Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,625)

Search Parameters:
Keywords = low wind speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14588 KB  
Article
Research on Evaporation Duct Height Prediction Modeling in the Yellow and Bohai Seas Using BLA-EDH
by Xiaoyu Wu, Lei Li, Zheyan Zhang, Can Chen and Haozhi Liu
Atmosphere 2025, 16(10), 1156; https://doi.org/10.3390/atmos16101156 - 2 Oct 2025
Abstract
Evaporation Duct Height (EDH) is a crucial parameter in evaporation duct modeling, as it directly influences the strength of the waveguide trapping effect and significantly impacts the over-the-horizon detection performance of maritime radars. To address the limitations of low prediction accuracy and limited [...] Read more.
Evaporation Duct Height (EDH) is a crucial parameter in evaporation duct modeling, as it directly influences the strength of the waveguide trapping effect and significantly impacts the over-the-horizon detection performance of maritime radars. To address the limitations of low prediction accuracy and limited interpretability in existing deep learning models under complex marine meteorological conditions, this study proposes a surrogate model, BLA-EDH, designed to emulate the output of the Naval Postgraduate School (NPS) model for real-time EDH estimation. Experimental results demonstrate that BLA-EDH can effectively replace the traditional NPS model for real-time EDH prediction, achieving higher accuracy than Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) models. Random Forest analysis identifies relative humidity (0.2966), wind speed (0.2786), and 2-m air temperature (0.2409) as the most influential environmental variables, with importance scores exceeding those of other factors. Validation using the parabolic equation shows that BLA-EDH attains excellent fitting performance, with coefficients of determination reaching 0.9999 and 0.9997 in the vertical and horizontal dimensions, respectively. This research provides a robust foundation for modeling radio wave propagation in the Yellow Sea and Bohai Sea regions and offers valuable insights for the development of marine communication and radar detection systems. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 7379 KB  
Article
Criterion Circle-Optimized Hybrid Finite Element–Statistical Energy Analysis Modeling with Point Connection Updating for Acoustic Package Design in Electric Vehicles
by Jiahui Li, Ti Wu and Jintao Su
World Electr. Veh. J. 2025, 16(10), 563; https://doi.org/10.3390/wevj16100563 - 2 Oct 2025
Abstract
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods [...] Read more.
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods for hybrid point connections. New energy vehicles face unique acoustic challenges due to the special nature of their power systems and operating conditions, such as high-frequency noise from electric motors and electronic devices, wind noise, and road noise at low speeds, which directly affect the vehicle’s ride comfort. Therefore, optimizing the acoustic package design of new energy vehicles to reduce in-cabin noise and improve acoustic quality is an important issue in automotive engineering. In this context, this study proposes an improved point connection correction factor by optimizing the division range of the decision circle. The factor corrects the dynamic stiffness of point connections based on wave characteristics, aiming to improve the analysis accuracy of the hybrid FE-SEA model and enhance its ability to model boundary effects. Simulation results show that the proposed method can effectively improve the model’s analysis accuracy, reduce the degrees of freedom in analysis, and increase efficiency, providing important theoretical support and reference for the acoustic package design and NVH performance optimization of new energy vehicles. Full article
Show Figures

Figure 1

24 pages, 4355 KB  
Article
Experimental and Numerical Investigation of Suction-Side Fences for Turbine NGVs
by Virginia Bologna, Daniele Petronio, Francesca Satta, Luca De Vincentiis, Matteo Giovannini, Gabriele Cattoli, Monica Gily and Andrea Notaristefano
Int. J. Turbomach. Propuls. Power 2025, 10(4), 31; https://doi.org/10.3390/ijtpp10040031 - 1 Oct 2025
Abstract
This work presents an extensive experimental and numerical analysis, aimed at investigating the impact of shelf-like fences applied on the suction side of a turbine nozzle guide vane. The cascade is constituted of vanes characterized by long chord and low aspect ratio, which [...] Read more.
This work presents an extensive experimental and numerical analysis, aimed at investigating the impact of shelf-like fences applied on the suction side of a turbine nozzle guide vane. The cascade is constituted of vanes characterized by long chord and low aspect ratio, which are typical features of some LPT first stages directly downstream of an HPT, hence presenting high channel diffusion, especially near the tip. In particular, the present study complements existing literature by highlighting how blade fences positioned on the suction side can reduce the penetration of the large passage vortex. This is particularly effective in applications where flow turning is limited, the blades are lightly loaded at the front, and the horseshoe vortex is weak. The benefits of the present fence design in terms of losses and flow uniformity at the cascade exit plane have been demonstrated by means of a detailed experimental campaign carried out on a large-scale linear cascade in the low-speed wind tunnel installed in the Aerodynamics and Turbomachinery Laboratory of the University of Genova. Measurements mainly focused on the characterization of the flow field upstream and downstream of straight and fenced vane cascades using a five-hole pressure probe, to evaluate the impact of the device in reducing secondary flows. Furthermore, experiments were also adopted to validate both low-fidelity (RANS) and high-fidelity (LES) simulations and revealed the capability of both simulation approaches to accurately predict losses and flow deviation. Moreover, the accuracy in high-fidelity simulations has enabled an in-depth investigation of how fences act mitigating the effects of the passage vortex along the blade channel. By comparing the flow fields of the configurations with and without fences, it is possible to highlight the mitigation of secondary flows within the channel. Full article
20 pages, 8772 KB  
Article
An Assessment of the Applicability of ERA5 Reanalysis Boundary Layer Data Against Remote Sensing Observations in Mountainous Central China
by Jinyu Wang, Zhe Li, Yun Liang and Jiaying Ke
Atmosphere 2025, 16(10), 1152; https://doi.org/10.3390/atmos16101152 - 1 Oct 2025
Abstract
The precision of ERA5 reanalysis datasets and their applicability in the mountainous regions of central China are essential for weather forecasting and climate change research in the transitional zone between northern and southern China. This study employs three months of continuous measurements collected [...] Read more.
The precision of ERA5 reanalysis datasets and their applicability in the mountainous regions of central China are essential for weather forecasting and climate change research in the transitional zone between northern and southern China. This study employs three months of continuous measurements collected from a high-precision remote sensing platform located in a representative mountainous valley (Xinyang city) in central China, spanning December 2024 to February 2025. Our findings indicate that both horizontal and vertical wind speeds from the ERA5 dataset exhibit diminishing deviations as altitude increases. Significant biases are observed below 500 m, with horizontal mean wind speed deviations ranging from −4 to −3 m/s and vertical mean wind speed deviations falling between 0.1 and 0.2 m/s. Conversely, minimal biases are noted near the top of the boundary layer. Both ERA5 and observations reveal a dominance of northeasterly and southwesterly winds at near-surface levels, which aligns with the valley orientation. This underscores the substantial impact of heterogeneous mountainous terrain on the low-level dynamic field. At an altitude of 1000 m, both datasets present similar frequency patterns, with peak frequencies of approximately 15%; however, notable discrepancies in peak wind directions are evident (north–northeast for observations and north–northwest for ERA5). In contrast to dynamic variables, ERA5 temperature deviations are centered around 0 K within the lower layers (0–500 m) but show a slight increase, varying from around 0 K to 6.8 K, indicating an upward trend in deviation with altitude. Similarly, relative humidity (RH) demonstrates an increasing bias with altitude, although its representation of moisture variability remains insufficient. During a typical cold event, substantial deviations in multiple ERA5 variables highlight the needs for further improvements. The integration of machine learning techniques and mathematical correction algorithms is strongly recommended as a means to enhance the accuracy of ERA5 data under such extreme conditions. These findings contribute to a deeper understanding of the use of ERA5 datasets in the mountainous areas of central China and offer reliable scientific references for weather forecasting and climate modelings in these areas. Full article
(This article belongs to the Special Issue Data Analysis in Atmospheric Research)
Show Figures

Figure 1

40 pages, 8027 KB  
Article
Parametric Visualization, Climate Adaptability Evaluation, and Optimization of Strategies for the Subtropical Hakka Enclosed House: The Guangludi Case in Meizhou
by Yijiao Zhou, Zhe Zhou, Pei Cai and Nangkula Utaberta
Buildings 2025, 15(19), 3530; https://doi.org/10.3390/buildings15193530 - 1 Oct 2025
Abstract
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. [...] Read more.
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. A mixed research method is employed, integrating visualized parametric modeling analysis and on-site measurement comparisons to quantify wind, temperature, solar radiation/illuminance, and humidity, along with human comfort zone limits and building environment. The results reveal that nature erosion in the Guangludi enclosed house is the most pronounced during winter and spring, particularly on exterior walls below 2.8 m. Key issues include bulging, spalling, molding, and fractured purlins caused by wind-driven rain, exacerbated by low wind speeds and limited solar exposure, especially at test spots like the E8–E10 and N1–N16 southeast and southern walls below 1.5 m. Fungal growth and plant intrusion are severe where surrounding trees and fengshui forests restrict wind flow and lighting. In terms of passive survivability, the Guangludi enclosed house has strong thermal insulation and buffering, aided by the Huatai mound; however, humidity and day illuminance deficiencies persist in the interstitial spaces between lateral rooms and the central hall. To address these issues, this study proposes strategies such as adding ventilation shafts and flexible partitions, optimizing patio dimensions and window-to-wall ratios, retaining the spatial layout and Fengshui pond to enhance wind airflow, and reinforcing the identified easily eroded spots with waterproofing, antimicrobial coatings, and extended eaves. Through parametric simulation and empirical validation, this study presents a climate-responsive retrofit framework that supports the sustainability and conservation of the subtropical Hakka enclosed house. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
20 pages, 6389 KB  
Article
Study on Characteristics and Numerical Simulation of a Convective Low-Level Wind Shear Event at Xining Airport
by Juan Gu, Yuting Qiu, Shan Zhang, Xinlin Yang, Shi Luo and Jiafeng Zheng
Atmosphere 2025, 16(10), 1137; https://doi.org/10.3390/atmos16101137 - 27 Sep 2025
Abstract
Low-level wind shear (LLWS) is a critical issue in aviation meteorology, posing serious risks to flight safety—especially at plateau airports with high elevation and complex terrain. This study investigates a convective wind shear event at Xining Airport on 29 May 2021. Multi-source observations—including [...] Read more.
Low-level wind shear (LLWS) is a critical issue in aviation meteorology, posing serious risks to flight safety—especially at plateau airports with high elevation and complex terrain. This study investigates a convective wind shear event at Xining Airport on 29 May 2021. Multi-source observations—including the Doppler Wind Lidar (DWL), the Doppler weather radar (DWR), reanalysis datasets, and automated weather observation systems (AWOS)—were integrated to examine the event’s fine-scale structure and temporal evolution. High-resolution simulations were conducted using the Large Eddy Simulation (LES) framework within the Weather Research and Forecasting (WRF) model. Results indicate that the formation of this wind shear was jointly triggered by convective downdrafts and the gust front. A northwesterly flow with peak wind speeds of 18 m/s intruded eastward across the runway, generating multiple radial velocity couplets on the eastern side, closely associated with mesoscale convergence and divergence. A vertical shear layer developed around 700 m above ground level, and the critical wind shear during aircraft go-around was linked to two convergence zones east of the runway. The event lasted about 30 min, producing abrupt changes in wind direction and vertical velocity, potentially causing flight path deviation and landing offset. Analysis of horizontal, vertical, and glide-path wind fields reveals the spatiotemporal evolution of the wind shear and its impact on aviation safety. The WRF-LES accurately captured key features such as wind shifts, speed surges, and vertical disturbances, with strong agreement to observations. The integration of multi-source observations with WRF-LES improves the accuracy and timeliness of wind shear detection and warning, providing valuable scientific support for enhancing safety at plateau airports. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

13 pages, 2217 KB  
Article
Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China
by Yiling Lin, Qiaoling Chen, Youwei Hong, Yanting Chen, Liqian Yin, Jinfang Chen, Gongren Hu, Dan Liao and Ruilian Yu
Atmosphere 2025, 16(10), 1131; https://doi.org/10.3390/atmos16101131 - 26 Sep 2025
Abstract
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, [...] Read more.
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, and VOCs) and ambient conditions (JHCHO, JNO2, solar radiation, temperature, relative humidity, wind speed, and wind direction) were conducted in a coastal city in southeast China. The average HCHO concentrations were 2.54 ppbv, 3.38 ppbv, 2.53 ppbv, and 1.98 ppbv in spring, summer, autumn, and winter, respectively. Diurnal variations were high in the daytime and low in the nighttime, and the peak times varied in different seasons. The correlation between HCHO and O3 was not significant in spring and winter, which is likely related to the effects of photochemical reactions and diffusion conditions. The contributions of background (23.0%), primary (47.6%), and secondary (29.4%) sources to HCHO were quantified using multiple linear regression (MLR) models, revealing that secondary formation was the most significant contributor in summer, whereas primary emissions were predominant in spring. These findings help to improve the understanding of the influence of atmospheric formaldehyde on photochemical pollution control in coastal cities. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

19 pages, 7431 KB  
Article
Weather Regimes of Extreme Wind Speed Events in Xinjiang: A 10–30 Year Return Period Analysis
by Yajie Li, Dagui Liu, Donghan Wang, Sen Xu, Bin Ma, Yueyue Yu, Jianing Li and Yafei Li
Atmosphere 2025, 16(10), 1117; https://doi.org/10.3390/atmos16101117 - 24 Sep 2025
Viewed by 124
Abstract
Xinjiang is a critical wind energy region in China. This study characterizes extreme wind speed (EWS) events in Xinjiang by using ERA5 reanalysis (1979–2023) and station observations (2022–2023). Through k-means clustering and wind power density classification, four distinct regions and representative nodes were [...] Read more.
Xinjiang is a critical wind energy region in China. This study characterizes extreme wind speed (EWS) events in Xinjiang by using ERA5 reanalysis (1979–2023) and station observations (2022–2023). Through k-means clustering and wind power density classification, four distinct regions and representative nodes were identified, aligned with the “Three Mountains and Two Basins” topography: Region #1 (eastern wind-rich corridor), Region #2 (Tarim Basin, west–east increasing wind power density), Region #3 (northern valleys), and Region #4 (mountainous areas with weakest wind power density). Peaks-over-threshold analysis revealed 10~30-year return levels varying regionally, with 10-year return level for Node #1 reaching Beaufort Scale 11 but only Scale 6 for Node #4. Since 2001, EWS occurrences increased, with Nodes #2–4 showing doubled 10-year event occurrences in 2012–2023. Events exhibit consistent afternoon peaks and spring dominance (except Node #2 with summer maxima). Such long-term trends and diurnal and seasonal preferences of EWS could be partly explained by diverging synoptic drivers: orographic effects and enhanced pressure gradients (Node #1 and #3) associated with Ural blocking and polar vortex shifts, both showing intensification trends; thermal lows in the Tarim Basin (Node #2) accounting for their summer prevalence; boundary-layer instability that leads to localized wind intensification (Node #4). The results suggest the necessity of region-specific forecasting strategies for wind energy resilience. Full article
(This article belongs to the Special Issue Cutting-Edge Research in Severe Weather Forecast)
Show Figures

Figure 1

24 pages, 16914 KB  
Article
Unsteady Aerodynamic Errors in BEM Predictions Under Yawed Flow: CFD-Based Insights into Flow Structures for the NREL Phase VI Rotor
by Jiahong Hu, Hui Yang and Jiaxin Yuan
Energies 2025, 18(18), 5027; https://doi.org/10.3390/en18185027 - 22 Sep 2025
Viewed by 215
Abstract
Efficient prediction of aerodynamic loads on wind turbine blades under yawed inflow remains challenging due to the complexity of three-dimensional unsteady flow phenomena. In this work, a modified blade element momentum (BEM) method, incorporating multiple correction models, is systematically compared with high-fidelity computational [...] Read more.
Efficient prediction of aerodynamic loads on wind turbine blades under yawed inflow remains challenging due to the complexity of three-dimensional unsteady flow phenomena. In this work, a modified blade element momentum (BEM) method, incorporating multiple correction models, is systematically compared with high-fidelity computational fluid dynamics (CFD) simulations for the NREL Phase VI wind turbine across a range of inflow velocities (7–15 m/s) and yaw angles (0°60°). A normalized absolute error metric, referenced to experimental measurements, is employed to quantify prediction discrepancies at different yaw conditions, wind speeds, and spanwise blade locations. Results indicate that the corrected BEM method maintains good agreement with measurements under non-yawed attached flow, with errors within 2%, but its accuracy declines substantially in separated and yawed flow regimes, where errors can exceed 20% at high yaw angles (e.g., 60°) and low tip-speed ratios. CFD flow-field visualizations, including vorticity and Q-criterion iso-surfaces, reveal that yawed inflow strengthens vortex interactions on the leeward side and generates Coriolis-driven spanwise vortex structures, promoting stall progression from tip to root. These unsteady phenomena induce load fluctuations that are not captured by steady-state BEM formulations. Based on these insights, future studies could incorporate vortex structure and spanwise flow features extracted from CFD into unsteady correction models for BEM, enhancing prediction robustness under complex operating conditions. Full article
Show Figures

Figure 1

22 pages, 4160 KB  
Article
External Temperature Distribution and Characteristics of Building-Integrated Photovoltaics (BIPV) Under Summer High-Temperature Conditions
by Yingge Zhang, Tian Mu and Yibing Xue
Buildings 2025, 15(18), 3415; https://doi.org/10.3390/buildings15183415 - 22 Sep 2025
Viewed by 197
Abstract
This study investigates the external environmental temperature distribution of a small single-story BIPV building on a university campus in Jinan City, Shandong Province, China, under the most adverse summer high-temperature conditions. The temporal and spatial distribution characteristics and variation patterns of building external [...] Read more.
This study investigates the external environmental temperature distribution of a small single-story BIPV building on a university campus in Jinan City, Shandong Province, China, under the most adverse summer high-temperature conditions. The temporal and spatial distribution characteristics and variation patterns of building external temperature are analyzed. The results indicated the following: (1) During summer high-temperature days, the peak temperature of the BIPV photovoltaic surface reached 52.4 °C, which is 17.4 °C higher than the ambient temperature. (2) External measurement points exhibited significant daytime heating (+2.86 °C) and nighttime cooling (average relative temperature increment of −1.52 °C). (3) Complex nonlinear temperature gradient variations existed within the 10–100 cm range from the surface, with localized heat accumulation occurring around 60 cm, where 77% of high-temperature days show temperature gradient anomalies. (4) Based on dimensionless analysis, a modified Richardson criterion for BIPV buildings is established: Ri < 0.3 represents building-geometry-dominated mechanisms, and Ri > 0.7 represents thermal-plume-dominated mechanisms. The critical values occur earlier than in classical theory. (5) Solar radiation and wind speed are key factors affecting temperature distribution, with more pronounced local heat accumulation under low-wind-speed conditions. This study provides scientific evidence for BIPV building performance optimization and environmental control. Full article
Show Figures

Figure 1

41 pages, 35142 KB  
Article
Improving Wind Environment in Low-Rise Residential Areas of Bangi-Dong, Seoul: Enhancing Natural Ventilation Performance Through CFD Simulation
by Ho-Jeong Kim, Ran-Hee Gil and Min-Seong Ko
Sustainability 2025, 17(18), 8472; https://doi.org/10.3390/su17188472 - 21 Sep 2025
Viewed by 326
Abstract
This study addresses inadequate natural ventilation in low-rise residential areas of Bangi-dong, Seoul, where 46.2% of the area experiences wind stagnation below 0.3 m/s due to buildings being spaced less than 2 m apart. Using SimScale CFD with LBM and 13 million grids, [...] Read more.
This study addresses inadequate natural ventilation in low-rise residential areas of Bangi-dong, Seoul, where 46.2% of the area experiences wind stagnation below 0.3 m/s due to buildings being spaced less than 2 m apart. Using SimScale CFD with LBM and 13 million grids, multiple urban configurations were simulated to analyze how building orientation, spacing, and height affect pedestrian-level (1.5 m) wind flow. Results show that simple open space expansion yields minimal improvement (5–7%), while strategic interventions achieve significant effects. Connecting open spaces to main roads via 35 m × 45 m corridors increases wind speed by 20.4%, perpendicular building orientation with 12-story buildings improves wind speed by 166.67%, 6 m building spacing enhances ventilation (with a 57.80% improvement), and a continuous 12-story building arrangement along roads achieves a 59.73% improvement. While statistical validation requires future field measurements, the significant improvements (17–167%) demonstrate clear practical benefits. The study proposes four design guidelines: prioritize open space-road connectivity; orient buildings perpendicular to prevailing winds (WNW) with 6 m spacing; implement selective high-rise development (8–12 stories at ventilation nodes); and adopt incremental redevelopment strategies. These findings demonstrate that significant environmental improvements are achievable without costly total redevelopment, providing a replicable model for similar high-density, low-rise areas. The research contributes by establishing a quantitative framework for assessing low-speed wind stagnation zones, previously overlooked in wind environment standards. Full article
Show Figures

Figure 1

41 pages, 2987 KB  
Review
Coordinated Optimization of Building Morphological Parameters Under Urban Wind Energy Targets: A Review
by Yingwen Qin and Biao Wang
Energies 2025, 18(18), 5002; https://doi.org/10.3390/en18185002 - 20 Sep 2025
Viewed by 313
Abstract
Against the backdrop of global energy crises and accelerated urbanization, urban wind energy has garnered increasing attention through its integration with building environments. This study investigates the synergistic optimization of architectural parameters (including floor layouts, three-dimensional forms, and roof configurations) with wind capture [...] Read more.
Against the backdrop of global energy crises and accelerated urbanization, urban wind energy has garnered increasing attention through its integration with building environments. This study investigates the synergistic optimization of architectural parameters (including floor layouts, three-dimensional forms, and roof configurations) with wind capture efficiency. By employing parameterized design and multi-scale flow field analysis, we systematically examine how architectural morphology modulates wind fields and enhances energy performance. Our key findings reveal the following: spatially arranged floor plans significantly influence wind speed distribution; three-dimensional form openings effectively enhance wind velocity while reducing wind-induced vibration responses; and roof configurations and floor layouts demonstrate the highest contribution to wind energy efficiency, with curved roofs showing particularly notable power generation improvements in low-wind environments. The building “density + layout angle + roof form” collaborative strategy has been validated for practical implementation. Current limitations include simulation errors in complex geometries, efficiency bottlenecks in vertical axis turbines, and inadequate lifecycle assessments. Future efforts should focus on multi-field coupled simulations, integrated turbine–architecture design, and enhanced low-carbon evaluation systems to facilitate the transformation of buildings into distributed energy production entities. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

18 pages, 4465 KB  
Article
Control Strategy of PMSM for Variable Pitch Based on Improved Whale Optimization Algorithm
by Zhiqiang Sun, Mingxing Tian and Xiaoqing Li
Machines 2025, 13(9), 872; https://doi.org/10.3390/machines13090872 - 19 Sep 2025
Viewed by 223
Abstract
A PI control approach grounded in an optimized improved whale algorithm is devised to tackle the characteristics of multivariable, nonlinear, strong coupling, and uncertain and fluctuating wind speeds in electric variable pitch systems. In the improved whale algorithm optimization algorithm, the reverse learning [...] Read more.
A PI control approach grounded in an optimized improved whale algorithm is devised to tackle the characteristics of multivariable, nonlinear, strong coupling, and uncertain and fluctuating wind speeds in electric variable pitch systems. In the improved whale algorithm optimization algorithm, the reverse learning mechanism is utilized within the population initialization stage, the nonlinear inertial weight coefficient is introduced in the global and local search processes of whale predation, and the convergence factor is updated by the exponential function, which effectively addresses the issue of sluggish convergence speed and low convergence efficiency of the whale optimization algorithm. The position control of the electric variable pitch system is implemented with the application of the improved whale optimization algorithm. According to the performance index of the position ring, the appropriate objective function is established, and the adaptive control of the position ring is realized through the adaptive adjustment of PI parameters. The simulation outcomes demonstrate that the PI control, which is founded on an improved whale optimization algorithm, is superior to the PI control based on the whale optimization algorithm in dynamic and steady performance. When the load torque changes, using PI control based on the improved whale optimization algorithm, the pitch angle reaches the steady-state value in 0.06 s without overshoot, while using PI control based on the whale optimization algorithm, the pitch angle reaches the steady-state value in 0.09 s with a maximum overshoot of 2.4°. When the load torque is constant, PI control based on the improved whale optimization algorithm can achieve pitch angle tracking in 0.16 s, while PI control based on the whale optimization algorithm can achieve pitch angle tracking in 0.48 s. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

15 pages, 2811 KB  
Article
Diagnostic Ratios and Directional Analysis of Air Pollutants for Source Identification: A Global Perspective with Insights from Kuwait
by Abdullah N. Al-Dabbous
Atmosphere 2025, 16(9), 1101; https://doi.org/10.3390/atmos16091101 - 18 Sep 2025
Viewed by 330
Abstract
Identifying the sources of atmospheric pollutants is essential for effective air quality management. This study assesses the diagnostic value of SO2/NO2 and CO/NO2 ratios in distinguishing between major emission sources, including vehicular traffic, industrial activity, and biomass burning. A [...] Read more.
Identifying the sources of atmospheric pollutants is essential for effective air quality management. This study assesses the diagnostic value of SO2/NO2 and CO/NO2 ratios in distinguishing between major emission sources, including vehicular traffic, industrial activity, and biomass burning. A global literature review was conducted to establish typical ratio thresholds associated with different sources. These thresholds were then applied in a case study of Kuwait, a representative Gulf Cooperation Council country with intense vehicular traffic and industrial activity. To complement the ratio-based diagnostics, directional pollution source identification was performed using the Conditional Bivariate Probability Function (CBPF) plots, linking elevated pollutant concentrations to prevailing wind speeds/directions. Results indicate that Al-Fahaheel exhibits a distinct SO2/NO2 ratio toward the south-southeast due to industrial activities, and a pronounced CO/NO2 ratio toward the east, reflecting contributions from mixed urban and traffic-related sources. The observed ratios at the Al-Fahaheel air quality monitoring station—very low CO/NO2 and moderate to high SO2/NO2—are inconsistent with vehicular emissions and are more indicative of industrial emissions from stationary sources. Directional CBPF plots reinforce these associations by clearly linking industrial activities and vehicular traffic sources to the southeastern and western sectors, respectively. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

18 pages, 1922 KB  
Article
Simulation of Snow and Ice Melting on Energy-Efficient and Environmentally Friendly Thermally Conductive Asphalt Pavement
by Wenbo Peng, Yalina Ma, Lei Xi, Hezhou Huang, Lifei Zheng, Zhi Chen and Wentao Li
Sustainability 2025, 17(18), 8190; https://doi.org/10.3390/su17188190 - 11 Sep 2025
Viewed by 371
Abstract
Conventional asphalt pavement snow and ice removal methods suffer from issues such as time-consuming operations, high costs, and pollution from chemical de-icing agents. Commonly used thermally conductive asphalt concrete (TCAC) faces problems including limited filler diversity, high filler content, and elevated costs. To [...] Read more.
Conventional asphalt pavement snow and ice removal methods suffer from issues such as time-consuming operations, high costs, and pollution from chemical de-icing agents. Commonly used thermally conductive asphalt concrete (TCAC) faces problems including limited filler diversity, high filler content, and elevated costs. To address these challenges, this study developed a thermally conductive asphalt concrete incorporating carbon fiber–silicon carbide composite fillers to provide a low-cost, energy-saving winter pavement snow melting solution and enhance eco-friendly de-icing performance. Finite element simulation software was employed to model its snow and ice melting performance, investigating the factors influencing this capability. Thermal conductivity was measured using the transient plane source (TPS) technique. The results show that with 0.3% carbon fiber, thermal conductivity reaches 1.43 W/(m·°C), 72.3% higher than ordinary asphalt concrete. Finite element simulations in finite element simulation software were used to model snow and ice melting, and strong agreement with field test data (correlation coefficients > 0.9) confirmed model reliability. Then, the finite element simulation software was used to study the effects of wind speed, temperature, laying power, and spacing on the snow and ice melting of TCAC. The simulation results show that the heating rate increases with TCAC thermal conductivity. Raising the power of the embedded carbon fiber heating cord reduces de-icing time but shows a threshold effect. In this study, asphalt pavement with high thermal conductivity was prepared using a low content of thermal conductive filler, providing a theoretical basis for sustainable pavement design, reducing energy use and environmental damage. TCAC technology promotes greener winter road maintenance, offering a low-impact alternative to chemical de-icing, and supports long-term infrastructure sustainability. Full article
Show Figures

Figure 1

Back to TopTop