), 2456; https://doi.org/10.3390/w17162456 - 19 Aug 2025
Viewed by 2236
Abstract
Amid concurrent pressures on water and material resources, recovering valuable ions like lithium and nutrients from brines and wastewater is a critical tenet of the circular economy. This review provides a critical assessment of electro-driven membranes (EDMs) as a key technology platform for [...] Read more.
Amid concurrent pressures on water and material resources, recovering valuable ions like lithium and nutrients from brines and wastewater is a critical tenet of the circular economy. This review provides a critical assessment of electro-driven membranes (EDMs) as a key technology platform for achieving this goal with high energy efficiency. A comprehensive synthesis and analysis of the current state-of-the-art of core EDM technologies, including electrodialysis (ED) and membrane capacitive deionization (MCDI), is presented, focusing the analysis on the performance metrics of specific energy consumption and ion selectivity. The findings reveal that the optimal EDM technology is highly application-dependent, with MCDI excelling for dilute streams and ED for concentrated ones. While significant advances in monovalent selective membranes have enabled lithium recovery, achieving high selectivity between ions of the same valence (e.g., Li+/Na+) remains a fundamental challenge. Moreover, persistent issues of membrane fouling and scaling continue to inflate energy consumption and represent a major bottleneck for industrial-scale deployment. While EDMs are a vital technology for ion resource recovery, unlocking their full potential requires a dual-pronged approach: advancing materials science to design novel, highly selective membranes, while simultaneously developing intelligently integrated systems to surmount existing performance and economic barriers. Full article
(This article belongs to the Special Issue Wastewater Treatment and Reuse Advances Review)
Show Figures

Figure 1

31 pages, 7283 KB  
Review
Recent Advances on the Positively-Charged Nanofiltration Membranes for Mg2+/Li+ Separation Through Interfacial Polymerization
by Xinyu Zeng, Chunchun Meng, Zihan Xu, Xinwu Li, Haochen Zhu and Guangming Li
Nanomaterials 2025, 15(13), 967; https://doi.org/10.3390/nano15130967 - 22 Jun 2025
Cited by 1 | Viewed by 2622
Abstract
The rapid development of the global energy industry has driven an escalating worldwide demand for lithium resources. As a major lithium source, salt lake brines contain abundant divalent ions that hinder efficient lithium extraction. Compared with conventional lithium recovery technologies, nanofiltration membranes emerge [...] Read more.
The rapid development of the global energy industry has driven an escalating worldwide demand for lithium resources. As a major lithium source, salt lake brines contain abundant divalent ions that hinder efficient lithium extraction. Compared with conventional lithium recovery technologies, nanofiltration membranes emerge as an energy-efficient and environmentally friendly alternative. Over the past decade, interfacial polymerization has been widely adopted to fabricate nanofiltration membranes for lithium–magnesium separation, with studies confirming the superior performance of positively charged membranes in distinguishing monovalent and divalent cations. This review systematically summarizes recent advancements in positively charged nanofiltration membranes synthesized via interfacial polymerization for lithium–magnesium separation, categorizing the design strategies into five distinct approaches. The correlations between intrinsic membrane structural characteristics and separation performance are critically analyzed. Furthermore, current challenges and future research directions are discussed to provide new perspectives for developing high-performance positively charged composite nanofiltration membranes. This work aims to inspire innovative designs and accelerate the practical implementation of nanofiltration technology in lithium extraction from salt lake brines. Full article
(This article belongs to the Special Issue Advanced Nanostructured Membranes)
Show Figures

Graphical abstract

Back to TopTop