Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = longitudinal ground movement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1847 KB  
Article
Evaluation of Facebook as a Longitudinal Data Source for Parkinson’s Disease Insights
by Jeanne M. Powell, Charles Cao, Kayla Means, Sahithi Lakamana, Abeed Sarker and J. Lucas Mckay
J. Clin. Med. 2025, 14(12), 4093; https://doi.org/10.3390/jcm14124093 - 10 Jun 2025
Viewed by 671
Abstract
Background/Objectives: Parkinson’s disease (PD) is a neurodegenerative disorder with a prolonged prodromal phase and progressive symptom burden. Traditional monitoring relies on clinical visits post-diagnosis, limiting the ability to capture early symptoms and real-world disease progression outside structured assessments. Social media provides an alternative [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a neurodegenerative disorder with a prolonged prodromal phase and progressive symptom burden. Traditional monitoring relies on clinical visits post-diagnosis, limiting the ability to capture early symptoms and real-world disease progression outside structured assessments. Social media provides an alternative source of longitudinal, patient-driven data, offering an opportunity to analyze both pre-diagnostic experiences and later disease manifestations. This study evaluates the feasibility of using Facebook to analyze PD-related discourse and disease timelines. Methods: Participants (N = 60) diagnosed with PD, essential tremor, or atypical parkinsonism, along with caregivers, were recruited. Demographic and clinical data were collected during structured interviews. Participants with Facebook accounts shared their account data. PD-related posts were identified using a Naïve Bayes classifier (recall: 0.86, 95% CI: 0.84–0.88, AUC = 0.94) trained on a ground-truth dataset of 6750 manually labeled posts. Results: Among participants with PD (PwPD), Facebook users were significantly younger but had similar Movement Disorder Society-United Parkinson’s Disease Rating Scale scores and disease duration compared to non-users. Among Facebook users with PD, 90% had accounts before diagnosis, enabling retrospective analysis of pre-diagnostic content. PwPD maintained 14 ± 3 years of Facebook history, including 5 ± 6 years pre-diagnosis. On average, 3.6% of all posts shared by PwPD were PD-related, and 1.7% of all posts shared before diagnosis were PD-related. Overall, 69% explicitly referenced PD, and 93% posted about PD-related themes. Conclusions: Facebook is a viable platform for studying PD progression, capturing both early content from the premorbid period and later-stage symptoms. These findings support its potential for disease monitoring at scale. Full article
Show Figures

Figure 1

25 pages, 17680 KB  
Article
Evaluating Inertial Parameter Uncertainty in High-Acceleration Movements and Improving Predictions Through Identification Using Free Vibration Measurements
by Takahiro Homma and Hiroshi Yamaura
Biomechanics 2025, 5(1), 18; https://doi.org/10.3390/biomechanics5010018 - 14 Mar 2025
Viewed by 630
Abstract
Background/Objectives: This study aimed to examine how uncertainties in inertial properties and minimal sets of inertial parameters (MSIP) affect inverse-dynamics simulations of high-acceleration sport movements and to demonstrate that applying MSIP identified through the free vibration measurement method improves simulation accuracy. Methods: Monte [...] Read more.
Background/Objectives: This study aimed to examine how uncertainties in inertial properties and minimal sets of inertial parameters (MSIP) affect inverse-dynamics simulations of high-acceleration sport movements and to demonstrate that applying MSIP identified through the free vibration measurement method improves simulation accuracy. Methods: Monte Carlo simulations were performed for running, side-cutting, vertical jumping, arm swings, and leg swings by introducing uncertainties in inertial properties and MSIP. Results: These uncertainties significantly affect the joint torques and ground reaction forces and moments (GRFs&Ms), especially during large angular acceleration. The mass and longitudinal position of the center of gravity had strong effects. Subsequently, MSIP identified by our methods with free vibration measurement were applied to the same tasks, improving the accuracy of the predicted ground reaction forces compared with the standard regression-based estimates. The root mean square error decreased by up to 148 N. Conclusions: These results highlight that uncertainties in inertial properties and MSIP affected the calculated joint torques and GRFs&Ms, and combining experimentally identified MSIP with dynamics simulations enhances precision. These findings demonstrate that utilizing the MSIP from free vibration measurement in inverse dynamics simulations improves the accuracy of dynamic models in sports biomechanics, thereby providing a robust framework for precise biomechanical analyses. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

22 pages, 9902 KB  
Article
Analytical Fragility Surfaces and Global Sensitivity Analysis of Buried Operating Steel Pipeline Under Seismic Loading
by Gersena Banushi
Appl. Sci. 2024, 14(22), 10735; https://doi.org/10.3390/app142210735 - 20 Nov 2024
Cited by 2 | Viewed by 1186
Abstract
The structural integrity of buried pipelines is threatened by the effects of Permanent Ground Deformation (PGD), resulting from seismic-induced landslides and lateral spreading due to liquefaction, requiring accurate analysis of the system performance. Analytical fragility functions allow us to estimate the likelihood of [...] Read more.
The structural integrity of buried pipelines is threatened by the effects of Permanent Ground Deformation (PGD), resulting from seismic-induced landslides and lateral spreading due to liquefaction, requiring accurate analysis of the system performance. Analytical fragility functions allow us to estimate the likelihood of seismic damage along the pipeline, supporting design engineers and network operators in prioritizing resource allocation for mitigative or remedial measures in spatially distributed lifeline systems. To efficiently and accurately evaluate the seismic fragility of a buried operating steel pipeline under longitudinal PGD, this study develops a new analytical model, accounting for the asymmetric pipeline behavior in tension and compression under varying operational loads. This validated model is further implemented within a fragility function calculation framework based on the Monte Carlo Simulation (MCS), allowing us to efficiently assess the probability of the pipeline exceeding the performance limit states, conditioned to the PGD demand. The evaluated fragility surfaces showed that the probability of the pipeline exceeding the performance criteria increases for larger soil displacements and lengths, as well as cover depths, because of the greater mobilized soil reaction counteracting the pipeline deformation. The performed Global Sensitivity Analysis (GSA) highlighted the influence of the PGD and soil–pipeline interaction parameters, as well as the effect of the service loads on structural performance, requiring proper consideration in pipeline system modeling and design. Overall, the proposed analytical fragility function calculation framework provides a useful methodology for effectively assessing the performance of operating pipelines under longitudinal PGD, quantifying the effect of the uncertain parameters impacting system response. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Graphical abstract

13 pages, 584 KB  
Article
Inertial Sensor-Based Quantification of Movement Symmetry in Trotting Warmblood Show-Jumping Horses after “Limb-by-Limb” Re-Shoeing of Forelimbs with Rolled Rocker Shoes
by Craig Bark, Patrick Reilly, Renate Weller and Thilo Pfau
Sensors 2024, 24(15), 4848; https://doi.org/10.3390/s24154848 - 25 Jul 2024
Viewed by 1595
Abstract
Hoof care providers are pivotal for implementing biomechanical optimizations of the musculoskeletal system in the horse. Regular visits allow for the collection of longitudinal, quantitative information (“normal ranges”). Changes in movement symmetry, e.g., after shoeing, are indicative of alterations in weight-bearing and push-off [...] Read more.
Hoof care providers are pivotal for implementing biomechanical optimizations of the musculoskeletal system in the horse. Regular visits allow for the collection of longitudinal, quantitative information (“normal ranges”). Changes in movement symmetry, e.g., after shoeing, are indicative of alterations in weight-bearing and push-off force production. Ten Warmblood show jumping horses (7–13 years; 7 geldings, 3 mares) underwent forelimb re-shoeing with rolled rocker shoes, one limb at a time (“limb-by-limb”). Movement symmetry was measured with inertial sensors attached to the head, withers, and pelvis during straight-line trot and lunging. Normalized differences pre/post re-shoeing were compared to published test–retest repeatability values. Mixed-model analysis with random factors horse and limb within horse and fixed factors surface and exercise direction evaluated movement symmetry changes (p < 0.05, Bonferroni correction). Withers movement indicated increased forelimb push-off with the re-shod limb on the inside of the circle and reduced weight-bearing with the re-shod limb and the ipsilateral hind limb on hard ground compared to soft ground. Movement symmetry measurements indicate that a rolled rocker shoe allows for increased push-off on soft ground in trot in a circle. Similar studies should study different types of shoes for improved practically relevant knowledge about shoeing mechanics, working towards evidence-based preventative shoeing. Full article
(This article belongs to the Special Issue Quadrupedal Gait Analysis in the Field)
Show Figures

Figure 1

19 pages, 9468 KB  
Article
Investigating the Mechanism of Land Subsidence Due to Water Network Integration at the Guangzhou Longgui Salt Mine and Its Impact on Adjacent Subway
by Nan Zhang, Xuchao Liu, Yun Zhang, Helong Gu, Baoxu Yan, Qianjun Jia and Xinrong Gao
Water 2024, 16(12), 1723; https://doi.org/10.3390/w16121723 - 17 Jun 2024
Cited by 6 | Viewed by 1685
Abstract
Water-soluble mining was invariably associated with surface subsidence, which in some cases escalated to the movement, deformation, and even collapse of the overlying rock layers, triggering grave subsidence calamities. The caprock of the salt-bearing strata in the Longgui salt rock mining area was [...] Read more.
Water-soluble mining was invariably associated with surface subsidence, which in some cases escalated to the movement, deformation, and even collapse of the overlying rock layers, triggering grave subsidence calamities. The caprock of the salt-bearing strata in the Longgui salt rock mining area was closely adjacent to the third aquifer, which mainly consisted of fractured, porous, high-permeability materials such as mudstone conglomerates, rendering the geological conditions highly complex. Years of water-soluble mining had led to significant surface subsidence in the mining area, with a trend toward accelerated subsidence. In this study, the geological conditions of the Longgui salt rock mining area were analyzed, and through simulated experiments of pillar dissolution mining, the mechanisms of surface subsidence in the area were examined. Over time, the dissolution gradually perforated the pillars and caprock, with the pillars ceasing to support the caprock, ultimately transforming small cavities into a large single cavity. Utilizing subsidence data, this research employed numerical simulation to inverse and predict subsidence patterns from 2019 to 2025, revealing that the maximum subsidence reached 1367.6 mm in mining area I and 1879.5 mm in mining area II, with subsidence rates of 12.05 mm/y and 44.78 mm/y, respectively. Moreover, the impact of ground subsidence on the construction of adjacent subways was assessed by establishing monitoring points and evaluating subsidence along subway cross-sections and longitudinal directions. The findings provided valuable insights for guiding the prevention and control of surface subsidence calamities in the Longgui salt rock mine and similar mining areas in Guangzhou, China. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

13 pages, 4223 KB  
Article
A Bio-Inspired Arched Foot with Individual Toe Joints and Plantar Fascia
by Stuart Burgess, Alex Beeston, Joshua Carr, Kallia Siempou, Maya Simmonds and Yasmin Zanker
Biomimetics 2023, 8(6), 455; https://doi.org/10.3390/biomimetics8060455 - 26 Sep 2023
Cited by 2 | Viewed by 3833
Abstract
This paper presents the design and testing of an arched foot with several biomimetic features, including five individual MTP (toe) joints, four individual midfoot joints, and plantar fascia. The creation of a triple-arched foot represents a step further in bio-inspired design compared to [...] Read more.
This paper presents the design and testing of an arched foot with several biomimetic features, including five individual MTP (toe) joints, four individual midfoot joints, and plantar fascia. The creation of a triple-arched foot represents a step further in bio-inspired design compared to other published designs. The arched structure creates flexibility that is similar to human feet with a vertical deflection of up to 12 mm. The individual toe joints enable abduction–adduction in the forefoot and therefore a natural pronation motion. Adult female bone data was obtained and converted into a CAD model to accurately identify the location of bones, joints, and arches. An analytical model is presented that gives the relationship between the vertical stiffness and horizontal stiffness of the longitudinal arches and therefore allows the optimization of stiffness elements. Experimental tests have demonstrated a vertical arch stiffness of 76 N/mm which is similar to adult human feet. The range of movement of the foot is similar to human feet with the following values: dorsi-plantarflexion (28°/37°), inversion-eversion (30°/15°), and abduction–adduction (30°/39°). Tests have also demonstrated a three-point contact with the ground that is similar to human feet. Full article
(This article belongs to the Special Issue Biorobotics: 2nd Edition)
Show Figures

Graphical abstract

20 pages, 6103 KB  
Article
Topographic Changes, Surface Deformation and Movement Process before, during and after a Rotational Landslide
by Shuyue Ma, Haijun Qiu, Yaru Zhu, Dongdong Yang, Bingzhe Tang, Daozheng Wang, Luyao Wang and Mingming Cao
Remote Sens. 2023, 15(3), 662; https://doi.org/10.3390/rs15030662 - 22 Jan 2023
Cited by 56 | Viewed by 6346
Abstract
The deformation characteristics and instability patterns of rotational landslides are complicated. Such landslides are large and occur continuously, seriously threatening people’s lives. We used interferometry synthetic aperture radar (InSAR), digital elevation models of difference (DODs), numerical simulations, and other techniques for analyzing the [...] Read more.
The deformation characteristics and instability patterns of rotational landslides are complicated. Such landslides are large and occur continuously, seriously threatening people’s lives. We used interferometry synthetic aperture radar (InSAR), digital elevation models of difference (DODs), numerical simulations, and other techniques for analyzing the topographic changes, surface deformation and movement process before, during and after a landslide. Based on the high-resolution terrain data before and after the landslide, the topographic changes were analyzed, and the active zone of the landslide was identified. The areas of the topographic changes were mainly located on the main scarp, toe and secondary landslides. The topographic changes were influenced by rainfall and rill erosion. The geomorphologically-guided InSAR interpretation method was applied to explore the displacement pattern. The deformation area in the middle of the landslide coincided with the secondary landslides. A time-series InSAR analysis revealed the dynamic evolution of the deformation before and after the landslide. Based on its evolution, the simulated landslide process included the main landslide and three secondary landslides. Based on the displacement of the longitudinal ground surface profiles, the displacement characteristics and kinematic behavior were summarized and compared with those of a single rotational landslide and multiple rotational landslides. The single rotational landslide had obvious secondary and progressive characteristics, developing into multiple rotational landslides triggered by conditions such as rainfall. Full article
Show Figures

Figure 1

21 pages, 9138 KB  
Article
Design and Experiment of the Automatic Laying System for Rice Seedling Tray
by Qiaojun Zhou, Xudong Xia, Jian Wang, Yun Zhou and Jianneng Chen
Agriculture 2021, 11(7), 679; https://doi.org/10.3390/agriculture11070679 - 19 Jul 2021
Cited by 4 | Viewed by 4571
Abstract
In the process of raising rice seedlings, it is necessary to manually place the seedling trays one by one in the seedling field, which is labor intensive and low in efficiency. In order to solve this problem, according to the actual conditions of [...] Read more.
In the process of raising rice seedlings, it is necessary to manually place the seedling trays one by one in the seedling field, which is labor intensive and low in efficiency. In order to solve this problem, according to the actual conditions of the rice seedling field, this paper designs and develops an automatic rice tray laying system, which consists of a gantry truss moving unit, a tray laying trolley unit, a tray laying mechanism unit and a sensor control unit. Through the movement and timing coordination of the cams in the laying mechanism unit, four actions of holding, clamping, laying and restoring are designed to realize the orderly and automatic laying of the stacked seedling trays one by one. In order to meet the agronomic requirements of the horizontal and vertical spacing of seeding trays, especially the efficiency of rice tray laying, the control strategies of the key parts of the system were simulated, selected and optimized. For the longitudinal movement of the gantry truss, the cross-coupling control strategy is adopted to realize the detection and compensation correction of the synchronous position error of the two driving motors. As for the drive motor of the laying trolley and the laying mechanism, the optimized master-slave follow-up control method is adopted to improve the efficiency and accuracy. The results of simulation and field experiment show that when the tray trolley moves on the gantry truss at the speed of 7.5 cm/s, the gantry truss moves at the speed of 35 cm/s in the longitudinal direction, and when the height of the tray laying mechanism is 100 mm from the ground and the motor speed is 375 rpm, the horizontal spacing of the tray can be maintained at 25 ± 5 mm and the vertical spacing at 15 ± 5 mm. The efficiency of tray laying can be increased by 35.7%, up to 380 trays/h, meeting the technical requirements of mechanized field tray laying. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 2590 KB  
Review
Migrations of Young Fish in Anthropogenically Transformed Rivers: Responses of Cyprinids and Percids to Ecological Filters and Barriers
by Dmitrii S. Pavlov, Vasilii V. Kostin and Victor N. Mikheev
Water 2021, 13(9), 1291; https://doi.org/10.3390/w13091291 - 4 May 2021
Cited by 3 | Viewed by 2898
Abstract
Downstream migration (DSM) of larvae and fry is an important phase of the life cycle of fish as it allows them to disperse, and it increases the size and diversity of the populations via them extending rearing grounds, exchanging genes, and avoiding competition [...] Read more.
Downstream migration (DSM) of larvae and fry is an important phase of the life cycle of fish as it allows them to disperse, and it increases the size and diversity of the populations via them extending rearing grounds, exchanging genes, and avoiding competition and cannibalism. Two numerous and diverse fish families of the Eurasian rivers, Cyprinidae and Percidae, are well adapted to the conditions of the riverine continuum. Having said that, the regulation of rivers (construction of dams and water reservoirs) drastically changes their hydrology and topography. In this work, we argued that novel conditions of transformed river habitats influence the DSM of young cyprinids and percids in different ways. The published results on fish DSM and spatial distribution in nine European reservoirs (Russia, Kazakhstan, Czech Republic, Bulgaria) in comparison with untransformed rivers were reanalyzed from the viewpoint of this argument. Changes in the major characteristics of DSM of young cyprinids and percids, i.e., intensity, diel (24-h period), and seasonal patterns of migrations, as caused by anthropogenic transformation of the rivers, were revealed. We found that the novel ecological barriers and filters associated with different parts of water reservoirs differently influence the lateral and longitudinal movements, and the diel and seasonal dynamics of DSM of cyprinids and percids. These effects result in significantly more intensive emigration of young percids compared to cyprinids from reservoirs with deep-water intakes. At the scale of the whole regulated river, the morphological complexity (topography) of the reservoir plays a pivotal role in controlling the intensity of the DSM of young fish. Measures for the conservation and restoration of percid and cyprinid populations should be different. Full article
(This article belongs to the Special Issue Fish Passage at Hydropower Dams)
Show Figures

Figure 1

23 pages, 5730 KB  
Article
A Hybrid Incremental Nonlinear Dynamic Inversion Control for Improving Flying Qualities of Asymmetric Store Configuration Aircraft
by Chang-ho Ji, Chong-sup Kim and Byoung-Soo Kim
Aerospace 2021, 8(5), 126; https://doi.org/10.3390/aerospace8050126 - 2 May 2021
Cited by 11 | Viewed by 4988
Abstract
Highly maneuverability fighter aircrafts are equipped with various weapons for successful air-to-air and air-to-ground missions. The aircraft has abrupt transient response due to ejection force generated when store of one wing is launched and the movement of lateral center-of-gravity (YCG) changing by the [...] Read more.
Highly maneuverability fighter aircrafts are equipped with various weapons for successful air-to-air and air-to-ground missions. The aircraft has abrupt transient response due to ejection force generated when store of one wing is launched and the movement of lateral center-of-gravity (YCG) changing by the mass distribution of both wings after launched. Under maintaining 1 g level flight with manual trim system in the asymmetric store configuration, the aircraft causes unexpected roll motion for the pure longitudinal maneuver because the change of AoA and airspeed changes the amount of trim for level flight of the aircraft. For this reason, the pilot should continuously use the roll control stick input to maintain level flight. This characteristic increases the pilot’s workload and adversely affects the flying qualities of the aircraft, which is a major cause of deteriorating mission efficiency for combat maneuver. In this paper, we propose a hybrid control that combines model- and sensor-based Incremental Nonlinear Dynamic Inversion (INDI) control based mathematical model of the supersonic advanced trainer to minimize the transient response of the aircraft when the store is launched and to effectively reduce the unexpected roll motion that occurs for the pure longitudinal maneuvering in the asymmetric store configuration. As a result of the frequency- and time-domain evaluation, the proposed control method can effectively reduce the transient response for store launch and minimize unexpected roll motion for the pure longitudinal maneuver. Therefore, this control method can effectively improve flying qualities and mission efficiency by reducing the pilot’s workload in the operation of the asymmetric store configuration. Full article
(This article belongs to the Special Issue Aerospace Guidance, Navigation and Control)
Show Figures

Figure 1

12 pages, 1733 KB  
Article
Validation of Walking Speed Estimation from Trunk Mounted Accelerometers for a Range of Walking Speeds
by Sietse M. Rispens, Lieke G. E. Cox, Andreas Ejupi, Kim Delbaere, Janneke Annegarn and Alberto G. Bonomi
Sensors 2021, 21(5), 1854; https://doi.org/10.3390/s21051854 - 6 Mar 2021
Cited by 3 | Viewed by 2777
Abstract
Walking speed is a strong indicator of the health status of older people and patients. Using algorithms, the walking speed can be estimated from wearable accelerometers, which enables minimally obtrusive (longitudinal) monitoring. We evaluated the performance of two algorithms, the inverted pendulum (IP) [...] Read more.
Walking speed is a strong indicator of the health status of older people and patients. Using algorithms, the walking speed can be estimated from wearable accelerometers, which enables minimally obtrusive (longitudinal) monitoring. We evaluated the performance of two algorithms, the inverted pendulum (IP) algorithm, and a novel adaptation correcting for lateral step movement, which aimed to improve accuracy during slow walking. To evaluate robustness, we gathered data from different groups (healthy adults, elderly, and elderly patients) of volunteers (n = 159) walking under various conditions (over ground, treadmill, using walking aids) at a broad range of speeds (0.11–1.93 m/s). Both of the algorithms showed good agreement with the reference values and similar root-mean-square errors (RMSEs) for walking speeds ≥0.5 m/s, which ranged from 0.09–0.16 m/s for the different positions, in line with the results from others. However, for slower walking, RMSEs were significantly better for the new method (0.06–0.09 m/s versus 0.15–0.19 m/s). Pearson correlation improved for speeds <0.5 m/s (from 0.67–0.72 to 0.73–0.82) as well as higher speeds (0.87–0.97 to 0.90–0.98) with the new method. Overall, we found that IP(-based) walking speed estimation proved to be applicable for a variety of wearing positions, conditions and speeds, indicating its potential value for health assessment applications. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

13 pages, 2366 KB  
Article
Ground Reaction Forces of Dressage Horses Performing the Piaffe
by Hilary Mary Clayton and Sarah Jane Hobbs
Animals 2021, 11(2), 436; https://doi.org/10.3390/ani11020436 - 8 Feb 2021
Cited by 4 | Viewed by 4598
Abstract
The piaffe is an artificial, diagonally coordinated movement performed in the highest levels of dressage competition. The ground reaction forces (GRFs) of horses performing the piaffe do not appear to have been reported. Therefore, the objective of this study was to describe three-dimensional [...] Read more.
The piaffe is an artificial, diagonally coordinated movement performed in the highest levels of dressage competition. The ground reaction forces (GRFs) of horses performing the piaffe do not appear to have been reported. Therefore, the objective of this study was to describe three-dimensional GRFs in ridden dressage horses performing the piaffe. In-ground force plates were used to capture fore and hindlimb GRF data from seven well-trained dressage horses. Peak vertical GRF was significantly higher in forelimbs than in the hindlimbs (7.39 ± 0.99 N/kg vs. 6.41 ± 0.64 N/kg; p < 0.001) with vertical impulse showing a trend toward higher forelimb values. Peak longitudinal forces were small with no difference in the magnitude of braking or propulsive forces between fore and hindlimbs. Peak transverse forces were similar in magnitude to longitudinal forces and were mostly directed medially in the hindlimbs. Both the intra- and inter-individual variability of longitudinal and transverse GRFs were high (coefficient of variation 25–68%). Compared with the other diagonal gaits of dressage horses, the vertical GRF somewhat shifted toward the hindlimbs. The high step-to-step variability of the horizontal GRF components is thought to reflect the challenge of balancing on one diagonal pair of limbs with no forward momentum. Full article
(This article belongs to the Collection Equine Training and Rehabilitation)
Show Figures

Figure 1

10 pages, 1343 KB  
Article
Acute Effects of Midsole Bending Stiffness on Lower Extremity Biomechanics during Layup Jumps
by Zhiqiang Zhu, Weijie Fu, En Shao, Lu Li, Linjie Song, Wei Wang and Yu Liu
Appl. Sci. 2020, 10(1), 397; https://doi.org/10.3390/app10010397 - 5 Jan 2020
Cited by 12 | Viewed by 4090
Abstract
Purpose: This study aims to investigate the acute effects of shoe midsole stiffness on the joint biomechanics of the lower extremities during specific basketball movements. Methods: Thirty participants wearing stiff midsole shoes (SS) and control shoes (CS) performed layup jumps (LJs) while the [...] Read more.
Purpose: This study aims to investigate the acute effects of shoe midsole stiffness on the joint biomechanics of the lower extremities during specific basketball movements. Methods: Thirty participants wearing stiff midsole shoes (SS) and control shoes (CS) performed layup jumps (LJs) while the kinematics and ground reaction forces were simultaneously collected via the Vicon motion capture system and Kistler force plates. Furthermore, the joint angles, range of motion (ROM), joint power, joint energy, and jump height were calculated. Results: No significant differences were observed between SS and CS conditions for both jump height and the metatarsophalangeal (MTP) joint biomechanics except that the minimum angular velocity of the MTP joint was significantly lower in SS the condition. However, the ROM in the ankle joint was significantly greater in the SS condition than in the CS condition (p < 0.05). Additionally, the maximum plantarflexion power, energy absorption (EA), and energy generation (EG) in the ankle joint were significantly greater in the SS condition than in the CS condition (p < 0.05). Compared with the CS condition, jump height in the SS condition did not increase. Conclusion: During a single LJ, the longitudinal midsole stiffness did not influence the jump height and MTP joint biomechanical patterns but significantly increased the maximum power, EA, and EG during the push-off phase of the ankle joint. These preliminary results indicate that wearing SS could change the ankle joint mechanical patterns by modulating the lower extremity kinetic chain, and may enhance muscle strength in the ankle. Full article
(This article belongs to the Special Issue Applied Biomechanics in Sport, Rehabilitation and Ergonomy)
Show Figures

Figure 1

24 pages, 5072 KB  
Article
An Assessment of Airport Sustainability: Part 3—Water Management at Copenhagen Airport
by Glenn Baxter, Panarat Srisaeng and Graham Wild
Resources 2019, 8(3), 135; https://doi.org/10.3390/resources8030135 - 29 Jul 2019
Cited by 20 | Viewed by 15685
Abstract
Sustainable water management is critical for airports as they consume substantial volumes of water to maintain their infrastructure and operations. Airports also generate large volumes of surface and waste waters. The aim of this study was to examine Copenhagen Airport’s sustainable water management [...] Read more.
Sustainable water management is critical for airports as they consume substantial volumes of water to maintain their infrastructure and operations. Airports also generate large volumes of surface and waste waters. The aim of this study was to examine Copenhagen Airport’s sustainable water management strategies and systems from 2006 to 2016. The study used a longitudinal qualitative research design. The annual water consumption at Copenhagen Airport has risen from 2006 to 2016 in line with the increased passenger volumes and aircraft movements. Drinking water is sourced from the Taarnby and Dragør municipal water works. Non-potable water is used wherever possible and is sourced from a local remedial drilling. Copenhagen Airport uses two separate sewer systems for handling surface and wastewater. These waters are not discharged to same system due to their different nature. To mitigate environmental risks and impacts on soil, water, and local communities; the quality of drinking, ground, and surface water are regularly monitored. The airport has implemented various water saving initiatives, such as, an aquifer thermal energy system, to reduce water consumption. The strategies, systems, and the water-saving initiatives have successfully underpinned Copenhagen Airport’s sustainable water management. Full article
Show Figures

Figure 1

16 pages, 10841 KB  
Article
Spatial and Temporal Variation of the Extreme Saharan Dust Event over Turkey in March 2016
by Hakki Baltaci
Atmosphere 2017, 8(2), 41; https://doi.org/10.3390/atmos8020041 - 17 Feb 2017
Cited by 30 | Viewed by 5684
Abstract
In this study, the influence of an extraordinary Saharan dust episode over Turkey on 23–24 March 2016 and the atmospheric conditions that triggered this event were evaluated in detail. PM10 (particulate matter less than 10 μm) observations from 97 air quality stations, [...] Read more.
In this study, the influence of an extraordinary Saharan dust episode over Turkey on 23–24 March 2016 and the atmospheric conditions that triggered this event were evaluated in detail. PM10 (particulate matter less than 10 μm) observations from 97 air quality stations, METAR (Meteorological Terminal Aviation Routine Weather Report) observations at 64 airports, atmospheric soundings, and satellite products were used for the analysis. To determine the surface and upper levels of atmospheric circulation, National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis data were applied to the extreme dust episodes. On 23 March 2016, high southwesterly winds due to the interaction between surface low- and high-pressure centers over Italy and Levant basin brought thick dust particles from Libya to Turkey. The daily PM10 data from 43 stations exceeded their long-term spring means over Turkey (especially at the northern and western stations). As a consequence of the longitudinal movement of the surface low from Italy to the Balkan Peninsula, and the quasi-stationary conditions of the surface high-pressure center allowed for the penetration of strong south and southwesterly winds to inner parts of the country on the following day. As a consequence, 100%, 90%, 88%, and 87% of the monitoring stations in Marmara (NW Turkey), central Anatolia, western (Aegean) and northern (Black Sea) regions of Turkey, respectively, exhibited above-normal daily PM10 values. In addition, while strong subsidence at the low levels of the atmosphere plays a significant role in having excessive daily PM10 values in Black Sea, dry atmospheric conditions and thick inversion level near the ground surface of Marmara ensured this region to have peak PM10 values ~00 Local Time (LT). Full article
Show Figures

Figure 1

Back to TopTop