Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,409)

Search Parameters:
Keywords = long-dated

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7118 KiB  
Article
Quarter-Hourly Power Load Forecasting Based on a Hybrid CNN-BiLSTM-Attention Model with CEEMDAN, K-Means, and VMD
by Xiaoyu Liu, Jiangfeng Song, Hai Tao, Peng Wang, Haihua Mo and Wenjie Du
Energies 2025, 18(11), 2675; https://doi.org/10.3390/en18112675 - 22 May 2025
Abstract
Accurate long-term power load forecasting in the grid is crucial for supply–demand balance analysis in new power systems. It helps to identify potential power market risks and uncertainties in advance, thereby enhancing the stability and efficiency of power systems. Given the temporal and [...] Read more.
Accurate long-term power load forecasting in the grid is crucial for supply–demand balance analysis in new power systems. It helps to identify potential power market risks and uncertainties in advance, thereby enhancing the stability and efficiency of power systems. Given the temporal and nonlinear features of power load, this paper proposes a hybrid load-forecasting model using attention mechanisms, CNN, and BiLSTM. Historical load data are processed via CEEMDAN, K-means clustering, and VMD for significant regularity and uncertainty feature extraction. The CNN layer extracts features from climate and date inputs, while BiLSTM captures short- and long-term dependencies from both forward and backward directions. Attention mechanisms enhance key information. This approach is applied for seasonal load forecasting. Several comparative experiments show the proposed model’s high accuracy, with MAPE values of 1.41%, 1.25%, 1.08% and 1.67% for the four seasons. It outperforms other methods, with improvements of 0.25–2.53 GWh2 in MSE, 0.15–0.1 GWh in RMSE, 0.1–0.74 GWh in MAE and 0.22–1.40% in MAPE. Furthermore, the effectiveness of the data processing method and the impact of training data volume on forecasting accuracy are analyzed. The results indicate that decomposing and clustering historical load data, along with large-scale data training, can both boost forecasting accuracy. Full article
Show Figures

Figure 1

46 pages, 754 KiB  
Review
From Ocean to Market: Technical Applications of Fish Protein Hydrolysates in Human Functional Food, Pet Wellness, Aquaculture and Agricultural Bio-Stimulant Product Sectors
by Dolly Bhati and Maria Hayes
Appl. Sci. 2025, 15(10), 5769; https://doi.org/10.3390/app15105769 - 21 May 2025
Abstract
Sustainability in food production is a pressing priority due to environmental and political crises, the need for long-term food security, and feeding the populace. Food producers need to increasingly adopt sustainable practices to reduce negative environmental impacts and food waste. The ocean is [...] Read more.
Sustainability in food production is a pressing priority due to environmental and political crises, the need for long-term food security, and feeding the populace. Food producers need to increasingly adopt sustainable practices to reduce negative environmental impacts and food waste. The ocean is a source for sustainable food systems; deforestation, water scarcity, and greenhouse gas emissions burden traditional, terrestrial resources. Our oceans contain the largest unexploited resource in the world in the form of mesopelagic fish species, with an estimated biomass of 10 billion metric tons. This resource is largely untapped due in part to the difficulties in harvesting these species. To ensure sustainability of this resource, management of fish stocks and fish processing practices must be optimised. Generation of fish protein hydrolysates from by-catch/underutilised species creates high-value, functional ingredients while also reducing waste. Marine hydrolysates offer a renewable source of nutrition and align with the principles of the circular economy, where waste is minimised and resources are reused efficiently. Ocean-derived solutions demand fewer inputs, generate less pollution, and have a smaller carbon footprint compared to traditional agriculture. This review collates clearly and succinctly the current and potential uses of FPHs for different market sectors and highlights the advantages of their use in terms of the scientifically validated health benefits for humans and animals and fish, and the protection and crop yield benefits that are documented to date from scientific studies. Full article
23 pages, 6182 KiB  
Article
Mapping Temperate Grassland Dynamics in China Inner Mongolia (1980s–2010s) Using Multi-Source Data and Deep Neural Network
by Xuefeng Xu, Jiakui Tang, Na Zhang, Anan Zhang, Wuhua Wang and Qiang Sun
Remote Sens. 2025, 17(10), 1779; https://doi.org/10.3390/rs17101779 - 20 May 2025
Viewed by 17
Abstract
As a vital part of the Eurasian temperate grassland, the Chinese temperate grassland is primarily distributed in the Inner Mongolia Plateau. This paper focuses on mapping temperate grassland dynamics from the 1980s to the 2010s in Inner Mongolia, which was divided into temperate [...] Read more.
As a vital part of the Eurasian temperate grassland, the Chinese temperate grassland is primarily distributed in the Inner Mongolia Plateau. This paper focuses on mapping temperate grassland dynamics from the 1980s to the 2010s in Inner Mongolia, which was divided into temperate meadow steppe (TMS), temperate typical steppe (TTS), temperate desert steppe (TDS), temperate steppe desert (TSD) and temperate desert (TD). Multi-source features, including multispectral reflectance, vegetation growth, topography, water bodies, meteorological data, and soil characteristics, were selected based on their distinct physical properties and remote sensing variations. Then, we applied deep neural network (DNN) models to classify them, achieving an accuracy of 79.4% in the 1980s and 81.1% in the 2000s. Additionally, validation in the 2010s through field reconnaissance demonstrated an accuracy of 72.7%, which was acceptable, confirming that DNN is an effective method for classifying temperate grasslands. The results revealed that TTS had the highest proportion in the study area (39%), while TMS and TSD had the lowest (8.2% and 8.1%, respectively). Grassland types have the distribution law of aggregation; according to statistics, 61.1% of the grassland area remained unchanged, and the transition zone between adjacent grassland classes was highly easy to change. The area variation mainly came from TTS, TDS, and TSD, but not TD. The mutual transformation of different grassland types occurred mainly in adjacent areas between them. This study demonstrates the potential of DNN for long-term grassland mapping and provides the most comprehensive classification maps of Inner Mongolia grasslands to date, which are invaluable for grassland research and conservation efforts in the area. Full article
Show Figures

Figure 1

15 pages, 749 KiB  
Article
Allelic Variations in Phenology Genes in Club Wheat (Triticum compactum) and Their Association with Heading Date
by Bárbara Mata and Adoración Cabrera
Int. J. Mol. Sci. 2025, 26(10), 4875; https://doi.org/10.3390/ijms26104875 - 19 May 2025
Viewed by 98
Abstract
The allelic diversity within genes controlling the vernalization requirement (VRN1) and photoperiod response (PPD1) determines the ability of wheat to adapt to a wide range of environmental conditions and influences grain yield. In this study, allelic variations at the [...] Read more.
The allelic diversity within genes controlling the vernalization requirement (VRN1) and photoperiod response (PPD1) determines the ability of wheat to adapt to a wide range of environmental conditions and influences grain yield. In this study, allelic variations at the VRN-A1, VRN-B1, VRN-D1 and PPD-D1 genes were studied for 89 accessions of Triticum compactum from different eco-geographical regions of the world. The collection was evaluated for heading date in both field and greenhouse experiments under a long photoperiod and without vernalization. Based on heading date characteristics, 52 (58.4%) of the genotypes had a spring growth habit, and all of them carried at least one dominant VRN1 allele, while 37 (41.6%) accessions had a winter growth habit and carried the triple recessive allele combination. The photoperiod-sensitive Ppd-D1b allele was detected in 85 (95.5%) accessions and the insensitive Ppd-D1a allele in four (4.5%) accessions. A total of 10 phenology gene profiles (haplotypes) were observed at four major genes in the T. compactum germplasm collection. The LSD test revealed significant differences in the mean heading date among the different spring phenology gene profiles, both in greenhouse and field conditions. In addition, 21 microsatellite markers (simple sequence repeats, SSRs) were used to assess the genetic diversity in the collection. The 21 SSR markers amplified a total of 183 alleles across all the genotypes, with a mean of 3.2 alleles per locus. The polymorphic information content ranged from 0.49 to 0.94, with a mean of 0.84. The results of this study may be useful for both T. compactum and common wheat breeding programs as a source of agronomic traits. Full article
(This article belongs to the Collection Genetics and Molecular Breeding in Plants)
21 pages, 450 KiB  
Article
Regional Impacts of Public Transport Development in the Agglomeration of Budapest in Hungary
by Szilvia Erdei-Gally, Tomasz Witko and Attila Erdei
Geographies 2025, 5(2), 22; https://doi.org/10.3390/geographies5020022 - 19 May 2025
Viewed by 126
Abstract
Budapest and its metropolitan area serve as a key railway hub both within Hungary and across Europe, intersected by multiple European rail corridors and characterized by substantial suburban traffic driven by daily commuters from surrounding areas. The Budapest agglomeration is served by 11 [...] Read more.
Budapest and its metropolitan area serve as a key railway hub both within Hungary and across Europe, intersected by multiple European rail corridors and characterized by substantial suburban traffic driven by daily commuters from surrounding areas. The Budapest agglomeration is served by 11 rail lines to Budapest managed by the MÁV Group Company (MÁV: Magyar Államvasutak Co., Budapest, Hungary) is a railway company owned by the Hungarian state). The majority of these are high-capacity, mostly double-track electrified main lines, which play a major role in long-distance and international transport. The main goal of the MÁV Group Company is the continuous development of the quality of passenger transport in Hungary and Europe, quality improvement in passenger comfort, sales, and passenger information systems, and the introduction of up-to-date, environmentally friendly means and solutions. Infrastructure plays a decisive role in the development and transformation of the country and its regions, municipalities, and settlement systems. The development of transport infrastructure not only dynamically transforms and shapes spatial structures but also initiates processes of internal differentiation. In our study, statistical analysis of municipalities and rail-based public transport confirmed a positive correlation between the modernization of transport infrastructure and selected demographic indicators. Full article
Show Figures

Figure 1

35 pages, 1408 KiB  
Article
Feasibility and Cost-Benefit Analysis of Methanol as a Sustainable Alternative Fuel for Ships
by Pei-Chi Wu and Cherng-Yuan Lin
J. Mar. Sci. Eng. 2025, 13(5), 973; https://doi.org/10.3390/jmse13050973 - 17 May 2025
Viewed by 97
Abstract
The amendment to MARPOL Annex VI, which limits the sulfur content in marine fuels to a maximum of 0.5 wt.%, came into effect in January 2020. This includes reducing sulfur oxide (SOX) emissions and establishing nitrogen oxide (NOX) emission [...] Read more.
The amendment to MARPOL Annex VI, which limits the sulfur content in marine fuels to a maximum of 0.5 wt.%, came into effect in January 2020. This includes reducing sulfur oxide (SOX) emissions and establishing nitrogen oxide (NOX) emission standards (Tiers I, II, and III) based on the ship’s engine type and construction date. Furthermore, the regulations require oil tankers to control volatile organic compound (VOC) emissions and prohibit the installation of new equipment containing ozone-depleting substances. After a four-year exploration phase, global shipping companies still lack consistent evaluation criteria for the selection and use of alternative fuels, resulting in divergence across the industry. According to the latest data, methanol can reduce NOX, SOX, and particulate matter (PM) emissions by approximately 80%, 99%, and 95%, respectively, compared to traditional heavy fuel oil. Furthermore, green methanol has the potential for near-zero greenhouse gas emissions and can meet the stringent standards of Emission Control Areas. Therefore, this study adopts a cost-benefit analysis method to evaluate the feasibility and implementation benefits of two promising strategies: methanol dual fuel and very low-sulfur fuel oil (VLSFO). A 6600-TEU container ship was selected as a representative case, and the evaluation was conducted by replacing an older ship with a newly built one. The reductions in total pollutants and CO2-equivalent emissions of the container ship, as well as the cost-effectiveness of each specific strategy, were calculated. This study found that, in the first five years of operation, the total incremental cost of Vessel A, which uses 100% VLSFO, will be significantly lower than that of Vessel B, which uses a blend of 30% e-methanol + 70% VLSFO as fuel. Furthermore, compared to a scenario without any improvement strategies, the total incremental cost for Vessels A and B will increase by 69.90% and 178.15%, respectively, over five years. Vessel B effectively reduced the total greenhouse gas emission equivalent (CO2e) of CO2, CH4, and N2O by 24.72% over five years, while Vessel A reduced the CO2e amount by 12.18%. Furthermore, the cost-benefit ratio (CBR) based on total pollutant emission reduction is higher for Vessel A than for Vessel B within five years of operation. However, in terms of the cost-effectiveness of CO2e emission reduction, the CBR of Vessel A becomes lower than Vessel B after 4.7 years of operation. Therefore, Vessel A’s strategy should be considered a short-term option for reducing CO2e within 4.7 years, whereas the strategy of Vessel B is more suitable as a long-term solution for more than 4.7 years. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

13 pages, 1174 KiB  
Article
Climate Change Effects on Dates Productivity in Saudi Arabia: Implications for Food Security
by Abda Emam
Sustainability 2025, 17(10), 4574; https://doi.org/10.3390/su17104574 - 16 May 2025
Viewed by 85
Abstract
This study aimed to assess the impact of climatic alteration on food security in Saudi Arabia. Date productivity, temperature, and precipitation represent the data which were collected from various sources linked to the study subject and cover the period from 1980 to 2023. [...] Read more.
This study aimed to assess the impact of climatic alteration on food security in Saudi Arabia. Date productivity, temperature, and precipitation represent the data which were collected from various sources linked to the study subject and cover the period from 1980 to 2023. The Engle–Granger two-step procedure, the VECM, and forecast analysis were applied to test the long-term relationship, short-term integration, and forecasting, respectively. Moreover, qualitative analysis was used to reveal the influence of climatic change on food security. The results discovered long-term co-integration between date productivity and temperature. Additionally, the results revealed that there has been long-running co-integration between date productivity and the precipitation series. Temperature and precipitation negatively and significantly impacted date productivity during the study period. With reference to forecast results, the graph was validated using various forecast indicators: the Alpha, Gamma, Beta, and Mean Square Error equivalents were 1.0, 0.0, 0.0, and 5.47, respectively. Moreover, the growth rates of date productivity were equal to 0.82 and 0.08 for the periods from 1980 to 2022 and 2023 to 2034 (forecast), respectively, indicating that there is a decrease in the growth rate of date productivity (0.08) during the forecast period. From these results, the conclusion is that climatic change (temperature and precipitation) negatively impacts date productivity. In addition, the growth rate during the forecast period decreased, indicating that climatic change is affecting food security currently and will continue to do so in the future. This study recommended specific policy interventions and innovations in agricultural practices, including developing and implementing a national framework focused on climate-smart agriculture, balancing productivity, adaptation, and mitigation. This could be aligned with Vision 2030 and the Saudi Green Initiative. Additionally, this could include investing in research and development by increasing public–private partnerships to support agricultural R&D in arid regions, with a focus on heat- and drought-resistant crop varieties and water-efficient farming systems. Regarding agricultural innovations, these could include the use of renewable energy, particularly solar energy, the expansion of rainwater harvesting infrastructure, recycling treated wastewater for agriculture, and reducing reliance on groundwater sources. Full article
(This article belongs to the Special Issue Sustainability of Agriculture: The Impact of Climate Change on Crops)
Show Figures

Figure 1

17 pages, 495 KiB  
Review
Survivorship in Tumors of the Sinonasal Tract: The Need for Improved Awareness, Patient Education, and an Emphasis on Multi-Disciplinary Care
by Jacklyn Liu, Anthony Tang, Umar Rehman, Marci L. Nilsen, Carl H. Snyderman, Nyall R. London, Valerie J. Lund and Matt Lechner
Cancers 2025, 17(10), 1666; https://doi.org/10.3390/cancers17101666 - 15 May 2025
Viewed by 292
Abstract
Sinonasal cancer treatment confers extensive and diverse sequela, which may persist for months to years after treatment or manifest as late effects. Furthermore, recurrences are common for some subtypes and may occur beyond five years post-treatment of the initial malignancy. Altogether, these can [...] Read more.
Sinonasal cancer treatment confers extensive and diverse sequela, which may persist for months to years after treatment or manifest as late effects. Furthermore, recurrences are common for some subtypes and may occur beyond five years post-treatment of the initial malignancy. Altogether, these can place a substantial physical, psychosocial, and economic burden on the survivor. Due to the rarity of these cancers, there are limited data to comprehensively elucidate the landscape of treatment-related morbidity in the long term. Furthermore, survivors may lack awareness of the entirety of possible adverse effects, which may exacerbate their long-term psychosocial well-being and quality of life, and delay attainment of appropriate care. To enable the development of patient education strategies and provide clinicians with up-to-date, evidence-based information on the long-term and/or late morbidity associated with sinonasal cancer treatment, a comprehensive review was performed. There is a wide range of issues that survivors face, both due to the sinonasal cancer itself and as a result of the treatment, highlighting the need for multidisciplinary survivorship care. Importantly, survivorship care will greatly benefit from patient and public involvement, alongside input from medical, surgical, and allied health professionals, to ensure that all aspects of care are addressed throughout the survivor journey. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

19 pages, 1124 KiB  
Review
Endocrine Toxicity of Micro- and Nanoplastics, and Advances in Detection Techniques for Human Tissues: A Comprehensive Review
by Sabrina Bossio, Silvestro Antonio Ruffolo, Danilo Lofaro, Anna Perri and Mauro Francesco La Russa
Endocrines 2025, 6(2), 23; https://doi.org/10.3390/endocrines6020023 - 14 May 2025
Viewed by 270
Abstract
Background: Plastic pollution driven by human activities has become a critical global issue for human health. A growing literature demonstrates that micro- and nanoplastics (MNPs) contain endocrine-disrupting chemicals (EDCs) and other harmful compounds that enter the body easily, acting as agonists or [...] Read more.
Background: Plastic pollution driven by human activities has become a critical global issue for human health. A growing literature demonstrates that micro- and nanoplastics (MNPs) contain endocrine-disrupting chemicals (EDCs) and other harmful compounds that enter the body easily, acting as agonists or antagonists for a wide range of hormonal receptors, and promoting endocrine toxicity. Endocrine disruption induced by MNPs occurs through the aberrant activation/inhibition of different signaling pathways that in addition to directly interfering with hormonal balances, trigger apoptosis, oxidative stress, and inflammation in endocrine cells. However, to date, the molecular mechanisms of these contaminants remain not completely elucidated. Furthermore, given the unanimous consensus on the negative impact of MNPs on human health, several methodologies have been developed to detect MNPs and contaminants not only in the environment but also in biological fluids and human tissues. Results: This review comprehensively summarizes the emerging experimental and clinical evidence explaining the mechanisms underlying the toxicity related to chronic plastic pollution in relation to the endocrine system. In addition, the review illustrates the new methodological approaches to detect MNPs in human biological samples, highlighting that employing complementary methods enables the precise characterization and quantification of MNPs. Conclusions: Future studies employing experimental, epidemiological, epigenetic, and multi-omics approaches are essential for understanding the short and long-term effects of MNPs on endocrine glands and developing effective strategies to mitigate their impact on human health. Full article
Show Figures

Figure 1

23 pages, 2794 KiB  
Review
The Role of Ancient Greek Physicians in the Development of Tracheostomy: Pioneering Airway Interventions and Early Thoracic Surgery
by Vasileios Leivaditis, Francesk Mulita, Nikolaos G. Baikoussis, Elias Liolis, Andreas Antzoulas, Levan Tchabashvili, Konstantinos Tasios, Dimitrios Litsas and Manfred Dahm
Clin. Pract. 2025, 15(5), 93; https://doi.org/10.3390/clinpract15050093 - 13 May 2025
Viewed by 223
Abstract
Tracheostomy, a critical airway intervention, has a long and complex history that dates back to antiquity. While the earliest references to the procedure appear in Egyptian and Indian medical texts, its development within ancient Greek medicine remains a subject of historical debate. This [...] Read more.
Tracheostomy, a critical airway intervention, has a long and complex history that dates back to antiquity. While the earliest references to the procedure appear in Egyptian and Indian medical texts, its development within ancient Greek medicine remains a subject of historical debate. This study explores the evolution of tracheostomy in ancient Greece, analyzing its theoretical foundations, historical accounts, and surgical advancements. Despite Hippocratic opposition, which largely discouraged invasive airway procedures due to the risk of fatal complications, later physicians such as Asclepiades, Aretaeus, and Antyllus made significant contributions to refining airway management techniques. The anatomical studies of Galen further advanced the understanding of respiratory physiology, including early concepts of artificial ventilation. Additionally, this study examines archaeological evidence, such as a marble relief discovered in Abdera, which may depict an early attempt at tracheostomy, providing valuable insight into the practical application of airway interventions in antiquity. By comparing ancient Greek surgical techniques with modern tracheostomy practices, this research highlights the continuity of medical knowledge and innovation. It underlines the role of ancient Greek physicians in shaping the principles of thoracic surgery, offering a broader understanding of how early medical practices have influenced contemporary airway management. The findings contribute to the historical perspective on tracheostomy, emphasizing the timeless pursuit of life-saving surgical advancements and the evolving relationship between theoretical medical knowledge and practical surgical application. Full article
Show Figures

Figure 1

16 pages, 10616 KiB  
Article
Superluminal Motion and Jet Parameters in the High-Redshift Blazar J1429+5406
by Dávid Koller and Sándor Frey
Universe 2025, 11(5), 157; https://doi.org/10.3390/universe11050157 - 11 May 2025
Viewed by 726
Abstract
We investigate the relativistic jet of the powerful radio-emitting blazar J1429+5406 at redshift z=3.015. Our understanding of jet kinematics in z3 quasars is still rather limited, based on a sample of less than about 50 objects. The blazar [...] Read more.
We investigate the relativistic jet of the powerful radio-emitting blazar J1429+5406 at redshift z=3.015. Our understanding of jet kinematics in z3 quasars is still rather limited, based on a sample of less than about 50 objects. The blazar J1429+5406 was observed at a high angular resolution using the method of very long baseline interferometry over more than two decades, between 1994 and 2018. These observations were conducted at five radio frequencies, covering a wide range from 1.7 to 15 GHz. The outer jet components at ∼20–40 milliarcsecond (mas) separations from the core do not show discernible apparent motion. On the other hand, three jet components within the central 10 mas region exhibit significant proper motion in the range of (0.045–0.16) mas year−1, including one that is among the fastest-moving jet components at z3 known to date. Based on the proper motion of the innermost jet component and the measured brightness temperature of the core, we estimated the Doppler factor, the bulk Lorentz factor, and the inclination angle of the jet with respect to the line of sight. The core brightness temperature is at least 3.6×1011 K, well exceeding the equipartition limit, indicating Doppler-boosted radio emission. The low jet inclination (≲5.4°) firmly places J1429+5406 into the blazar category. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

19 pages, 8437 KiB  
Review
Research Progress of CLE and Its Prospects in Woody Plants
by Zewen Song, Wenjun Zhou, Hanyu Jiang and Yifan Duan
Plants 2025, 14(10), 1424; https://doi.org/10.3390/plants14101424 - 9 May 2025
Viewed by 266
Abstract
The peptide ligands of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family have been previously identified as essential signals for both short- and long-distance communication in plants, particularly during stem cell homeostasis, cell fate determination, and growth and development. To date, most studies on the [...] Read more.
The peptide ligands of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family have been previously identified as essential signals for both short- and long-distance communication in plants, particularly during stem cell homeostasis, cell fate determination, and growth and development. To date, most studies on the CLE family have focused on model plants and especially those involving stem and apical meristems. Relatively little is known about the role of CLE peptides in tall trees and other plant meristems. In this review, we summarize the role of CLE genes in regulating plant Root Apical Meristem (RAM), Shoot Apical Meristem (SAM), Procambium, Leaf and Floral Meristem (FM), as well as their involvement in multiple signaling pathways. We also highlight the evolutionary conservation of the CLE gene family and provide a comprehensive summary of its distribution across various plant developmental tissues. This paper aims to provide insights into novel regulatory networks of CLE in plant meristems, offering guidance for understanding intercellular signaling pathways in forest trees and the development of new plant organs. Full article
Show Figures

Figure 1

12 pages, 4674 KiB  
Case Report
Long-Term Survival in Metachronous Primary Malignancies: Stage III Nasopharyngeal Cancer and Stage IV Non-Small-Cell Lung Cancer
by Gabriela Rahnea-Nita, Alexandru Nechifor, Mihai-Teodor Georgescu, Dorel Firescu, Adrian-Cornel Maier, Radu-Valeriu Toma, Valentin Titus Grigorean, Liliana-Florina Andronache, Roxana-Andreea Rahnea-Nita, Ionut Simion Coman and Laura-Florentina Rebegea
J. Clin. Med. 2025, 14(10), 3299; https://doi.org/10.3390/jcm14103299 - 9 May 2025
Viewed by 261
Abstract
Introduction: The occurrence of a second primary lung cancer after head and neck cancer is a challenge for multidisciplinary teams, since the development of a second lung cancer negatively affects the survival rate of patients with head and neck cancer. Case Presentation [...] Read more.
Introduction: The occurrence of a second primary lung cancer after head and neck cancer is a challenge for multidisciplinary teams, since the development of a second lung cancer negatively affects the survival rate of patients with head and neck cancer. Case Presentation: This article presents the case of a patient with a double location of cancer: inoperable stage III nasopharyngeal carcinoma, biopsied in December 2017 (non-keratinizing nasopharyngeal carcinoma), treated by means of radiotherapy and chemotherapy (2018–2021), and stage IV lung cancer (squamous carcinoma) with lung metastases, diagnosed in December 2021, treated using polychemotherapy, subsequent maintenance monochemotherapy, radiotherapy of the thorax, and subsequent maintenance monochemotherapy with a favorable result. The patient was still under treatment as of February 2025, the date of the preparation of the current article. Discussion and Literature Review: Regarding the location of the second metachronous cancer, studies show that the most frequent locations are the lungs and the esophagus, with the main causes being alcohol consumption and smoking. Therefore, these patients should be monitored by screening the respiratory and digestive tracts, especially in men, in order to identify a second cancer, either synchronous or metachronous, in an early stage. Conclusions: Educating the patient with head and neck cancer regarding quitting smoking and cutting out alcohol, as well as conducting a follow-up survey, may reduce the incidence of multiple primaries. Moreover, the multidisciplinary management of second primary lung malignancies in patients with head and neck cancer may lead to long-term disease monitoring. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

21 pages, 2009 KiB  
Review
A Bibliometric Analysis of Organization-Based Self-Esteem Integrating Sustainable Human Resource Management Perspectives
by Camilla Dimitri, Pilar Ficapal-Cusí, Mihaela Enache-Zegheru and Joan Torrent-Sellens
World 2025, 6(2), 64; https://doi.org/10.3390/world6020064 - 8 May 2025
Viewed by 306
Abstract
This study addresses a research gap in the organization-based self-esteem (OBSE) literature: the limited integration of sustainability concepts, particularly across environmental, social, and economic dimensions. As the first bibliometric analysis on OBSE, this research systematically reviews 333 publications contained in the Web of [...] Read more.
This study addresses a research gap in the organization-based self-esteem (OBSE) literature: the limited integration of sustainability concepts, particularly across environmental, social, and economic dimensions. As the first bibliometric analysis on OBSE, this research systematically reviews 333 publications contained in the Web of Science Core Collection, dated from 1989 to 2024, using VosViewer software version 1.6.20 (0). Citation analysis identifies the most influential authors, institutions, and countries, and assesses the extent to which their work engages with corporate sustainability or sustainable human resource management—encompassing practices that promote social equity, environmental responsibility, and long-term organizational viability. Keyword co-occurrence analysis reveals that sustainability-related concepts are embedded within the OBSE domain to a limited extent. The findings indicate that while the OBSE literature is evolving to incorporate these topics, this integration remains limited and fragmented. Opportunities for further research, particularly on the intersection of OBSE and sustainability practices, are highlighted, as are practical implications for human resource professionals. Full article
Show Figures

Figure 1

15 pages, 2681 KiB  
Article
Drivers of PM10 Retention by Black Locust Post-Mining Restoration Plantations
by Chariton Sachanidis, Mariangela N. Fotelli, Nikos Markos, Nikolaos M. Fyllas and Kalliopi Radoglou
Atmosphere 2025, 16(5), 555; https://doi.org/10.3390/atmos16050555 - 7 May 2025
Viewed by 100
Abstract
Atmospheric pollution due to an increased particulate matter (PM) concentration imposes a threat for human health. This is particularly true for regions with intensive industrial activity and nature-based solutions, such as tree plantations, are adopted to mitigate the phenomenon. Here, we report on [...] Read more.
Atmospheric pollution due to an increased particulate matter (PM) concentration imposes a threat for human health. This is particularly true for regions with intensive industrial activity and nature-based solutions, such as tree plantations, are adopted to mitigate the phenomenon. Here, we report on the case of the lignite complex of western Macedonia (LCWM), the largest in Greece, where extensive Robinia pseudoacacia L. plantations have been established during the last 40 years for post-mining reclamation, but their PM retention capacity and the controlling parameters have not been assessed to date. Thus, during the 2021 growth season (May to October), we determined the PM10 capture by leaves sampled twice per month, across four 10-m long transects, each consisting of five trees, and at three different heights along the tree canopy. During the same period, we also measured the leaf area index (LAI) of the plantations and collected climatic data, as well as data on PM10 production by the belt conveyors system, the main polluting source at the site. We estimated that the plantations’ foliage captures on average c. 42.85 μg cm−2 PM10 and we developed a robust linear model that describes PM10 retention on a leaf area basis, as a function of PM10 production, LAI (a proxy of seasonal changes in leaf area), distance from the emitting source, and wind speed and foliage height within the crown. The accuracy of the estimates and the performance of the model were tested with the bootstrap cross-validate resampling technique. PM10 retention increased in spring and early summer following the increase in LAI, but its peak in August and October was controlled by the highest PM10 production, due to elevated energy demands. Moreover, PM10 retention was facilitated by wind speed, and it was higher at the lower part of the trees’ canopy. On the contrary, the PM10 load on the trees’ foliage decreased with an increasing distance from the conveyor belt system and the frontline of the plantations. Our findings support the positive role of R. pseudoacacia plantations for PM10 retention at heavily polluted areas, such as the lignite mines in Greece, and provide a model for the estimation of PM10 retention by their foliage based on basic environmental drivers and characteristics of the plantations, which could be helpful for planning their future management. Full article
(This article belongs to the Special Issue Dispersion and Mitigation of Atmospheric Pollutants)
Show Figures

Figure 1

Back to TopTop