Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,866)

Search Parameters:
Keywords = machine learning (ML) techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2907 KB  
Article
Benchmarking ML Algorithms Against Traditional Correlations for Dynamic Monitoring of Bottomhole Pressure in Nitrogen-Lifted Wells
by Samuel Nashed and Rouzbeh Moghanloo
Processes 2025, 13(9), 2820; https://doi.org/10.3390/pr13092820 - 3 Sep 2025
Abstract
Proper estimation of flowing bottomhole pressure at coiled tubing depth (BHP-CTD) is crucial in optimization of nitrogen lifting operations in oil wells. Conventional estimation techniques such as empirical correlations and mechanistic models may be characterized by poor generalizability, low accuracy, and inapplicability in [...] Read more.
Proper estimation of flowing bottomhole pressure at coiled tubing depth (BHP-CTD) is crucial in optimization of nitrogen lifting operations in oil wells. Conventional estimation techniques such as empirical correlations and mechanistic models may be characterized by poor generalizability, low accuracy, and inapplicability in real time. This study overcomes these shortcomings by developing and comparing sixteen machine learning (ML) regression models, such as neural networks and genetic programming-based symbolic regression, in order to predict BHP-CTD with field data collected on 518 oil wells. Operational parameters that were used to train the models included fluid flow rate, gas–oil ratio, coiled tubing depth, and nitrogen rate. The best performance was obtained with the neural network with the L-BFGS optimizer (R2 = 0.987) and the low error metrics (RMSE = 0.014, MAE = 0.011). An interpretable equation with R2 = 0.94 was also obtained through a symbolic regression model. The robustness of the model was confirmed by both k-fold and random sampling validation, and generalizability was also confirmed using blind validation on data collected on 29 wells not included in the training set. The ML models proved to be more accurate, adaptable, and real-time applicable as compared to empirical correlations such as Hagedorn and Brown, Beggs and Brill, and Orkiszewski. This study does not only provide a cost-efficient alternative to downhole pressure gauges but also adds an interpretable, data-driven framework to increase the efficiency of nitrogen lifting in various operational conditions. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

16 pages, 599 KB  
Article
Exploring Predictive Insights on Student Success Using Explainable Machine Learning: A Synthetic Data Study
by Beatriz Santana-Perera, Carmen García-Barceló, Mauricio González Arcas and David Gil
Information 2025, 16(9), 763; https://doi.org/10.3390/info16090763 - 3 Sep 2025
Abstract
Student success is a multifaceted outcome influenced by academic, behavioral, contextual, and socio-environmental factors. With the growing availability of educational data, machine learning (ML) offers promising tools to model complex, nonlinear relationships that go beyond traditional statistical methods. However, the lack of interpretability [...] Read more.
Student success is a multifaceted outcome influenced by academic, behavioral, contextual, and socio-environmental factors. With the growing availability of educational data, machine learning (ML) offers promising tools to model complex, nonlinear relationships that go beyond traditional statistical methods. However, the lack of interpretability in many ML models remains a major obstacle for practical adoption in educational contexts. In this study, we apply explainable artificial intelligence (XAI) techniques—specifically SHAP (SHapley Additive exPlanations)—to analyze a synthetic dataset simulating diverse student profiles. Using LightGBM, we identify variables such as hours studied, attendance, and parental involvement as influential in predicting exam performance. While the results are not generalizable due to the artificial nature of the data, this study reframes its purpose as a methodological exploration rather than a claim of real-world actionable insights. Our findings demonstrate how interpretable ML can be used to build transparent analytic pipelines in education, setting the stage for future research using empirical datasets and real student data. Full article
(This article belongs to the Special Issue International Database Engineered Applications Symposium, 2nd Edition)
Show Figures

Figure 1

24 pages, 4832 KB  
Article
Potential Use of BME Development Kit and Machine Learning Methods for Odor Identification: A Case Study
by José Pereira, Afonso Mota, Pedro Couto, António Valente and Carlos Serôdio
Appl. Sci. 2025, 15(17), 9687; https://doi.org/10.3390/app15179687 (registering DOI) - 3 Sep 2025
Abstract
Ensuring food quality and safety is a growing challenge in the food industry, where early detection of contamination or spoilage is crucial. Using gas sensors combined with Artificial Intelligence (AI) offers an innovative and effective approach to food identification, improving quality control and [...] Read more.
Ensuring food quality and safety is a growing challenge in the food industry, where early detection of contamination or spoilage is crucial. Using gas sensors combined with Artificial Intelligence (AI) offers an innovative and effective approach to food identification, improving quality control and minimizing health risks. This study aims to evaluate food identification strategies using supervised learning techniques applied to data collected by the BME Development Kit, equipped with the BME688 sensor. The dataset includes measurements of temperature, pressure, humidity, and, particularly, gas composition, ensuring a comprehensive analysis of food characteristics. The methodology explores two strategies: a neural network model trained using Bosch BME AI-Studio software, and a more flexible, customizable approach that applies multiple predictive algorithms, including DT, LR, kNN, NB, and SVM. The experiments were conducted to analyze the effectiveness of both approaches in classifying different food samples based on gas emissions and environmental conditions. The results demonstrate that combining electronic noses (E-Noses) with machine learning (ML) provides high accuracy in food identification. While the neural network model from Bosch follows a structured and optimized learning approach, the second methodology enables a more adaptable exploration of various algorithms, offering greater interpretability and customization. Both approaches yielded high predictive performance, with strong classification accuracy across multiple food samples. However, performance variations depend on the characteristics of the dataset and the algorithm selection. A critical analysis suggests that optimizing sensor calibration, feature selection, and consideration of environmental parameters can further enhance accuracy. This study confirms the relevance of AI-driven gas analysis as a promising tool for food quality assessment. Full article
Show Figures

Figure 1

23 pages, 1881 KB  
Article
Explainable Machine Learning for the Early Clinical Detection of Ovarian Cancer Using Contrastive Explanations
by Zeynep Kucukakcali, Ipek Balikci Cicek and Sami Akbulut
J. Clin. Med. 2025, 14(17), 6201; https://doi.org/10.3390/jcm14176201 - 2 Sep 2025
Abstract
Background: Ovarian cancer is often diagnosed at advanced stages due to the absence of specific early symptoms, resulting in high mortality rates. This study aims to develop a robust and interpretable machine learning (ML) model for the early detection of ovarian cancer, [...] Read more.
Background: Ovarian cancer is often diagnosed at advanced stages due to the absence of specific early symptoms, resulting in high mortality rates. This study aims to develop a robust and interpretable machine learning (ML) model for the early detection of ovarian cancer, enhancing its transparency through the use of the Contrastive Explanation Method (CEM), an advanced technique within the field of explainable artificial intelligence (XAI). Methods: An open-access dataset of 349 patients with ovarian cancer or benign ovarian tumors was used. To improve reliability, the dataset was augmented via bootstrap resampling. A three-layer deep neural network was trained on normalized demographic, biochemical, and tumor marker features. Model performance was measured using accuracy, sensitivity, specificity, F1-score, and the Matthews correlation coefficient. CEM was used to explain the model’s classification results, showing which factors push the model toward “Cancer” or “No Cancer” decisions. Results: The model achieved high diagnostic performance, with an accuracy of 95%, sensitivity of 96.2%, and specificity of 93.5%. CEM analysis identified lymphocyte count (CEM value: 1.36), red blood cell count (1.18), plateletcrit (0.036), and platelet count (0.384) as the strongest positive contributors to the “Cancer” classification, with lymphocyte count demonstrating the highest positive relevance, underscoring its critical role in cancer detection. In contrast, age (change from −0.13 to +0.23) and HE4 (change from −0.43 to −0.05) emerged as key factors in reversing classifications, requiring substantial hypothetical increases to shift classification toward the “No Cancer” class. Among benign cases, a significant reduction in RBC count emerged as the strongest determinant driving a shift in classification. Overall, CEM effectively explained both the primary features influencing the model’s classification results and the magnitude of changes necessary to alter its outputs. Conclusions: Using CEM with ML allowed clear and trustworthy detection of early ovarian cancer. This combined approach shows the promise of XAI in assisting clinicians in making decisions in gynecologic oncology. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

23 pages, 3347 KB  
Article
Integrating Remote Sensing and Weather Time Series for Australian Irrigated Rice Phenology Prediction
by Sunil Kumar Jha, James Brinkhoff, Andrew J. Robson and Brian W. Dunn
Remote Sens. 2025, 17(17), 3050; https://doi.org/10.3390/rs17173050 - 2 Sep 2025
Abstract
Phenology prediction is critical for optimizing the timing of rice crop management operations such as fertilization and irrigation, particularly in the face of increasing climate variability. This study aimed to estimate three key developmental stages in the temperate irrigated rice systems of Australia: [...] Read more.
Phenology prediction is critical for optimizing the timing of rice crop management operations such as fertilization and irrigation, particularly in the face of increasing climate variability. This study aimed to estimate three key developmental stages in the temperate irrigated rice systems of Australia: panicle initiation (PI), flowering, and harvest maturity. Extensive and diverse field observations (n302) were collected over four consecutive seasons (2022–2025) from the rice-growing regions of the Murrumbidgee and Murray Valleys in southern New South Wales, encompassing six varieties and three sowing methods. The extent of data available allowed a number of traditional and emerging machine learning (ML) models to be directly compared to determine the most robust strategies to predict Australian rice crop phenology. Among all models, Tabular Prior-data Fitted Network (TabPFN), a pre-trained transformer model trained on large synthetic datasets, achieved the highest precision for PI and flowering predictions, with root mean square errors (RMSEs) of 4.9 and 6.5 days, respectively. Meanwhile, long short-term memory (LSTM) excelled in predicting harvest maturity with an RMSE of 5.9 days. Notably, TabPFN achieved strong results without the need for hyperparameter tuning, consistently outperforming other ML approaches. Across all stages, models that integrated remote sensing (RS) and weather variables consistently outperformed those relying on single-source input. These findings underscore the value of hybrid data fusion and modern time series modeling techniques for accurate and scalable phenology prediction, ultimately enabling more informed and adaptive agronomic decision-making. Full article
Show Figures

Figure 1

24 pages, 325 KB  
Review
Review of Ship Risk Analyses Through Deficiencies Found in Port State Inspections
by Jose Manuel Prieto, David Almorza, Victor Amor-Esteban and Nieves Endrina
J. Mar. Sci. Eng. 2025, 13(9), 1688; https://doi.org/10.3390/jmse13091688 - 1 Sep 2025
Abstract
This literature review examines the relationship between the number and type of deficiencies identified during Port State Control (PSC) inspections and a ship’s overall risk. The main objective is to synthesise the current academic evidence, detailing the analytical methodologies employed and highlighting key [...] Read more.
This literature review examines the relationship between the number and type of deficiencies identified during Port State Control (PSC) inspections and a ship’s overall risk. The main objective is to synthesise the current academic evidence, detailing the analytical methodologies employed and highlighting key research contributions. The selection of literature has focused on peer-reviewed articles and relevant doctoral theses addressing detention risk prediction, accident risk and ship risk profiling. The findings indicate a consistent correlation between PSC deficiencies and ship risk, although the nature and strength of this correlation may vary depending on the type of risk considered and the specific deficiencies. A methodological evolution is observed in the field, from descriptive statistical analyses and regressions towards more complex predictive models, such as Machine Learning (ML) and Bayesian Networks (BNs). This transition reflects a search for greater accuracy in risk assessment, going beyond simple numerical correlation to improve the selection of ships for inspection. Multivariate statistical techniques, on the other hand, focus on the identification of risk patterns and the evaluation of the PSC system. The conclusions underline the importance of deficiencies as indicators of risk, the need for differentiated inspection approaches and the persistent challenges related to data quality and model interpretability. Full article
(This article belongs to the Section Ocean Engineering)
16 pages, 2129 KB  
Article
A Multimodal Convolutional Neural Network Framework for Intelligent Real-Time Monitoring of Etchant Levels in PCB Etching Processes
by Chuen-Sheng Cheng, Pei-Wen Chen, Hen-Yi Jen and Yu-Tang Wu
Mathematics 2025, 13(17), 2804; https://doi.org/10.3390/math13172804 - 1 Sep 2025
Abstract
In recent years, machine learning (ML) techniques have gained significant attention in time series classification tasks, particularly in industrial applications where early detection of abnormal conditions is crucial. This study proposes an intelligent monitoring framework based on a multimodal convolutional neural network (CNN) [...] Read more.
In recent years, machine learning (ML) techniques have gained significant attention in time series classification tasks, particularly in industrial applications where early detection of abnormal conditions is crucial. This study proposes an intelligent monitoring framework based on a multimodal convolutional neural network (CNN) to classify normal and abnormal copper ion (Cu2+) concentration states in the etching process in the printed circuit board (PCB) industry. Maintaining precise control Cu2+ concentration is critical in ensuring the quality and reliability of the etching processes. A sliding window approach is employed to segment the data into fixed-length intervals, enabling localized temporal feature extraction. The model fuses two input modalities—raw one-dimensional (1D) time series data and two-dimensional (2D) recurrence plots—allowing it to capture both temporal dynamics and spatial recurrence patterns. Comparative experiments with traditional machine learning classifiers and single-modality CNNs demonstrate that the proposed multimodal CNN significantly outperforms baseline models in terms of accuracy, precision, recall, F1-score, and G-measure. The results highlight the potential of multimodal deep learning in enhancing process monitoring and early fault detection in chemical-based manufacturing. This work contributes to the development of intelligent, adaptive quality control systems in the PCB industry. Full article
(This article belongs to the Special Issue Mathematics Methods of Robotics and Intelligent Systems)
Show Figures

Figure 1

24 pages, 973 KB  
Review
Machine Learning in Thermography Non-Destructive Testing: A Systematic Review
by Shaoyang Peng, Sri Addepalli and Maryam Farsi
Appl. Sci. 2025, 15(17), 9624; https://doi.org/10.3390/app15179624 - 1 Sep 2025
Viewed by 5
Abstract
This paper reviews recent advances in machine learning (ML) algorithms to improve the postprocessing and interpretation of thermographic data in non-destructive testing (NDT). While traditional NDT methods (e.g., visual inspection, ultrasonic testing) each have their own advantages and limitations, thermographic techniques (e.g., pulsed [...] Read more.
This paper reviews recent advances in machine learning (ML) algorithms to improve the postprocessing and interpretation of thermographic data in non-destructive testing (NDT). While traditional NDT methods (e.g., visual inspection, ultrasonic testing) each have their own advantages and limitations, thermographic techniques (e.g., pulsed thermography, laser thermography) have become valuable complementary tools, particularly in inspecting advanced materials such as carbon fiber-reinforced polymers (CFRPs) and superalloys. These techniques generate large volumes of thermal data, which can be challenging to analyze efficiently and accurately. This review focuses on how ML can accelerate defect detection and automated classification in thermographic NDT. We summarize currently popular algorithms and analyze the limitations of existing workflows. Furthermore, this structured analysis provides an in-depth understanding of how artificial intelligence can assist in processing NDT data, with the potential to enable more accurate defect detection and characterization in industrial applications. Full article
Show Figures

Figure 1

26 pages, 838 KB  
Article
Predicting Graduate Employability Using Hybrid AHP-TOPSIS and Machine Learning: A Moroccan Case Study
by Hamza Nouib, Hayat Qadech, Manal Benatiya Andaloussi, Shefayatuj Johara Chowdhury and Aniss Moumen
Technologies 2025, 13(9), 385; https://doi.org/10.3390/technologies13090385 - 1 Sep 2025
Viewed by 104
Abstract
The persistent issue of unemployment and the mismatch between graduate skills and labor market demands has drawn increasing attention from academics and educational institutions, especially in light of rapid advancements in technology. Emerging technologies such as Artificial Intelligence (AI) and Machine Learning (ML) [...] Read more.
The persistent issue of unemployment and the mismatch between graduate skills and labor market demands has drawn increasing attention from academics and educational institutions, especially in light of rapid advancements in technology. Emerging technologies such as Artificial Intelligence (AI) and Machine Learning (ML) offer valuable opportunities to analyze job market dynamics. In this work, we present a novel framework aimed at predicting graduate employability using current labor market data from Morocco. Our approach combines Multi-Criteria Decision-Making (MCDM) techniques with ML-based predictive models. AHP prioritizes employability factors and TOPSIS ranks skill demands—together forming input features for machine learning models. 2100 job listings obtained through web scraping, we trained and evaluated several ML models. Among them, the K-Nearest Neighbors (KNN) classifier demonstrated the highest accuracy, achieving 99.71% accuracy through 5-fold cross-validation. While the study is based on a limited dataset, it highlights the practical relevance of combining MCDM methods with ML for employability prediction. This study is among the first to integrate AHP–TOPSIS with KNN for employability prediction using real-time Moroccan labor market data. Full article
Show Figures

Graphical abstract

21 pages, 5140 KB  
Article
Towards Privacy-Preserving Machine Learning for Energy Prediction in Industrial Robotics: Modeling, Evaluation and Integration
by Adam Skuta, Philipp Steurer, Sebastian Hegenbart, Ralph Hoch and Thomas Loruenser
Machines 2025, 13(9), 780; https://doi.org/10.3390/machines13090780 - 1 Sep 2025
Viewed by 154
Abstract
This paper explores the feasibility and implications of developing a privacy-preserving, data-driven cloud service for predicting the energy consumption of industrial robots. Using machine learning, we evaluated three neural network architectures—dense, LSTM, and convolutional–LSTM hybrids—to model energy usage based on robot trajectory data. [...] Read more.
This paper explores the feasibility and implications of developing a privacy-preserving, data-driven cloud service for predicting the energy consumption of industrial robots. Using machine learning, we evaluated three neural network architectures—dense, LSTM, and convolutional–LSTM hybrids—to model energy usage based on robot trajectory data. Our results show that models incorporating manually engineered features (angles, velocities, and accelerations) significantly improve prediction accuracy. To ensure secure collaboration in industrial environments where data confidentiality is critical, we integrate privacy-preserving machine learning (ppML) techniques based on secure multi-party computation (SMPC). This allows energy inference to be performed without exposing proprietary model weights or confidential input trajectories. We analyze the performance impact of SMPC on different network types and evaluate two optimization strategies, using public model weights through permutation and evaluating activation functions in plaintext, to reduce inference overhead. The results highlight that network architecture plays a larger role in encrypted inference efficiency than feature dimensionality, with dense networks being the most SMPC-efficient. In addition to model development, we identify and discuss specific stages in the MLOps workflow—particularly model serving and monitoring—that require adaptation to support ppML. These insights are useful for integrating ppML into modern machine learning pipelines. Full article
Show Figures

Figure 1

36 pages, 8964 KB  
Article
Verified Language Processing with Hybrid Explainability
by Oliver Robert Fox, Giacomo Bergami and Graham Morgan
Electronics 2025, 14(17), 3490; https://doi.org/10.3390/electronics14173490 - 31 Aug 2025
Viewed by 116
Abstract
The volume and diversity of digital information have led to a growing reliance on Machine Learning (ML) techniques, such as Natural Language Processing (NLP), for interpreting and accessing appropriate data. While vector and graph embeddings represent data for similarity tasks, current state-of-the-art pipelines [...] Read more.
The volume and diversity of digital information have led to a growing reliance on Machine Learning (ML) techniques, such as Natural Language Processing (NLP), for interpreting and accessing appropriate data. While vector and graph embeddings represent data for similarity tasks, current state-of-the-art pipelines lack guaranteed explainability, failing to accurately determine similarity for given full texts. These considerations can also be applied to classifiers exploiting generative language models with logical prompts, which fail to correctly distinguish between logical implication, indifference, and inconsistency, despite being explicitly trained to recognise the first two classes. We present a novel pipeline designed for hybrid explainability to address this. Our methodology combines graphs and logic to produce First-Order Logic (FOL) representations, creating machine- and human-readable representations through Montague Grammar (MG). The preliminary results indicate the effectiveness of this approach in accurately capturing full text similarity. To the best of our knowledge, this is the first approach to differentiate between implication, inconsistency, and indifference for text classification tasks. To address the limitations of existing approaches, we use three self-contained datasets annotated for the former classification task to determine the suitability of these approaches in capturing sentence structure equivalence, logical connectives, and spatiotemporal reasoning. We also use these data to compare the proposed method with language models pre-trained for detecting sentence entailment. The results show that the proposed method outperforms state-of-the-art models, indicating that natural language understanding cannot be easily generalised by training over extensive document corpora. This work offers a step toward more transparent and reliable Information Retrieval (IR) from extensive textual data. Full article
14 pages, 657 KB  
Article
Pretrained Models Against Traditional Machine Learning for Detecting Fake Hadith
by Jawaher Alghamdi, Adeeb Albukhari and Thair Al-Dala’in
Electronics 2025, 14(17), 3484; https://doi.org/10.3390/electronics14173484 - 31 Aug 2025
Viewed by 162
Abstract
The proliferation of fake news, particularly in sensitive domains like religious texts, necessitates robust authenticity verification methods. This study addresses the growing challenge of authenticating Hadith, where traditional methods relying on the analysis of the chain of narrators (Isnad) and the content (Matn) [...] Read more.
The proliferation of fake news, particularly in sensitive domains like religious texts, necessitates robust authenticity verification methods. This study addresses the growing challenge of authenticating Hadith, where traditional methods relying on the analysis of the chain of narrators (Isnad) and the content (Matn) are increasingly strained by the sheer volume in circulation. To combat this issue, machine learning (ML) and natural language processing (NLP) techniques, specifically through transfer learning, are explored to automate Hadith classification into Genuine and Fake categories. This study utilizes an imbalanced dataset of 8544 Hadiths, with 7008 authentic and 1536 fake Hadiths, to systematically investigate the collective impact of both linguistic and contextual features, particularly the chain of narrators (Isnad), on Hadith authentication. For the first time in this specialized domain, state-of-the-art pre-trained language models (PLMs) such as Multilingual BERT (mBERT), CamelBERT, and AraBERT are evaluated alongside classical algorithms like logistic regression (LR) and support vector machine (SVM) for Hadith authentication. Our best-performing model, AraBERT, achieved a 99.94% F1score when including the chain of narrators, demonstrating the profound effectiveness of contextual elements (Isnad) in significantly improving accuracy, providing novel insights into the indispensable role of computational methods in Hadith authentication and reinforcing traditional scholarly emphasis. This research represents a significant advancement in combating misinformation in this important field. Full article
Show Figures

Figure 1

21 pages, 2926 KB  
Article
Multi-Algorithm Ensemble Learning Framework for Predicting the Solder Joint Reliability of Wafer-Level Packaging
by Qinghua Su and Kuo-Ning Chiang
Materials 2025, 18(17), 4074; https://doi.org/10.3390/ma18174074 - 30 Aug 2025
Viewed by 173
Abstract
To enhance design efficiency, this study employs an effective prediction approach that utilizes validated finite element analysis (FEA) to generate simulation data and subsequently applies machine learning (ML) techniques to predict packaging reliability. Validated FEA models are used to replace the costly design-on-experiment [...] Read more.
To enhance design efficiency, this study employs an effective prediction approach that utilizes validated finite element analysis (FEA) to generate simulation data and subsequently applies machine learning (ML) techniques to predict packaging reliability. Validated FEA models are used to replace the costly design-on-experiment approach. However, the training time for some ML algorithms is costly; therefore, reducing the size of the training dataset to lower computational cost is a critical issue for ML. Nevertheless, this approach simultaneously introduces new challenges in maintaining prediction accuracy due to the inherent limitations of small data machine learning. To address these challenges, this work adopts Wafer-Level Packaging (WLP) as a case study. It proposes an ensemble learning framework that integrates multiple machine learning algorithms to enhance predictive robustness. By leveraging the complementary strengths of different algorithms and frameworks, the ensemble approach effectively improves generalization, enabling accurate predictions even with constrained training data. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

36 pages, 10083 KB  
Article
Hierarchical Deep Feature Fusion and Ensemble Learning for Enhanced Brain Tumor MRI Classification
by Zahid Ullah and Jihie Kim
Mathematics 2025, 13(17), 2787; https://doi.org/10.3390/math13172787 - 29 Aug 2025
Viewed by 265
Abstract
Accurate classification of brain tumors in medical imaging is crucial to ensure reliable diagnoses and effective treatment planning. This study introduces a novel double ensemble framework that synergistically combines pre-trained Deep Learning (DL) models for feature extraction with optimized Machine Learning (ML) classifiers [...] Read more.
Accurate classification of brain tumors in medical imaging is crucial to ensure reliable diagnoses and effective treatment planning. This study introduces a novel double ensemble framework that synergistically combines pre-trained Deep Learning (DL) models for feature extraction with optimized Machine Learning (ML) classifiers for robust classification. The framework incorporates comprehensive preprocessing and data augmentation of brain Magnetic Resonance Images (MRIs), followed by deep feature extraction based on transfer learning using pre-trained Vision Transformer (ViT) networks. The novelty of our approach lies in its dual-level ensemble strategy: we employ a feature-level ensemble, which integrates deep features from the top-performing ViT models, and a classifier-level ensemble, which aggregates predictions from various hyperparameter-optimized ML classifiers. Experiments on two public MRI brain tumor datasets from Kaggle demonstrate that this approach significantly surpasses state-of-the-art methods, underscoring the importance of feature and classifier fusion. The proposed methodology also highlights the critical roles that hyperparameter optimization and advanced preprocessing techniques can play in improving the diagnostic accuracy and reliability of medical image analysis, advancing the integration of DL and ML in this vital, clinically relevant task. Full article
Show Figures

Figure 1

44 pages, 1456 KB  
Review
A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study
by Syamak Pazireh, Seyedeh Elnaz Mirazimzadeh and Jill Urbanic
Metals 2025, 15(9), 966; https://doi.org/10.3390/met15090966 - 29 Aug 2025
Viewed by 378
Abstract
This review explores the evolution and current state of machine learning (ML) and artificial intelligence (AI) applications in direct energy deposition (DED) and wire arc additive manufacturing (WAAM) processes. A Python-based automated search script was developed to systematically retrieve relevant literature using the [...] Read more.
This review explores the evolution and current state of machine learning (ML) and artificial intelligence (AI) applications in direct energy deposition (DED) and wire arc additive manufacturing (WAAM) processes. A Python-based automated search script was developed to systematically retrieve relevant literature using the Crossref API, yielding around 370 papers published between 2010 and July 2025. The study identifies significant growth in ML-related DED research starting in 2020, with increasing adoption of advanced techniques such as deep learning, fuzzy logic, and hybrid physics-informed models. A year-by-year trend analysis is presented, and a comprehensive categorization of the literature is provided to highlight dominant application areas, including process optimization, real-time monitoring, defect detection, and melt pool prediction. Key challenges, such as limited closed-loop control, lack of generalization across systems, and insufficient modeling of deposition-location effects, are discussed. Finally, future research directions are outlined, emphasizing the need for integrated thermo-mechanical models, uncertainty quantification, and adaptive control strategies. This review serves as a resource for researchers aiming to advance intelligent control and predictive modeling in DED-based additive manufacturing. Full article
(This article belongs to the Special Issue Machine Learning in Metal Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop