Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = low-temporal coherence light

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4584 KB  
Article
Characteristics of Fused Silica Exit Surface Damage by Low-Temporal Coherence Light Irradiation
by Chong Shan, Ping Han, Erxi Wang, Fujian Li, Xiaohui Zhao, Huamin Kou, Dapeng Jiang, Qinghui Wu, Xing Peng, Penghao Xu, Yafei Lian, Yuanan Zhao, Liangbi Su, Zhan Sui and Yanqi Gao
Photonics 2025, 12(5), 432; https://doi.org/10.3390/photonics12050432 - 30 Apr 2025
Viewed by 417
Abstract
Laser-induced exit surface damage of fused silica is a key bottleneck for its application in high-power laser devices. As low-temporal coherence light (LTCL) has garnered increasing attention for high-power laser-driven inertial confinement fusion, understanding LTCL-induced exit surface damage of fused silica becomes crucial [...] Read more.
Laser-induced exit surface damage of fused silica is a key bottleneck for its application in high-power laser devices. As low-temporal coherence light (LTCL) has garnered increasing attention for high-power laser-driven inertial confinement fusion, understanding LTCL-induced exit surface damage of fused silica becomes crucial for improving the output power capability of LTCL devices. In this study, we characterized damage on the exit surface of fused silica under LTCL irradiation and investigated the physical mechanism of temporal coherence affecting the laser-induced damage threshold (LIDT). The relationship between defect information and temporal coherence was explored using a defect analysis model, and the defect damage process and response to each incident lasers were captured using time-resolved methods and artificially fabricated defects. We elucidate the physical mechanism behind the lower LIDT under LTCL irradiation compared to single longitudinal mode (SLM) pulse lasers. This study not only provides the boundary condition for safe fused silica operation in high-power LTCL devices but also offers deeper insight into the physical properties of LTCL. Full article
(This article belongs to the Special Issue New Perspectives in Micro-Nano Optical Design and Manufacturing)
Show Figures

Figure 1

13 pages, 2717 KB  
Article
Polarization Properties of Coherently Superposed Rayleigh Backscattered Light in Single-Mode Fibers
by Hui Dong, Hailiang Zhang and Dora Juan Juan Hu
Sensors 2023, 23(18), 7769; https://doi.org/10.3390/s23187769 - 8 Sep 2023
Cited by 8 | Viewed by 1709
Abstract
The properties of the state of polarization (SOP) and the degree of polarization (DOP) of Rayleigh backscattered light (RBL) in single-mode fibers (SMF) are investigated theoretically and experimentally when the incident probe is a perfectly coherent continuous-wave (CW) light. It is concluded that [...] Read more.
The properties of the state of polarization (SOP) and the degree of polarization (DOP) of Rayleigh backscattered light (RBL) in single-mode fibers (SMF) are investigated theoretically and experimentally when the incident probe is a perfectly coherent continuous-wave (CW) light. It is concluded that the instantaneous DOP of the coherently superposed RBL is always 100%, and the instantaneous SOP is determined by the distributions of the birefringence and the optical phase along the SMF. Therefore, the instantaneous SOP of the coherently superposed RBL does not have a constant relationship with the SOP of the incident CW probe. Furthermore, the instantaneous SOP varies randomly with time because the optical phase is very sensitive to ambient temperature and vibration even in the lab environment. Further theoretical derivation and experimental verification demonstrate, for the first time, that the temporally averaged SOP of the coherently superposed RBL has a simple constant relationship with the SOP of the incident CW probe, and the temporally averaged DOP is 1/3 in an SMF with low and randomly distributed birefringence. The derived formulas and obtained findings can be used to enhance the modelling and improve the performances of phase-sensitive optical time-domain reflectometry and other Rayleigh backscattering based fiber-optic sensors. Full article
Show Figures

Figure 1

14 pages, 4818 KB  
Communication
Arbitrary Time Shaping of Broadband Low-Coherence Light Based on Optical Parametric Amplification
by Yue Wang, Xiaochao Wang, Meizhi Sun, Xiao Liang, Hui Wei and Wei Fan
Photonics 2023, 10(6), 673; https://doi.org/10.3390/photonics10060673 - 9 Jun 2023
Cited by 4 | Viewed by 1724
Abstract
Laser–plasma interactions (LPIs) hinder the interaction of high-energy laser pulses with targets. The use of broadband low-coherence light has been proposed to reduce the impact of LPIs. In this study, to improve the time–frequency characteristics of broadband low-coherence optical seeds, we proposed an [...] Read more.
Laser–plasma interactions (LPIs) hinder the interaction of high-energy laser pulses with targets. The use of broadband low-coherence light has been proposed to reduce the impact of LPIs. In this study, to improve the time–frequency characteristics of broadband low-coherence optical seeds, we proposed an arbitrary time-shaping technique scheme based on optical parametric amplification (OPA) that differs from traditional arbitrary time shaping. The shaping process and output characteristics were analyzed in detail. The theoretical and experimental results show that an arbitrary time-shaping pulse output with a large time-shaping contrast, fast-rising edge, and wide spectral width can be obtained. The time shaping contrast of the shaped pulse can be >300:1, and the spectral width is ~40 nm. The output time waveform is smoother than in traditional schemes, and the noise-like modulation is approximately 4% (approximately equal to the unshaped initial amplified spontaneous emission source). The arbitrary time-shaping scheme based on OPA provides a viable solution for the temporal waveform shaping of broadband low-coherence light. Full article
Show Figures

Figure 1

15 pages, 1466 KB  
Review
Lasers in Live Cell Microscopy
by Herbert Schneckenburger
Int. J. Mol. Sci. 2022, 23(9), 5015; https://doi.org/10.3390/ijms23095015 - 30 Apr 2022
Cited by 5 | Viewed by 3735
Abstract
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, [...] Read more.
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser applications in live cell biology are outlined. They include fluorescence diagnosis, in particular in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more generally—in biomedicine. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

14 pages, 5971 KB  
Article
Optimal Spatial Coherence of a Light-Emitting Diode in a Digital Holographic Display
by Sungjin Lim, Hosung Jeon, Sunggyun Ahn and Joonku Hahn
Appl. Sci. 2022, 12(9), 4176; https://doi.org/10.3390/app12094176 - 21 Apr 2022
Cited by 8 | Viewed by 3943
Abstract
The coherence of a light source is a vital aspect regarding the image quality of holographic contents. Generally, the coherence of the light source is the reason for speckle noise in a holographic display, which degrades the image quality. To reduce the speckle [...] Read more.
The coherence of a light source is a vital aspect regarding the image quality of holographic contents. Generally, the coherence of the light source is the reason for speckle noise in a holographic display, which degrades the image quality. To reduce the speckle noise, partially coherent light sources such as light-emitting diodes (LED) have been studied. However, if the coherence of the light source is too low, the reconstructed image will blur. Therefore, using a spatial filter to improve the spatial coherence of LEDs has been proposed. In this study, we analyze the effect of the spatial and temporal coherence of the LED light source in a digital holographic display, and the optimal spatial coherence is determined. For this purpose, we devised an optical structure to control the spatial coherence in a holographic display system using a digital micro-mirror device (DMD). Here, the DMD functions as a dynamic spatial filter. By evaluating the change in the holographic image quality according to the spatial filter size, we obtained an optimal spatial filter size of 270 µm in our system. The proposed method is expected to be useful for selecting the optimal coherence of the light source for holographic displays. Full article
(This article belongs to the Special Issue Holography, 3D Imaging and 3D Display Volume II)
Show Figures

Figure 1

26 pages, 10119 KB  
Article
Applying Machine Learning and Time-Series Analysis on Sentinel-1A SAR/InSAR for Characterizing Arctic Tundra Hydro-Ecological Conditions
by Michael Allan Merchant, Mayah Obadia, Brian Brisco, Ben DeVries and Aaron Berg
Remote Sens. 2022, 14(5), 1123; https://doi.org/10.3390/rs14051123 - 24 Feb 2022
Cited by 15 | Viewed by 7407
Abstract
Synthetic aperture radar (SAR) is a widely used tool for Earth observation activities. It is particularly effective during times of persistent cloud cover, low light conditions, or where in situ measurements are challenging. The intensity measured by a polarimetric SAR has proven effective [...] Read more.
Synthetic aperture radar (SAR) is a widely used tool for Earth observation activities. It is particularly effective during times of persistent cloud cover, low light conditions, or where in situ measurements are challenging. The intensity measured by a polarimetric SAR has proven effective for characterizing Arctic tundra landscapes due to the unique backscattering signatures associated with different cover types. However, recently, there has been increased interest in exploiting novel interferometric SAR (InSAR) techniques that rely on both the amplitude and absolute phase of a pair of acquisitions to produce coherence measurements, although the simultaneous use of both intensity and interferometric coherence in Arctic tundra image classification has not been widely tested. In this study, a time series of dual-polarimetric (VV, VH) Sentinel-1 SAR/InSAR data collected over one growing season, in addition to a digital elevation model (DEM), was used to characterize an Arctic tundra study site spanning a hydrologically dynamic coastal delta, open tundra, and high topographic relief from mountainous terrain. SAR intensity and coherence patterns based on repeat-pass interferometry were analyzed in terms of ecological structure (i.e., graminoid, or woody) and hydrology (i.e., wet, or dry) using machine learning methods. Six hydro-ecological cover types were delineated using time-series statistical descriptors (i.e., mean, standard deviation, etc.) as model inputs. Model evaluations indicated SAR intensity to have better predictive power than coherence, especially for wet landcover classes due to temporal decorrelation. However, accuracies improved when both intensity and coherence were used, highlighting the complementarity of these two measures. Combining time-series SAR/InSAR data with terrain derivatives resulted in the highest per-class F1 score values, ranging from 0.682 to 0.955. The developed methodology is independent of atmospheric conditions (i.e., cloud cover or sunlight) as it does not rely on optical information, and thus can be regularly updated over forthcoming seasons or annually to support ecosystem monitoring. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Regions)
Show Figures

Figure 1

20 pages, 8022 KB  
Article
Three-Dimensional Transfer Functions of Interference Microscopes
by Peter Lehmann, Sebastian Hagemeier and Tobias Pahl
Metrology 2021, 1(2), 122-141; https://doi.org/10.3390/metrology1020009 - 9 Nov 2021
Cited by 20 | Viewed by 4190
Abstract
Three-dimensional transfer functions (3D TFs) are generally assumed to fully describe the transfer behavior of optical topography measuring instruments such as coherence scanning interferometers in the spatial frequency domain. Therefore, 3D TFs are supposed to be independent of the surface under investigation resulting [...] Read more.
Three-dimensional transfer functions (3D TFs) are generally assumed to fully describe the transfer behavior of optical topography measuring instruments such as coherence scanning interferometers in the spatial frequency domain. Therefore, 3D TFs are supposed to be independent of the surface under investigation resulting in a clear separation of surface properties and transfer characteristics. In this paper, we show that the 3D TF of an interference microscope differs depending on whether the object is specularly reflecting or consists of point scatterers. In addition to the 3D TF of a point scatterer, we will derive an analytical expression for the 3D TF corresponding to specular surfaces and demonstrate this as being most relevant in practical applications of coherence scanning interferometry (CSI). We additionally study the effects of temporal coherence and disclose that in conventional CSI temporal coherence effects dominate. However, narrowband light sources are advantageous if high spatial frequency components of weak phase objects are to be resolved, whereas, for low-frequency phase objects of higher amplitude, the temporal coherence is less affecting. Finally, we present an approach that explains the different transfer characteristics of coherence peak and phase detection in CSI signal analysis. Full article
Show Figures

Figure 1

47 pages, 1536 KB  
Review
Three-Dimensional, Time-Dependent Analysis of High- and Low-Q Free-Electron Laser Oscillators
by Peter J. M. van der Slot and Henry P. Freund
Appl. Sci. 2021, 11(11), 4978; https://doi.org/10.3390/app11114978 - 28 May 2021
Cited by 6 | Viewed by 3827
Abstract
Free-electron lasers (FELs) have been designed to operate over virtually the entire electromagnetic spectrum, from microwaves through to X-rays, and in a variety of configurations, including amplifiers and oscillators. Oscillators can operate in both the low and high gain regime and are typically [...] Read more.
Free-electron lasers (FELs) have been designed to operate over virtually the entire electromagnetic spectrum, from microwaves through to X-rays, and in a variety of configurations, including amplifiers and oscillators. Oscillators can operate in both the low and high gain regime and are typically used to improve the spatial and temporal coherence of the light generated. We will discuss various FEL oscillators, ranging from systems with high-quality resonators combined with low-gain undulators, to systems with a low-quality resonator combined with a high-gain undulator line. The FEL gain code MINERVA and wavefront propagation code OPC are used to model the FEL interaction within the undulator and the propagation in the remainder of the oscillator, respectively. We will not only include experimental data for the various systems for comparison when available, but also present, for selected cases, how the two codes can be used to study the effect of mirror aberrations and thermal mirror deformation on FEL performance. Full article
Show Figures

Graphical abstract

29 pages, 1577 KB  
Article
Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources
by Burhan Gulbahar
Entropy 2020, 22(2), 246; https://doi.org/10.3390/e22020246 - 21 Feb 2020
Cited by 2 | Viewed by 4330
Abstract
Quantum history states were recently formulated by extending the consistent histories approach of Griffiths to the entangled superposition of evolution paths and were then experimented with Greenberger–Horne–Zeilinger states. Tensor product structure of history-dependent correlations was also recently exploited as a quantum computing resource [...] Read more.
Quantum history states were recently formulated by extending the consistent histories approach of Griffiths to the entangled superposition of evolution paths and were then experimented with Greenberger–Horne–Zeilinger states. Tensor product structure of history-dependent correlations was also recently exploited as a quantum computing resource in simple linear optical setups performing multiplane diffraction (MPD) of fermionic and bosonic particles with remarkable promises. This significantly motivates the definition of quantum histories of MPD as entanglement resources with the inherent capability of generating an exponentially increasing number of Feynman paths through diffraction planes in a scalable manner and experimental low complexity combining the utilization of coherent light sources and photon-counting detection. In this article, quantum temporal correlation and interference among MPD paths are denoted with quantum path entanglement (QPE) and interference (QPI), respectively, as novel quantum resources. Operator theory modeling of QPE and counterintuitive properties of QPI are presented by combining history-based formulations with Feynman’s path integral approach. Leggett–Garg inequality as temporal analog of Bell’s inequality is violated for MPD with all signaling constraints in the ambiguous form recently formulated by Emary. The proposed theory for MPD-based histories is highly promising for exploiting QPE and QPI as important resources for quantum computation and communications in future architectures. Full article
(This article belongs to the Special Issue Quantum Entanglement)
Show Figures

Graphical abstract

12 pages, 2206 KB  
Letter
Enhanced Light Sheet Elastic Scattering Microscopy by Using a Supercontinuum Laser
by Diego Di Battista, David Merino, Giannis Zacharakis, Pablo Loza-Alvarez and Omar E. Olarte
Methods Protoc. 2019, 2(3), 57; https://doi.org/10.3390/mps2030057 - 5 Jul 2019
Cited by 14 | Viewed by 6325
Abstract
Light sheet fluorescence microscopy techniques have revolutionized biological microscopy enabling low-phototoxic long-term 3D imaging of living samples. Although there exist many light sheet microscopy (LSM) implementations relying on fluorescence, just a few works have paid attention to the laser elastic scattering source of [...] Read more.
Light sheet fluorescence microscopy techniques have revolutionized biological microscopy enabling low-phototoxic long-term 3D imaging of living samples. Although there exist many light sheet microscopy (LSM) implementations relying on fluorescence, just a few works have paid attention to the laser elastic scattering source of contrast available in every light sheet microscope. Interestingly, elastic scattering can potentially disclose valuable information from the structure and composition of the sample at different spatial scales. However, when coherent scattered light is detected with a camera sensor, a speckled intensity is generated on top of the native imaged features, compromising their visibility. In this work, we propose a novel light sheet based optical setup which implements three strategies for dealing with speckles of elastic scattering images: (i) polarization filtering; (ii) reducing the temporal coherence of the excitation laser light; and, (iii) reducing the spatial coherence of the light sheet. Finally, we show how these strategies enable pristine light-sheet elastic-scattering imaging of structural features in challenging biological samples avoiding the deleterious effects of speckle, and without relying on, but complementing, fluorescent labelling. Full article
(This article belongs to the Special Issue Technical Advances in Light Microscopy)
Show Figures

Graphical abstract

Back to TopTop