Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = long-term properties under cyclic load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9783 KB  
Article
The Dynamic Mechanical Properties of High Strength and High Ductility Concrete Under a Corrosion Environment
by Jie Yang, Sijie Han, Qixin Cao, Xin Zhao, Xinyang Yu and Jintao Liu
Buildings 2025, 15(17), 2983; https://doi.org/10.3390/buildings15172983 - 22 Aug 2025
Viewed by 389
Abstract
High strength and high ductility concrete (HSHDC) exhibit exceptional compressive strength (up to 90 MPa) and remarkable tensile ductility (ultimate tensile strain reaching 6%), making them highly resilient under impact loading. To elucidate the influence of strain rate and wet–dry cycling of salt [...] Read more.
High strength and high ductility concrete (HSHDC) exhibit exceptional compressive strength (up to 90 MPa) and remarkable tensile ductility (ultimate tensile strain reaching 6%), making them highly resilient under impact loading. To elucidate the influence of strain rate and wet–dry cycling of salt spray on the dynamic compressive response of HSHDC, a series of tests was conducted using a 75 mm split Hopkinson pressure bar (SHPB) system on specimens exposed to cyclic corrosion for periods ranging from 0 to 180 days. The alternating seasonal corrosion environment was reproduced by using a programmable walk-in environmental chamber. Subsequently, both uniaxial compression and SHPB tests were employed to evaluate the post-corrosion dynamic compressive properties of HSHDC. Experimental findings reveal that corrosive exposure significantly alters both the static and dynamic compressive mechanical behavior and constitutive characteristics of HSHDC, warranting careful consideration in long-term structural integrity assessments. As corrosion duration increases, the quasi-static and dynamic compressive strengths of HSHDC exhibit an initial enhancement followed by a gradual decline, with stress reaching its peak at 120 days of corrosion under all strain rates. All specimens demonstrated pronounced strain-rate sensitivity, with the dynamic increase factor (DIF) being minimally influenced by the extent of corrosion under dynamic strain rates (112.6–272.0 s−1). Furthermore, the peak energy-consumption capacity of HSHDC was modulated by both the duration of corrosion and the applied strain rate. Full article
(This article belongs to the Special Issue Properties and Applications of Sustainable Construction Materials)
Show Figures

Figure 1

62 pages, 4192 KB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 816
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

31 pages, 3056 KB  
Review
A Review of Key Challenges and Evaluation of Well Integrity in CO2 Storage: Insights from Texas Potential CCS Fields
by Bassel Eissa, Marshall Watson, Nachiket Arbad, Hossein Emadi, Sugan Thiyagarajan, Abdel Rehman Baig, Abdulrahman Shahin and Mahmoud Abdellatif
Sustainability 2025, 17(13), 5911; https://doi.org/10.3390/su17135911 - 26 Jun 2025
Cited by 1 | Viewed by 1430
Abstract
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells [...] Read more.
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells penetrating these formations, particularly legacy wells, which often exhibit significant uncertainties regarding cement tops in the annular space between the casing and formation, especially around or below the primary seal. Misalignment of cement plugs with the primary seal increases the risk of CO2 migrating beyond the seal, potentially creating pathways for fluid flow into upper formations, including underground sources of drinking water (USDW). These wells may not be leaking but might fail to meet the legal requirements of some federal and state agencies such as the Environmental Protection Agency (EPA), Railroad Commission of Texas (RRC), California CalGEM, and Pennsylvania DEP. This review evaluates the impact of CO2 exposure on cement and casing integrity including the fluid transport mechanisms, fracture behaviors, and operational stresses such as cyclic loading. Findings revealed that slow fluid circulation and confining pressure, primarily from overburden stress, promote self-sealing through mineral precipitation and elastic crack closure, enhancing well integrity. Sustained casing pressure can be a good indicator of well integrity status. While full-physics models provide accurate leakage prediction, surrogate models offer faster results as risk assessment tools. Comprehensive data collection on wellbore conditions, cement and casing properties, and environmental factors is essential to enhance predictive models, refine risk assessments, and develop effective remediation strategies for the long-term success of CCS projects. Full article
Show Figures

Figure 1

22 pages, 15301 KB  
Article
The Impact of Destructive Climatic Factors on the Mechanical and Performance Properties of Structural Materials
by Paweł Widomski, Przemysław Maksymowicz, Oliwia Trzaska, Paulina Mayer-Trzaskowska, Paweł Kaczyński, Anna Berbesz-Wyrodek, Barbara Gronostajska, Waldemar Bober and Michał Kogut
Materials 2025, 18(13), 2970; https://doi.org/10.3390/ma18132970 - 23 Jun 2025
Viewed by 471
Abstract
This study investigates the effects of destructive climatic factors on the mechanical and performance properties of various structural materials, encompassing both polymers and metals. Over recent decades, the growing adoption of synthetic polymers has revolutionized engineering applications, yet their susceptibility to environmental degradation [...] Read more.
This study investigates the effects of destructive climatic factors on the mechanical and performance properties of various structural materials, encompassing both polymers and metals. Over recent decades, the growing adoption of synthetic polymers has revolutionized engineering applications, yet their susceptibility to environmental degradation poses significant challenges. This research emphasizes the need for comprehensive testing under both operational and environmental stressors, including extreme temperatures, UV radiation, and moisture, to assess material durability and performance. Mechanical tests were conducted at ambient (25 °C) and low temperatures (−50 °C) to evaluate the strength and strain responses of selected materials. Additionally, a 12-month accelerated aging process using UV radiation and elevated temperatures was performed to simulate long-term environmental exposure. Parameters such as Shore D hardness, gloss, and mass were measured at regular intervals to quantify material degradation. The results revealed significant differences in performance across material types. Among polymers, laser-extruded and milky plexiglass, as well as solid polycarbonate, exhibited satisfactory resistance to aging, with minimal changes in mechanical properties. However, high-impact polystyrene displayed substantial deformation and hardness loss after prolonged UV exposure. For metals, aluminum and stainless steel (304 and 316) demonstrated exceptional durability, retaining structural and aesthetic properties after 12 months of accelerated aging, whereas galvanized steel exhibited pronounced corrosion. The study highlights the critical interplay between mechanical loading and environmental factors, stressing the importance of material selection tailored to specific climatic conditions. It further underscores the value of integrating experimental findings with predictive models, such as finite element analysis, to enhance the design and longevity of engineering materials. The findings provide actionable insights for industries operating in temperate climates, where materials are subjected to diverse and cyclic environmental stressors. Recommendations are offered for selecting resilient materials suitable for protective housings and structural components. Full article
Show Figures

Figure 1

18 pages, 4203 KB  
Article
Long-Term Anisotropic Mechanical Characterization of Layered Shale—An Experimental Study for the BaoKang Tunnel of the Zhengwan Railway, China
by Jun Zhao, Changming Li and Wei Huang
Processes 2025, 13(6), 1900; https://doi.org/10.3390/pr13061900 - 16 Jun 2025
Viewed by 492
Abstract
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and [...] Read more.
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and failure characteristics of different bedding stratified rocks, this research employed an MTS815 electro-hydraulic servo rock testing system and a French TOP rheometer. Triaxial compression tests, rheological property tests, and long-term cyclic and unloading tests were conducted on shale samples under varying confining pressures and bedding angles. The results indicate that (1) under triaxial compression, shale demonstrates pronounced anisotropic behavior. When the confining pressure is constant, the peak strength of the rock sample exhibits a “U”-shaped variation with the bedding angle (its minimum value at 60°). For a fixed bedding angle, the peak strength of the rock sample progressively increases as the confining pressure rises. (2) The mode of shale failure varies with the angle: at 0°, shale exhibits conjugate shear failure; at 30°, shear slip failure along the bedding is controlled by the bedding weak plane; at 60° and 90°, failure occurs through the bedding. (3) During the creep process of layered shale, brittle failure characteristics are evident, with microcracks within the sample gradually failing at stress concentration points. The decelerated and stable creep stages are prominent; while the accelerated creep stage is less noticeable, the creep rate increases with increasing stress level. (4) Under low confining pressure, the peak strength during cyclic loading and unloading creep processes is lower than that of conventional triaxial tests when the bedding plane dip angles are 0° and 30°, which is the opposite at 60° and 90°. (5) In the cyclic loading and unloading process, Poisson’s ratio gradually increases, whereas the elastic modulus, shear modulus, and bulk modulus gradually decrease. Full article
Show Figures

Figure 1

26 pages, 4838 KB  
Article
A Discrete-Element-Based Approach to Generate Random Parameters for Soil Fatigue Models
by Alessandro Tombari and Fedor Maksimov
J. Mar. Sci. Eng. 2025, 13(6), 1145; https://doi.org/10.3390/jmse13061145 - 9 Jun 2025
Viewed by 413
Abstract
The structural reliability of bottom-fixed offshore wind turbines is generally influenced by the dispersion of and variability in soil properties, which affect their ultimate capacity, serviceability, and both the short- and long-term fatigue. During an earthquake, the soil–pile system is subjected to intense [...] Read more.
The structural reliability of bottom-fixed offshore wind turbines is generally influenced by the dispersion of and variability in soil properties, which affect their ultimate capacity, serviceability, and both the short- and long-term fatigue. During an earthquake, the soil–pile system is subjected to intense cyclic loads that can lead to stiffness and strength degradation, typically captured through cyclic soil models. Calibration of soil parameter variability is fundamental for reliable structural assessments of wind turbine integrity. In this study, a method to generate randomness of the parameters affecting cyclic soil degradation models is proposed. Fatigue parameters are quantified through random cyclic undrained triaxial tests conducted using the Discrete Element Method. Deterministic simulations are first performed based on experimental results from the Liquefaction Experiments and Analysis Project for validation. Subsequently, variability in the initial particle size distribution functions is introduced to generate random soil samples, and triaxial simulations are repeated to quantify the dispersion of soil fatigue parameters. The proposed procedure is then applied through Monte Carlo simulations on the IEA 15-MW reference wind turbine, which is subjected to both short- and long-duration earthquakes. The results demonstrate the significant impact of soil degradation on the bending moment envelope, as well as the effect of soil uncertainty on tower fatigue, assessed using the damage equivalent load approach. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 6396 KB  
Article
Evolution Mechanism and Mechanical Response of Tungsten Surface Damage Under Pulsed Heat Load and Helium Plasma Irradiation
by Xiaoxuan Huang, Jianjun Wei, Zongbiao Ye and Fujun Gou
Processes 2025, 13(6), 1711; https://doi.org/10.3390/pr13061711 - 30 May 2025
Viewed by 543
Abstract
This study investigates the synergistic effects of pulsed heat load and helium plasma irradiation on the surface damage evolution of high-purity tungsten, a candidate plasma-facing material (PFM) for future fusion reactors. Using a self-developed linear plasma device, tungsten samples were exposed to controlled [...] Read more.
This study investigates the synergistic effects of pulsed heat load and helium plasma irradiation on the surface damage evolution of high-purity tungsten, a candidate plasma-facing material (PFM) for future fusion reactors. Using a self-developed linear plasma device, tungsten samples were exposed to controlled single-pulse heat loads (32–124 MW·m−2) and helium plasma fluxes (7.76 × 1022–2.40 × 1023 ions·m−2·s−1). SEM and XRD analyses revealed a progressive damage mechanism involving helium bubble formation, pit collapse, coral-like nanostructure evolution, and melting-induced restructuring. These surface changes were accompanied by grain refinement, lattice contraction, and peak shifts in the (110) diffraction plane. Mechanical testing showed a flux-dependent variation in hardness, with initial hardening followed by softening due to crack propagation. Surface reflectivity significantly declined with increasing load, indicating severe optical degradation. This work demonstrates the nonlinear coupling between thermal and irradiation effects in tungsten, offering new insights into damage accumulation under realistic reactor conditions. The findings highlight the dominant role of transient heat loads in driving structural and property changes and emphasize the importance of accounting for synergistic effects in material design. These results provide essential experimental data for optimizing PFMs in divertor and first-wall applications and suggest directions for future research into cyclic loading, long-term exposure, and microstructural recovery mechanisms. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 23065 KB  
Article
The Influence of Ca on Mechanical Properties of the Mg–Ca–Zn–RE–Zr Alloy for Orthopedic Applications
by Mircea Cătălin Ivănescu, Corneliu Munteanu, Ramona Cimpoeșu, Bogdan Istrate, Fabian Cezar Lupu, Marcelin Benchea, Eusebiu Viorel Șindilar, Alexandru Vlasa, Ovidiu Stamatin and Georgeta Zegan
J. Funct. Biomater. 2025, 16(5), 170; https://doi.org/10.3390/jfb16050170 - 9 May 2025
Viewed by 541
Abstract
Background: This study examined how the concentration of calcium (Ca) influences the microstructure, mechanical characteristics, and tribological attributes of Mg–Ca–Zn–RE–Zr alloys for orthopedic medicine. Materials and methods: Experimental alloys with 0.1 and 0.5 wt% Ca were prepared in a controlled atmosphere induction furnace. [...] Read more.
Background: This study examined how the concentration of calcium (Ca) influences the microstructure, mechanical characteristics, and tribological attributes of Mg–Ca–Zn–RE–Zr alloys for orthopedic medicine. Materials and methods: Experimental alloys with 0.1 and 0.5 wt% Ca were prepared in a controlled atmosphere induction furnace. The microstructure of the alloys was investigated by scanning electron microscopy, the chemical composition by X-ray fluorescence and energy-dispersive spectroscopy, the mechanical properties by indentation and scratching, and the corrosion resistance by linear and cyclic potentiometry. Results: The alloy with 0.1% Ca exhibited greater fluctuations in the coefficient of friction, while the sample with 0.5% Ca showed a higher susceptibility to cracking. Regarding corrosion resistance, both samples exhibited a generalized corrosion trend with similar corrosion currents. At lower Ca concentrations (0.1%), the refined microstructure of the alloys provided an elastic modulus closer to that of human bone, minimizing the risk of excessive local stress and promoting uniform load distribution at the bone-implant interface. Conclusion: The 0.5% Ca alloy offered superior tribological stability and better shock absorption, making it suitable for applications requiring long-term stability. The study highlighted the potential of both compositions based on the specific requirements of biodegradable orthopedic implants. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Bone Tissue Engineering)
Show Figures

Figure 1

16 pages, 13302 KB  
Article
Machine Learning-Based Partition Method for Cyclic Development Mode of Submarine Soil Martials from Offshore Wind Farms
by Ben He, Mingbao Lin, Zhishuai Zhang, Bo Han and Xinran Yu
J. Mar. Sci. Eng. 2025, 13(3), 533; https://doi.org/10.3390/jmse13030533 - 10 Mar 2025
Viewed by 768
Abstract
Offshore wind turbines are subjected to long-term cyclic loads, and the seabed materials surrounding the foundation are susceptible to failure, which affects the safe construction and normal operation of offshore wind turbines. The existing studies of the cyclic mechanical properties of submarine soils [...] Read more.
Offshore wind turbines are subjected to long-term cyclic loads, and the seabed materials surrounding the foundation are susceptible to failure, which affects the safe construction and normal operation of offshore wind turbines. The existing studies of the cyclic mechanical properties of submarine soils focus on the accumulation strain and liquefaction, and few targeted studies are conducted on the hysteresis loop under cyclic loads. Therefore, 78 representative submarine soil samples from four offshore wind farms are tested in the study, and the cyclic behaviors under different confining pressures and CSR are investigated. The experiments reveal two unique development modes and specify the critical CSR of five submarine soil martials under different testing conductions. Based on the dynamic triaxial test results, the machine learning-based partition models for cyclic development mode were established, and the discrimination accuracy of the hysteresis loop were discussed. This study found that the RF model has a better generalization ability and higher accuracy than the GBDT model in discriminating the hysteresis loop of submarine soil, the RF model has achieved a prediction accuracy of 0.96 and a recall of 0.95 on the test dataset, which provides an important theoretical basis and technical support for the design and construction of offshore wind turbines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 11388 KB  
Article
Damage Evolution and Lifetime Prediction of Cement Asphalt Mortar Under High-Speed Train Frequency and Temperature Gradient Load
by Mingjie Zhou, Shenghua Zhong, Yiping Liu, Zejia Liu, Bao Yang, Zhenyu Jiang, Licheng Zhou and Liqun Tang
Materials 2025, 18(5), 1011; https://doi.org/10.3390/ma18051011 - 25 Feb 2025
Cited by 1 | Viewed by 579
Abstract
Severe damage to cement asphalt mortar (CA mortar) can compromise the stability and safety of high-speed railway operations due to various complex factors during service. The loads from high-speed trains and temperature gradients within the ballastless track structure are significant contributors to this [...] Read more.
Severe damage to cement asphalt mortar (CA mortar) can compromise the stability and safety of high-speed railway operations due to various complex factors during service. The loads from high-speed trains and temperature gradients within the ballastless track structure are significant contributors to this damage. However, most previous studies have focused on laboratory tests or numerical simulations under simple loading conditions, while few have investigated the damage evolution of CA mortar when both train loads and temperature gradients are considered simultaneously. In this paper, a finite element model of the CRTS II ballast track and a high-speed railway train dynamics model based on the damage constitutive model of CA mortar was established. The damage evolution of CA mortar through long-term cyclic numerical simulations under the combined effects of train load and temperature gradient load were investigated. By integrating the maintenance criteria for high-speed railways, the lifetime of CA mortar using the criteria of crack length and off-seam width was predicted. In addition, the material and structural properties of CA mortar were also optimized, considering the relationship between its elastic modulus and density, to enhance its lifetime. The conclusions reached are more realistic. The results indicate that the combined load causes deformation in the ballast track structure, leading to gradual damage progression from the edge to the interior of the CA mortar layer. The lifetime of CA mortar is determined by the number of days it takes for the crack length to reach the maintenance criteria. The lifetime of CA mortar under different temperature gradients ranges from 1 to 2 years. Increasing the elastic modulus and thickness of the CA mortar layer improves its lifespan. An elastic modulus of 9000 MPa and a thickness of 50 mm for the CA mortar were recommended. Full article
Show Figures

Figure 1

22 pages, 18682 KB  
Article
Experimental Investigation on Macroscopic and Microscopic Mechanical Properties of Geopolymer-Stabilized Macadam
by Hancheng Dan, Shenglong Ma, Mengjin Li, Jiawei Tan and Haoran Zhang
Materials 2025, 18(2), 454; https://doi.org/10.3390/ma18020454 - 20 Jan 2025
Viewed by 1081
Abstract
Geopolymer, as a promising inorganic binding material, holds potential for use in constructing base layers for highway pavements. This study aims to evaluate the mechanical properties of geopolymer-stabilized macadam (GSM) at both the micro- and macro-scale by a series of tests, demonstrating that [...] Read more.
Geopolymer, as a promising inorganic binding material, holds potential for use in constructing base layers for highway pavements. This study aims to evaluate the mechanical properties of geopolymer-stabilized macadam (GSM) at both the micro- and macro-scale by a series of tests, demonstrating that high-Ca GSM is a high-quality material for pavement base layers. The results demonstrated that GSM exhibits outstanding mechanical and fatigue properties, significantly surpassing those of cement-stabilized macadam (CSM). Performance improvements were particularly notable with higher binder-to-aggregate ratios. GSM derived from a high-Ca precursor achieved a relatively higher fatigue life and resistance to permanent deformation under cyclic loading, outperforming CSM. Furthermore, relationship models developed from the indirect tensile fatigue test results provide a valuable framework for evaluating GSM’s long-term road performance. Microstructural analyses revealed that geopolymer features a reticulated gel structure and a denser, more continuous internal matrix, which contribute to its superior properties. The interface products of GSM, including C–A–S–H gel and C(N)–A–S–H gel, enhance mechanical interlocking and promote early strength development, accounting for its exceptional mechanical strength and fatigue resistance. These findings offer valuable insights and technical guidance for employing geopolymer as a sustainable and effective alternative to cement-stabilized macadam in base layer construction. Full article
Show Figures

Figure 1

12 pages, 9791 KB  
Article
Random Forest-Based Prediction Model for Stiffness Degradation of Offshore Wind Farm Submarine Soil
by Ben He, Mingbao Lin, Xinran Yu, Zhishuai Zhang and Song Dai
J. Mar. Sci. Eng. 2025, 13(1), 8; https://doi.org/10.3390/jmse13010008 - 24 Dec 2024
Viewed by 775
Abstract
Offshore wind power is a hot spot in the field of new energy, with foundation construction costs representing approximately 30% of the total investment in wind farm construction. Offshore wind turbines are subjected to long-term cyclic loads, and seabed materials are prone to [...] Read more.
Offshore wind power is a hot spot in the field of new energy, with foundation construction costs representing approximately 30% of the total investment in wind farm construction. Offshore wind turbines are subjected to long-term cyclic loads, and seabed materials are prone to causing stiffness degradation. The accurate disclosure of the mechanical properties of marine soil is critical to the safety and stability of the foundation structure of offshore wind turbines. The stiffness degradation laws of mucky clay and silt clay from offshore wind turbines were firstly investigated in the study. Experiments found that the variations in the elastic modulus presented “L-type” attenuation under small cyclic loads, and the degradation coefficient fleetingly decayed to the strength progressive line under large cyclic loads. Based on the experimental results, a random forest prediction model for the elastic modulus of the submarine soil was established, which had high prediction accuracy. The influence of testing the loading parameters of the submarine soil on the prediction results was greater than that of the soil’s physical property parameters. In criticality, the CSR had the greatest impact on the prediction results. This study provides a more efficient method for the stiffness degradation assessment of submarine soil materials in offshore wind farms. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 5139 KB  
Article
Study on Long-Term Stability of Lined Rock Cavern for Compressed Air Energy Storage
by Shaohua Liu and Duoxin Zhang
Energies 2024, 17(23), 5908; https://doi.org/10.3390/en17235908 - 25 Nov 2024
Cited by 4 | Viewed by 1168
Abstract
A rock mass is mainly subjected to a high internal pressure load in the lined rock cavern (LRC) for compressed air energy storage (CAES). However, under the action of long-term cyclic loading and unloading, the mechanical properties of a rock mass will deteriorate, [...] Read more.
A rock mass is mainly subjected to a high internal pressure load in the lined rock cavern (LRC) for compressed air energy storage (CAES). However, under the action of long-term cyclic loading and unloading, the mechanical properties of a rock mass will deteriorate, affecting the long-term stability of the cavern. The fissures in the rock mass will expand and generate new cracks, causing varying degrees of damage to the rock mass. Most of the existing studies are based on the test data of complete rock samples and the fissures in the rock mass are ignored. In this paper, the strain equivalence principle is used to couple the initial damage variable caused by the fissures and the fatigue damage variable of a rock mass to obtain the damage variable of a rock mass under cyclic stress. Then, based on the ANSYS 17.0 platform, the ANSYS Parametric Design Language (APDL) is used to program the rock mass elastic modulus evolution equation, and a calculation program of the rock mass damage model is secondarily developed. The calculation program is verified by a cyclic loading and unloading model test. It is applied to the construction project of underground LRC for CAES in Northwest China. The calculation results show that the vertical radial displacement of the rock mass is 8.39 mm after the 100th cycle, which is a little larger than the 7.53 mm after the first cycle. The plastic zone of the rock mass is enlarged by 4.71 m2, about 11.49% for 100 cycles compared to the first cycle. Our calculation results can guide the design and calculation of the LRC, which is beneficial to the promotion of the CAES technology. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

21 pages, 18028 KB  
Article
Mechanical Properties and DEM-Based Simulation of Double-Fractured Sandstone Under Cyclic Loading and Unloading
by Lichen Sun, Peijie Lou, Cheng Pan and Penghui Ji
Sustainability 2024, 16(20), 9000; https://doi.org/10.3390/su16209000 - 17 Oct 2024
Cited by 4 | Viewed by 1329
Abstract
In response to the challenges posed by long-term cyclic loading and unloading in underground rock engineering, this study systematically investigates the macro- and meso-mechanical response mechanisms of fractured rock masses under cyclic loading conditions. We performed graded cyclic loading–unloading tests on parallel double-fractured [...] Read more.
In response to the challenges posed by long-term cyclic loading and unloading in underground rock engineering, this study systematically investigates the macro- and meso-mechanical response mechanisms of fractured rock masses under cyclic loading conditions. We performed graded cyclic loading–unloading tests on parallel double-fractured sandstone samples with varying spatial distribution configurations. These tests were integrated with digital image correlation (DIC) technology, fractal dimension analysis, and discrete element method (DEM) numerical simulations to analyze the mechanical properties, deformation characteristics, crack propagation features, and meso-fracture mechanisms of the fractured rock masses. The findings indicate that the diverse spatial distribution characteristics of the double fractures exert a significant influence on the loading–unloading processes, surface deformation fields, and fracture states of the rock. Cyclic loading leads to an increase in the fractal dimension of the fractured samples, resulting in more intricate and chaotic crack propagation patterns. Furthermore, DEM simulations reveal the impact of fracture spatial configurations on the force chain distribution within the rock bridges. The equivalent stress nephogram effectively represents the stress field distribution. This offers valuable insights for predicting meso-fracture trends in rocks. This paper comprehensively integrates both experimental and numerical simulation methodologies to deliver a thorough analysis of the complex mechanical behavior of fractured rock masses under cyclic loading conditions, with direct relevance to engineering applications such as mine excavation and slope stabilization. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

23 pages, 8840 KB  
Article
Study on the Evolution of Mechanical Properties and Acoustic Emission of Medium-Permeability Sandstone under Multi-Level Cyclic Loading Stress Paths
by Debin Xia, Hejuan Liu, Jianjun Liu, Yintong Guo, Mancang Liu, Xiaosong Qiu, Haibo Li, Hongying Tan and Jun Lu
Processes 2024, 12(8), 1773; https://doi.org/10.3390/pr12081773 - 21 Aug 2024
Viewed by 1148
Abstract
Depleted gas reservoirs are important natural gas storage media, thus research on the mechanical properties and damage evolution of reservoir rocks under alternating load conditions has significant practical implications for seal integrity studies. This paper conducted multi-level cyclic loading triaxial compression experiments on [...] Read more.
Depleted gas reservoirs are important natural gas storage media, thus research on the mechanical properties and damage evolution of reservoir rocks under alternating load conditions has significant practical implications for seal integrity studies. This paper conducted multi-level cyclic loading triaxial compression experiments on medium-porosity medium-permeability sandstone under different confining pressures and used acoustic emission (AE) instruments to detect the AE characteristics during the experiment, analyzing the mechanical characteristics, AE, and damage evolution characteristics. The experimental results show that after cyclic loading, the peak strength of sandstone increased by 14–17%. With the increase in the upper limit stress of cyclic loading, the elastic modulus showed a trend of first increasing and then gradually decreasing. The damage variable of rock samples rose with a rise in the upper limit stress of cyclic loading and confining pressure, and the rock damage was mostly localized at the peak stress. The AE b-value increased generally as confining pressure increased, showing that fractures occurred quicker and more unevenly at lower confining pressures. The distribution of RA-AF values shows that a sudden increase in stress causes the initiation and expansion of cracks in medium-permeability sandstone, and that tensile and shear cracks form continuously during the cyclic loading process, with shear cracks developing more pronounced. This research can provide some theoretical guidance for the long-term stable operation and pressure enhancement expansion of depleted gas reservoir storage facilities. Full article
Show Figures

Figure 1

Back to TopTop