Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = lyophilisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5477 KB  
Article
Optimisation of Supercritical CO2 Extraction from Black (Ribes nigrum) and Red (Ribes rubrum) Currant Pomace
by Filip Herzyk and Małgorzata Korzeniowska
Appl. Sci. 2025, 15(16), 9222; https://doi.org/10.3390/app15169222 - 21 Aug 2025
Viewed by 372
Abstract
Fruit pomace, generated as a by-product of juice processing, is a valuable source of bioactive compounds but requires sustainable extraction approaches to enable its valorisation. Supercritical CO2 extraction (SFE-CO2) represents a promising green technology due to its efficiency, solvent-free character, [...] Read more.
Fruit pomace, generated as a by-product of juice processing, is a valuable source of bioactive compounds but requires sustainable extraction approaches to enable its valorisation. Supercritical CO2 extraction (SFE-CO2) represents a promising green technology due to its efficiency, solvent-free character, and tuneable selectivity. In this study, the response surface methodology (RSM) was applied to evaluate the effects of pressure, temperature, and time on the recovery of fat, protein, and total phenolic compounds (TPCs) from blackcurrant (Ribes nigrum) and redcurrant (Ribes rubrum) pomace subjected to conventional- and freeze-drying. The highest protein content (14.5%) was obtained in freeze-dried blackcurrant at 400 bar, 60 min, and 30 °C, while the maximum TPCs (24.60 mg GAE/g d.w.) was reached at 500 bar, 60 min, and 40 °C. The redcurrant samples consistently showed lower extractable values across all the responses. Pressure and time were identified as the most influential process variables, enhancing the solvent density and mass transfer during extraction. These results demonstrate that both the drying pre-treatment and raw material type significantly affect the SFE efficiency and confirm the potential of optimised SFE-CO2 as a viable strategy for converting fruit pomace into functional ingredients for food, nutraceutical, and cosmetic applications. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

26 pages, 4558 KB  
Article
Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread
by Stevens Duarte, Janaina Sánchez-García, Joanna Harasym and Noelia Betoret
Foods 2025, 14(13), 2382; https://doi.org/10.3390/foods14132382 - 5 Jul 2025
Viewed by 589
Abstract
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching [...] Read more.
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching rice flour with almond bagasse powders—either hot air-dried (HAD60) or lyophilised (LYO)—at substitution levels of 5%, 10%, 15%, 20%, 25%, and 30% (w/w), to assess effects on gluten-free bread quality. The resulting flour blends were analysed for their physicochemical, techno-functional, rheological, and antioxidant properties. Gluten-free breads were then prepared using these blends and evaluated fresh and after seven days of refrigerated storage. The addition of almond bagasse powders reduced moisture and water absorption capacities, while also darkening the bread colour, particularly in HAD60, due to browning from thermal drying. The LYO powder led to softer bread by disrupting the starch structure more than HAD60. All breads hardened after storage due to starch retrogradation. The incorporation of almond bagasse powder reduced the pasting behaviour—particularly at substitution levels of ≥ 25%—as well as the viscoelastic moduli of the flour blends, due to fibre competing for water and thereby limiting starch gelatinisation. Antioxidant capacity was significantly enhanced in HAD60 breads, particularly in the crust and at higher substitution levels, due to Maillard reactions. Furthermore, antioxidant degradation over time was less pronounced in formulations with higher substitution levels, with HAD60 proving more stable than LYO. Overall, almond bagasse powder improves the antioxidant profile and shelf-life of gluten-free bread, highlighting its value as a functional and sustainable ingredient. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 877 KB  
Article
Effect of Lyophilised Sumac Extract on the Microbiological, Physicochemical, and Antioxidant Properties of Fresh Carrot Juice
by Marta Krajewska, Agnieszka Starek-Wójcicka, Agnieszka Sagan, Monika Sachadyn-Król and Emilia Osmólska
Sustainability 2025, 17(13), 6169; https://doi.org/10.3390/su17136169 - 4 Jul 2025
Viewed by 505
Abstract
The lyophilised sumac (Rhus coriaria L) extract (LSE), in amounts of 0.25, 0.5, 1.0, 1.25, and 1.5 g/100 ml of juice, was incorporated into carrot juice, and its properties were assessed after 24, 48, and 72 h. A product without the lyophilised [...] Read more.
The lyophilised sumac (Rhus coriaria L) extract (LSE), in amounts of 0.25, 0.5, 1.0, 1.25, and 1.5 g/100 ml of juice, was incorporated into carrot juice, and its properties were assessed after 24, 48, and 72 h. A product without the lyophilised sumac extract served as the control. The highest supplementation level enhanced the physicochemical characteristics of carrot juice, increasing carotenoid and polyphenolic contents by 22% and 70% on the first day. The LSE significantly boosted antioxidant activity, yielding over a tenfold increase, while reducing capacity was elevated more than sevenfold. LC-MS analysis confirmed the presence of bioactive compounds, such as chalcones, flavonols, flavones, and phenolic acids, further validating the extract’s functional potential. Acidity and redness exhibited a proportional increase with the rising concentrations of the additive used. Additionally, microbial growth, including aerobic mesophiles, yeasts, and moulds, was markedly suppressed. After 72 h, the total count of aerobic microorganisms and yeasts/mould was reduced by 5.64 log and 4.94 log, respectively, compared to the control. The lyophilised sumac extract, rich in valuable bioactive compounds with antioxidant properties, effectively preserved freshly pressed carrot juice, mitigating spoilage and extending its shelf life. This form of sumac serves as a sustainable beverage additive, minimises food waste, and aligns with clean-label trends. Full article
Show Figures

Figure 1

25 pages, 6059 KB  
Article
Comparative Evaluation of β-Cyclodextrin Inclusion Complexes with Eugenol, Eucalyptol, and Clove Essential Oil: Characterisation and Antimicrobial Activity Assessment for Pharmaceutical Applications
by Alina Ionela Stancu, Magdalena Mititelu, Anton Ficai, Lia-Mara Ditu, Mihaela Buleandră, Irinel Adriana Badea, Elena Pincu, Marius Constantin Stoian, Oana Brîncoveanu, Adina Boldeiu and Eliza Oprea
Pharmaceutics 2025, 17(7), 852; https://doi.org/10.3390/pharmaceutics17070852 - 29 Jun 2025
Cited by 1 | Viewed by 702
Abstract
Clove essential oil (Eugenia caryophyllata essential oil, ECEO) is known for its high eugenol content and notable antimicrobial properties. However, the volatility and instability of its active compounds hinder broader pharmaceutical applications. Methods: This study characterised the chemical composition of ECEO and [...] Read more.
Clove essential oil (Eugenia caryophyllata essential oil, ECEO) is known for its high eugenol content and notable antimicrobial properties. However, the volatility and instability of its active compounds hinder broader pharmaceutical applications. Methods: This study characterised the chemical composition of ECEO and comparatively evaluated four β-cyclodextrin (β-CD) encapsulation methods: kneading, co-precipitation, lyophilisation, and co-precipitation–lyophilisation for eugenol, eucalyptol, and ECEO. Encapsulation efficiency, physicochemical properties, and antimicrobial potential were assessed. Analytical techniques included Gas Chromatography–Mass Spectrometry (GC-MS), Headspace GC-MS (HS-GC-MS), Differential Scanning Calorimetry (DSC), Job’s method, and Dynamic Light Scattering (DLS). Results: GC-MS identified eugenol (90.67%), eugenyl acetate (4.77%), and (E)–β-caryophyllene (3.98%) as major components of ECEO, while HS-GC-MS indicated a slightly reduced eugenol content (86.46%). The kneading method yielded the highest encapsulation efficiency for eugenol, whereas the co-precipitation–lyophilisation method was optimal for eucalyptol. DSC thermograms confirmed complex formation, and DLS analysis revealed nanostructures averaging 186.4 nm in diameter (PDI = 0.298). Antimicrobial assays showed MIC values ranging from 0.039 mg/mL to 10,000 mg/mL. Notably, ECEO and its β-CD complex displayed enhanced efficacy against Escherichia coli (0.039 mg/mL), surpassing the reference antibiotic gentamicin (0.049 mg/mL). Conclusions: β-Cyclodextrin encapsulation significantly enhances the stability and bioactivity of volatile antimicrobial compounds, thereby supporting their potential integration into advanced essential oil-based pharmaceutical formulations. Full article
(This article belongs to the Special Issue Cyclodextrins and Their Pharmaceutical Applications)
Show Figures

Figure 1

20 pages, 1729 KB  
Article
Development of a Cyclodextrin-Based Drug Delivery System to Improve the Physicochemical Properties of Ceftobiprole as a Model Antibiotic
by Dariusz Boczar, Wojciech Bocian, Jerzy Sitkowski, Karolina Pioruńska and Katarzyna Michalska
Int. J. Mol. Sci. 2025, 26(13), 5953; https://doi.org/10.3390/ijms26135953 - 20 Jun 2025
Viewed by 469
Abstract
This study presents a methodology for developing a cyclodextrin-based delivery system for ceftobiprole, a poorly water-soluble and amphoteric drug, chemically stable in acidic conditions. Ceftobiprole is a broad-spectrum cephalosporin antibiotic administered clinically as its water-soluble prodrug, ceftobiprole medocaril, due to limited aqueous solubility [...] Read more.
This study presents a methodology for developing a cyclodextrin-based delivery system for ceftobiprole, a poorly water-soluble and amphoteric drug, chemically stable in acidic conditions. Ceftobiprole is a broad-spectrum cephalosporin antibiotic administered clinically as its water-soluble prodrug, ceftobiprole medocaril, due to limited aqueous solubility of the parent compound. Solubility enhancement was achieved through complexation with anionic sulfobutylether-β-cyclodextrin (SBE-β-CD). At a pH below 3, ceftobiprole is protonated and cationic, which facilitates electrostatic interactions with the anionic cyclodextrin. An optimised high-performance liquid chromatography (HPLC) method was used to assess solubility, the impurity profile, and long-term chemical stability. X-ray powder diffraction (XRPD) confirmed the amorphous nature of the system and the absence of recrystallization. Nuclear magnetic resonance (NMR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy supported the formation of a host–guest complex. The freeze-dried system prepared from 0.1 M formic acid solution contained negligible residual acid due to nearly complete sublimation. The most promising formulation was a ternary system of ceftobiprole, maleic acid, and SBE-β-CD (1:25:4 molar ratio), showing ~300-fold solubility improvement, low levels of degradation products, and stability after eight months at −20 °C. After pH adjustment to a parenterally acceptable level, the formulation demonstrated solubility and a pH comparable to the marketed drug product. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

21 pages, 5135 KB  
Article
Development of a Gold Nanoparticle Dispersion for Plasma Jet Printing on Solid Substrates
by Lan Kresnik, Peter Majerič, Darja Feizpour and Rebeka Rudolf
Materials 2025, 18(12), 2713; https://doi.org/10.3390/ma18122713 - 9 Jun 2025
Viewed by 528
Abstract
Gold nanoparticles (AuNPs) were synthesised using ultrasonic spray pyrolysis (USP) with the addition of polyvinylpyrrolidone (PVP) as a stabilising agent and subsequently dried via lyophilisation. The resulting dried AuNPs were redispersed in ethanol and homogenised to ensure uniform dispersion. This AuNP dispersion was [...] Read more.
Gold nanoparticles (AuNPs) were synthesised using ultrasonic spray pyrolysis (USP) with the addition of polyvinylpyrrolidone (PVP) as a stabilising agent and subsequently dried via lyophilisation. The resulting dried AuNPs were redispersed in ethanol and homogenised to ensure uniform dispersion. This AuNP dispersion was then deposited onto a ceramic substrate—aluminum oxide (Al2O3)—using plasma jet printing. Comprehensive characterisation of the dispersion, AuNPs, and the resulting printed lines was performed using the following methods: inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), measurements of dispersion viscosity and printed line roughness. ICP-OES confirmed consistent gold content in the AuNP dispersion, while the SEM and EDS analyses revealed predominantly spherical AuNPs with minimal aggregation and similar size distributions. TEM, SAED, and STEM/EDS confirmed that the crystalline structure and elemental composition of the AuNPs had diverse morphologies and strong gold signals. The UV-Vis, DLS, and zeta potential measurements indicated moderate colloidal stability, and thermogravimetric analysis (TGA) verified the AuNPs dispersion’s composition. The AuNP dispersion exhibited thixotropic behaviour favourable for printing applications, while confocal microscopy confirmed smooth, uniform printed traces, with an average surface line roughness of 1.65 µm. The successful use of plasma printing with the AuNP dispersion highlights its potential for functional material applications in electronics. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

26 pages, 1552 KB  
Review
Lactoferrin Production: A Systematic Review of the Latest Analytical Methods
by Katarzyna A. Kaczmarek, Grzegorz Kosewski, Małgorzata Dobrzyńska and Sławomira Drzymała-Czyż
Appl. Sci. 2025, 15(8), 4540; https://doi.org/10.3390/app15084540 - 20 Apr 2025
Cited by 1 | Viewed by 3282
Abstract
Background: Lactoferrin is a major functional protein involved in maintaining human health, which possesses antioxidant, anti-inflammatory, antibacterial, and antiviral properties. Therefore, it can be used to support the treatment of viral and bacterial diseases, as well as in cancer prevention. Lactoferrin-manufacturing processes may [...] Read more.
Background: Lactoferrin is a major functional protein involved in maintaining human health, which possesses antioxidant, anti-inflammatory, antibacterial, and antiviral properties. Therefore, it can be used to support the treatment of viral and bacterial diseases, as well as in cancer prevention. Lactoferrin-manufacturing processes may compromise its protein structure and function, so it is necessary to establish reliable analytical methods for production efficiency and quality control purposes. This paper reviews the lactoferrin production processes, summarising the methods using various matrices (milk, milk powder, infant formula, whey, bovine lactoferrin lyophilised powder, yoghurt, colostrum, and human milk), the most popular purification methods, and sample preparation. Material and methods: The Medline and Embase databases were searched using the following phrases: ”lactoferrin” and “purification” or “isolation” or “extraction” or “separation”. The search was limited to recent studies from the last five years published in English up until 12 March 2025. Of the 573 articles identified, 17 were reviewed. Results: Lactoferrin purification and determination methods depend on the matrix used. The latest research focuses on improving parameters of lactoferrin determination, shortening time, improving efficiency or limiting costs, and even reducing toxicity by changing the reagents. The method of separating lactoferrin using magnetic beads or nanoparticles has been developed, as well as the determination parameters using high-performance liquid chromatography (HPLC). Conclusions: The current lactoferrin production techniques are characterised by increased efficiency and quality, but they require standardisation of the purification process depending on the matrix. The latest Lf determination methods are highly precise, and most of them produce high-quality Lf. This allows to introduce on the market a higher quality product, which can significantly improve standard approaches. Full article
(This article belongs to the Special Issue Recent Advances in the Processing of Milk and Milk Products)
Show Figures

Figure 1

15 pages, 19739 KB  
Article
A Comparison of the Sticky Bone Obliteration Technique and Obliteration Using S53P4 Bioactive Glass After Canal Wall Down Ear Surgery: A Preliminary Study
by Aleksander Zwierz, Marta Staszak, Matthias Scheich, Krzysztof Domagalski, Stephan Hackenberg and Paweł Burduk
J. Clin. Med. 2025, 14(5), 1681; https://doi.org/10.3390/jcm14051681 - 1 Mar 2025
Viewed by 1093
Abstract
Background: The aim of this study was to analyse the results of the mastoid obliteration technique with sticky bone (SB) and compare them with those obtained using bioactive glass S53P4 (BAG). Methods: This prospective preliminary study comprised 28 adults who underwent canal wall [...] Read more.
Background: The aim of this study was to analyse the results of the mastoid obliteration technique with sticky bone (SB) and compare them with those obtained using bioactive glass S53P4 (BAG). Methods: This prospective preliminary study comprised 28 adults who underwent canal wall down (CWD) surgery using two mastoid obliterative techniques: SB (n = 21) or BAG (n = 7). The SB group was treated with the patients’ own bone dust and injectable platelet rich fibrin (IPRF) (n = 13%) or bone dust, IPRF, and additionally allogenic lyophilised demineralised bone (n = 9%). Results: Nine months after the surgery, in the SB group, retroauricular depression was observed in three (14%) patients, temporary retroauricular fistula in one (5%), and a conical and smooth external auditory canal (EAC) was achieved in 15 (71%). Mean EAC capacity was 0.6 mL higher than in the contralateral ear. In the SB group, the tympanic membrane (TM) of nineteen (91%) patients was fully healed, one (5%) had TM perforation, and one (5%) developed a retraction pocket. In the BAG group, retroauricular depression was observed in four (57%) patients, temporary retroauricular fistula was present in one (14%), and a conical and smooth EAC was achieved in five (71%). Mean EAC capacity was 0.3 mL higher than on the opposite side. In the BAG group, we stated six (86%) patients with fully healed TM and one (14%) with a retraction pocket. One cholesteatoma was found in the BAG group and two in SB, (14% vs. 10%). After 9 months, all patients in both groups achieved a dry and self-cleaning cavity. Conclusions: Mastoid obliteration in CWD surgery using SB or BAG allows for reconstruction of the conical shape of the EAC with a volume similar to that of a healthy ear. Both techniques seem to have a minimal risk of complications and result in a dry, self-cleaning cavity. Further studies concerning a larger series of cases are necessary to confirm the findings of this preliminary analysis. Full article
(This article belongs to the Special Issue Advancements in Otitis Media Diagnosis and Management)
Show Figures

Figure 1

20 pages, 2482 KB  
Article
A Design of Experiments Approach for Enhancing Room Temperature Stability of a Lyophilised and Paper-Based Bacterial Cell-Free System
by Tejasvi Shivakumar, Joshua Clark, Alice Goode, Valentine E. Anyanwu and Philip M. Williams
Bioengineering 2025, 12(3), 223; https://doi.org/10.3390/bioengineering12030223 - 22 Feb 2025
Viewed by 1433
Abstract
Centralised cell-based biomanufacturing severely limits applicability in low-resource and extreme environments, where a largely untreated human population is present. Cell-free protein synthesis (CFPS) can surpass many of these limitations, due to its flexibility and low maintenance. After initial optimisation for high-level expression, we [...] Read more.
Centralised cell-based biomanufacturing severely limits applicability in low-resource and extreme environments, where a largely untreated human population is present. Cell-free protein synthesis (CFPS) can surpass many of these limitations, due to its flexibility and low maintenance. After initial optimisation for high-level expression, we conceptualised CFPS platforms composed of lyophilised pellets and cellulose stacks for ease of storage and distribution. The latter platform consisted of lyophilised components on cellulose discs, which were layered and rehydrated to kickstart protein synthesis. Such paper-encompassed reactions were capable of robust expression, where the system can be modulated by simply changing the DNA layer. Using an initial screening design followed by a minimalistic design of experiments approach, we were able to improve the shelf life of lyophilised CFPS at room temperature from <1 week to 100% preservation at month 1. We anticipate that our strategy will enable quicker and more efficient stability optimisation for sustainable applications in all environments. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

19 pages, 5096 KB  
Article
Study on Lyophilised Orodispersible Tablets from Plant-Based Drinks as Bulking Agents
by Adrienn Katalin Demeter, Dóra Farkas, Márton Király, Zoltán Kovács, Krisztina Ludányi, István Antal and Nikolett Kállai-Szabó
Pharmaceutics 2025, 17(2), 195; https://doi.org/10.3390/pharmaceutics17020195 - 4 Feb 2025
Cited by 2 | Viewed by 1385
Abstract
Background/Objectives: Oral administration of active pharmaceutical ingredients (APIs) is the most commonly used route of administration. As dysphagia is a prevalent problem, the size of the swallowed dosage form could negatively influence patient adherence. Orally disintegrating tablets (ODTs) are beneficial dosage forms because [...] Read more.
Background/Objectives: Oral administration of active pharmaceutical ingredients (APIs) is the most commonly used route of administration. As dysphagia is a prevalent problem, the size of the swallowed dosage form could negatively influence patient adherence. Orally disintegrating tablets (ODTs) are beneficial dosage forms because they disintegrate within a few seconds in the oral cavity without water. Lactose is one of the most commonly used excipients in the pharmaceutical industry; it served as the central concept of a recent publication on the formulation of milk-based ODTs despite lactose malabsorption being widespread worldwide. Consequently, the plant-based alternative market has grown exponentially and has become a prevailing food trend, with various alternatives to choose from. For this reason, the development of a nonsteroidal anti-inflammatory drug (NSAID)-containing ODT with plant-based drinks (PBDs) was assessed for its innovative potential. Methods: Different PBDs were investigated and compared to traditional and lactose-free milk. The liquids’ viscosity, pH, and particle size were determined, and an electronic tongue was used for the sensory evaluation. The various ODTs were prepared with the freeze-drying method, and then the qualitative characteristics of the dosage form were investigated. Results: Our different measurements show that different plant beverages differ from each other and that these differences have an impact on the technological processing. According to the HPLC-DAD measurements, all values were in the required range. Conclusions: These measurements suggest that the soya drink is the most similar to traditional cow milk and would be the most appropriate choice among the investigated plant-based drinks to be used as a carrier system for an ibuprofen-containing ODT. Full article
(This article belongs to the Special Issue Advance in Development of Patient-Centric Dosage Form, 3rd Edition)
Show Figures

Graphical abstract

27 pages, 9904 KB  
Article
Phenolic Compounds and Pharmacological Potential of Lavandula angustifolia Extracts for the Treatment of Neurodegenerative Diseases
by Olha Mykhailenko, Viktoriia Hurina, Nataliia Herbina, Yuliia Maslii, Liudas Ivanauskas, Inna Vladymyrova, Dmytro Lytkin, Zigmantas Gudžinskas, Hanna Severina, Olena Ruban and Victoriya Georgiyants
Plants 2025, 14(2), 289; https://doi.org/10.3390/plants14020289 - 20 Jan 2025
Cited by 2 | Viewed by 3323
Abstract
The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender’s potential to protect neurons is based on its calming, anti-stress [...] Read more.
The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender’s potential to protect neurons is based on its calming, anti-stress properties, which increase the brain’s resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country. Lavender use in Ukraine is influenced by both global herbal practices and local medical traditions. The aim of this study was to optimise the preparation of lavender herb extracts, perform chemical profiling and evaluate their antioxidant and neuroprotective activities. The study focused on Lavandula angustifolia cultivated in Lviv, Ukraine. Modern analytical methods were used, including HPLC, spectrophotometry, molecular docking, lyophilisation and pharmacological testing. The selection of the optimal conditions for obtaining lavender herb extracts was determined on the basis of the results of the total yield of phenolic compounds in each extract, where it was found that the raw material–solvent ratio (1:10) in water and 50% ethanol gave the highest yield of substances; the preferred extraction time was 20 min, and the temperature was 60–70 °C, especially for water extraction. Further HPLC analysis identified marker compounds including rosmarinic acid (28.31 mg/g), chlorogenic acid (1.64 mg/g) and luteolin (0.23 mg/g) in the lyophilised ethanol extract, which were previously recognised as neuroprotective markers by molecular docking. The water extract showed higher antioxidant (total 50.85 mg/g) and neuroprotective activity, probably due to synergistic interactions among the components. Behavioural tests further demonstrated the neuroprotective potential of lavender herb. These results demonstrate the potential neuroprotective activity of lavender herb and open new possibilities for its use in the treatment of various neurodegenerative diseases. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 64752 KB  
Article
In Vivo Assessment of Healing Potential of Ointments Containing Bee Products, Vegetal Extracts, and Polymers on Skin Lesions
by Calin Vasile Andritoiu, Cristina Lungu, Camelia Elena Iurciuc (Tincu), Corina Elena Andriescu, Corneliu Havarneanu, Marcel Popa, Magdalena Cuciureanu, Liliana Mititelu Tarţău and Bianca Ivanescu
Pharmaceuticals 2025, 18(1), 65; https://doi.org/10.3390/ph18010065 - 9 Jan 2025
Viewed by 1152
Abstract
Background/Objectives: The present experiment aimed to formulate four ointments that included mixtures of plant extracts (Hippophae rhamnoides, Calendula officinalis, Arctium lappa, and Achillea millefolium), apitherapy products (honey, propolis, and apilarnil) and natural polymers (collagen, chitosan, and the lyophilisate [...] Read more.
Background/Objectives: The present experiment aimed to formulate four ointments that included mixtures of plant extracts (Hippophae rhamnoides, Calendula officinalis, Arctium lappa, and Achillea millefolium), apitherapy products (honey, propolis, and apilarnil) and natural polymers (collagen, chitosan, and the lyophilisate of egg white) in an ointment base. Methods: In order to investigate the therapeutic properties of the ointments, experimental in vivo injury models (linear incision, circular excision, and thermal burns) were performed on laboratory animals, namely Wistar rats. The treatment was applied topically, once a day, for 21 days. Clinical and macroscopic evaluation, determination of lesion shrinkage rate, re-epithelialization period, and histopathological examination were performed. Results: The results demonstrate that the tested ointments have a significant effect in healing skin lesions. On the ninth day of treatment, the wound contraction rate was 98.17 ± 0.15% for the mixed ointment group, compared to the negative control group’s rate of 14.85 ± 2.95%. At day 21, dermal collagenization and restoration of histological structure occurred for all treated groups. Conclusions: The tested ointments exerted in vivo wound healing and re-epithelialization effects on incision, excision, and thermal burn injuries. Full article
(This article belongs to the Special Issue Therapeutic Potential of Bee Products)
23 pages, 3215 KB  
Article
Alfalfa/Lucerne (Medicago sativa) as a Source of Functional Bioadditives for Elastomeric Natural Rubber Composites
by Justyna Miedzianowska-Masłowska, Marcin Masłowski and Krzysztof Strzelec
Polymers 2024, 16(23), 3444; https://doi.org/10.3390/polym16233444 - 9 Dec 2024
Cited by 3 | Viewed by 1160
Abstract
This study explores the impact of three bioadditives derived from Alfalfa—biomass, bio-ashes, and lyophilisates—on natural rubber composites, with a primary focus on the anti-aging properties of lyophilisates. Composite samples were prepared by incorporating these bioadditives into natural rubber and analyzed using various characterization [...] Read more.
This study explores the impact of three bioadditives derived from Alfalfa—biomass, bio-ashes, and lyophilisates—on natural rubber composites, with a primary focus on the anti-aging properties of lyophilisates. Composite samples were prepared by incorporating these bioadditives into natural rubber and analyzed using various characterization techniques to evaluate mechanical, thermal, aging, and surface properties. The results highlight the promising anti-aging effects of lyophilisates, significantly enhancing the aging resistance of natural rubber. The aging factor was the closest to unity among all systems. Biomass and bio-ashes were also examined, offering insights into their influence on tensile strength, viscoelasticity, and surface wettability. The tensile strength values were almost 50% higher than those of the reference sample (8.5 MPa). The study provides a detailed understanding of the interactions between these bioadditives and natural rubber, showcasing their potential to enhance elastomer performance. These findings underscore the viability of Alfalfa-based bioadditives as sustainable options for improving rubber properties, with significant implications for industrial applications. Full article
(This article belongs to the Special Issue Advances in Natural Fiber-Polymer Composites)
Show Figures

Graphical abstract

20 pages, 3248 KB  
Article
Assessment of Whole Grain Ancient Wheat Sourdough in Lyophilised and Native Forms for Cookie Formulation
by Nikola Maravić, Biljana Pajin, Miroslav Hadnađev, Tamara Dapčević-Hadnađev, Mladenka Pestorić, Dubravka Škrobot and Jelena Tomić
Foods 2024, 13(21), 3363; https://doi.org/10.3390/foods13213363 - 23 Oct 2024
Cited by 3 | Viewed by 1562
Abstract
This study explored the potential of two forms of sourdough—native and lyophilised—obtained through the spontaneous fermentation of whole grain flours from ancient wheat varieties, for cookie production. The research involved evaluated the dough’s rheological properties through creep and recovery measurements and Mixolab analysis, [...] Read more.
This study explored the potential of two forms of sourdough—native and lyophilised—obtained through the spontaneous fermentation of whole grain flours from ancient wheat varieties, for cookie production. The research involved evaluated the dough’s rheological properties through creep and recovery measurements and Mixolab analysis, assessing proximate composition, physical attributes, texture, colour, and sensory characteristics using the Rate-all-that-apply (RATA) method. The rheological analysis revealed that native sourdough significantly impacted dough behaviour, making it more challenging to process. Although differences were observed in the proximate composition, colour, and texture, these factors did not influence the samples as much as the rheological parameters. Sensory evaluation identified Khorasan lyophilised sourdough, along with its control sample, as the most promising, while modern wheat, spelt, and emmer exhibited potentially undesirable attributes. Based on these findings, it was concluded that lyophilised Khorasan sourdough was very favourable for cookie production and should be considered for further in-depth research and development. This suggests that the lyophilised forms of ancient wheats could offer valuable alternatives for cookie formulation, with implications for both the processing and sensory attributes of the final product. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

25 pages, 1319 KB  
Article
Multitarget Phytocomplex: Focus on Antibacterial Profiles of Grape Pomace and Sambucus ebulus L. Lyophilisates Against Extensively Drug-Resistant (XDR) Bacteria and In Vitro Antioxidative Power
by Vladimir S. Kurćubić, Vesna Đurović, Slaviša B. Stajić, Marko Dmitrić, Saša Živković, Luka V. Kurćubić, Pavle Z. Mašković, Jelena Mašković, Milan Mitić, Vladimir Živković and Vladimir Jakovljević
Antibiotics 2024, 13(10), 980; https://doi.org/10.3390/antibiotics13100980 - 17 Oct 2024
Cited by 3 | Viewed by 1881
Abstract
Objectives: This study was conceived with the aim of translating the experience and knowledge of the research group into the design and creation of multi-active phytocomplex cocktails from lyophilised winery by-products (Grape Pomace—GP) and weeds (Sambucus ebulus L., Dwarf Elder—DE). Methods: Quantification [...] Read more.
Objectives: This study was conceived with the aim of translating the experience and knowledge of the research group into the design and creation of multi-active phytocomplex cocktails from lyophilised winery by-products (Grape Pomace—GP) and weeds (Sambucus ebulus L., Dwarf Elder—DE). Methods: Quantification of bioactive molecules was performed by high-performance liquid chromatography (HPLC) method. Results: In the extract obtained from lyophilised GP, the most dominant component that was quantified was petunidin-3-glucoside. Prominent compounds that were quantified in DE extract were cyanidin derivatives. The total number of microorganisms in lyophilisates is low, but some of them still survive lyophilisation. Antibacterial activity was determined by microdilution, the minimum inhibitory concentration (MIC) of the tested bacteria ranged from 0.78 mg/mL to 25.00 mg/mL. Antibacterial susceptibility testing (AST) revealed that Klebsiella spp. and Acinetobacter baumannii complex are extensively drug-resistant (XDR). Conclusions: The GP + DE cocktail showed very strong AB power against both tested XDR bacteria. The total phenolic content and antioxidative effect (determined spectrophotometrically) indicate their linear correlation. Full article
Show Figures

Figure 1

Back to TopTop