Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,673)

Search Parameters:
Keywords = magnetic sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 634 KB  
Review
Radar Technologies in Motion-Adaptive Cancer Radiotherapy
by Matteo Pepa, Giulia Sellaro, Ganesh Marchesi, Anita Caracciolo, Arianna Serra, Ester Orlandi, Guido Baroni and Andrea Pella
Appl. Sci. 2025, 15(17), 9670; https://doi.org/10.3390/app15179670 (registering DOI) - 2 Sep 2025
Abstract
Intra-fractional respiratory management represents one of the greatest challenges of modern cancer radiotherapy (RT), as significant breathing-induced lesion motion might affect target coverage and organs at risk (OARs) sparing, jeopardizing oncological and toxicity outcomes. The detrimental effects on dosage of uncompensated organ motion [...] Read more.
Intra-fractional respiratory management represents one of the greatest challenges of modern cancer radiotherapy (RT), as significant breathing-induced lesion motion might affect target coverage and organs at risk (OARs) sparing, jeopardizing oncological and toxicity outcomes. The detrimental effects on dosage of uncompensated organ motion are exacerbated in RT with charged particles (e.g., protons and carbon ions), due to their higher ballistic selectivity. The simplest strategies to counteract this phenomenon are the use of larger treatment margins and reductions in or control of respiration (e.g., by means of compression belts, breath hold). Gating and tracking, which synchronize beam delivery with the respiratory signal, also represent widely adopted solutions. When tracking the tumor itself or surrogates, invasive procedures (e.g., marker implantation), an unnecessary imaging dose (e.g., in X-ray-based fluoroscopy), or expensive equipment (e.g., magnetic resonance imaging, MRI) is usually required. When chest and abdomen excursions are measured to infer internal tumor displacement, the additional devices needed to perform this task, such as pressure sensors or surface cameras, present inherent limitations that can impair the procedure itself. In this context, radars have intrigued the radiation oncology community, being inexpensive, non-invasive, contactless, and insensitive to obstacles. Even if real-world clinical implementation is still lagging behind, there is a growing body of research unraveling the potential of these devices in this field. The purpose of this narrative review is to provide an overview of the studies that have delved into the potential of radar-based technologies for motion-adaptive photon and particle RT applications. Full article
Show Figures

Figure 1

24 pages, 5700 KB  
Article
Performance Study of the Vibrating Wire Technique to Determine Longitudinal Magnetic Field Profile Using Scans to High Wire Harmonic
by Cameron Kenneth Baribeau
Metrology 2025, 5(3), 53; https://doi.org/10.3390/metrology5030053 - 1 Sep 2025
Abstract
Particle accelerator laboratories, which enable world-class research across many scientific fields, depend on the magnets used to manipulate their particle beams for successful operation. The community employs various techniques, typically based on Hall probes and induction sensors/coils, to verify the performance of these [...] Read more.
Particle accelerator laboratories, which enable world-class research across many scientific fields, depend on the magnets used to manipulate their particle beams for successful operation. The community employs various techniques, typically based on Hall probes and induction sensors/coils, to verify the performance of these accelerator magnets. When the transverse access around a magnet is restricted, conventional Hall probe systems cannot be deployed or require significant modification, while moving wire/coil systems tend to provide information only on the magnetic field’s integral. This research builds upon a vibrating wire setup first commissioned to locate the magnetic center of quadrupole magnets. Scans up to the n = 200 wire harmonic (∼10 kHz drive frequency) were measured to reconstruct the magnetic field across a wire strung through a test magnet. New software was developed to systematically process the many frequency response scans needed for a detailed field reconstruction. This research investigated the speed and precision of the measurement, identifying limitations due to both instrumentation and nonlinear wire behavior. The vibrating wire data agreed with a reference Hall probe scan on the order of 6%; roughly 0.7% RMS error persisted after calibrating the vibrating wire data to the reference scan via scaling factor. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

28 pages, 9707 KB  
Review
Molecular Nanomagnets with Photomagnetic Properties: Design Strategies and Recent Advances
by Xiaoshuang Gou, Xinyu Sun, Peng Cheng and Wei Shi
Magnetochemistry 2025, 11(9), 77; https://doi.org/10.3390/magnetochemistry11090077 - 31 Aug 2025
Viewed by 41
Abstract
The magnetic properties of molecular nanomagnets can be finely modulated by light, which provides great potential in optical switches, smart sensors, and data storage devices. Light-induced spin transition, structure changes, and radical formation could tune the static and dynamic magnetic properties of molecular [...] Read more.
The magnetic properties of molecular nanomagnets can be finely modulated by light, which provides great potential in optical switches, smart sensors, and data storage devices. Light-induced spin transition, structure changes, and radical formation could tune the static and dynamic magnetic properties of molecular nanomagnets with high spatial and temporal resolutions. Herein, we summarize the design strategies of photoresponsive molecular nanomagnets and review the recent advances in transition metal/lanthanide molecular nanomagnets with photomagnetic properties. The photoresponsive mechanism based on spin transition, photocyclization, and photogenerated radicals is discussed in detail, providing insights into the photomagnetic properties of molecular nanomagnets for advanced photoresponsive materials. Full article
23 pages, 7960 KB  
Article
High-Precision Dynamic Tracking Control Method Based on Parallel GRU–Transformer Prediction and Nonlinear PD Feedforward Compensation Fusion
by Yimin Wang, Junjie Wang, Kaina Gao, Jianping Xing and Bin Liu
Mathematics 2025, 13(17), 2759; https://doi.org/10.3390/math13172759 - 27 Aug 2025
Viewed by 256
Abstract
In high-precision fields such as advanced manufacturing, semiconductor processing, aerospace assembly, and precision machining, motion control systems often face challenges such as large tracking errors and low control efficiency due to complex dynamic environments. To address this, this paper innovatively proposes a data-driven [...] Read more.
In high-precision fields such as advanced manufacturing, semiconductor processing, aerospace assembly, and precision machining, motion control systems often face challenges such as large tracking errors and low control efficiency due to complex dynamic environments. To address this, this paper innovatively proposes a data-driven feedforward compensation control strategy based on a Parallel Gated Recurrent Unit (GRU)–Transformer. This method does not require an accurate model of the controlled object but instead uses motion error data and controller output data collected from actual operating conditions to complete network training and real-time prediction, thereby reducing data requirements. The proposed feedforward control strategy consists of three main parts: first, a Parallel GRU–Transformer prediction model is constructed using real-world data collected from high-precision sensors, enabling precise prediction of system motion errors after a single training session; second, a nonlinear PD controller is introduced, using the prediction errors output by the Parallel GRU–Transformer network as input to generate the primary correction force, thereby significantly reducing reliance on the main controller; and finally, the output of the nonlinear PD controller is combined with the output of the main controller to jointly drive the precision motion platform. Verification on a permanent magnet synchronous linear motor motion platform demonstrates that the control strategy integrating Parallel GRU–Transformer feedforward compensation significantly reduces the tracking error and fluctuations under different trajectories while minimizing moving average (MA) and moving standard deviation (MSD), enhancing the system’s robustness against environmental disturbances and effectively alleviating the load on the main controller. The proposed method provides innovative insights and reliable guarantees for the widespread application of precision motion control in industrial and research fields. Full article
Show Figures

Figure 1

32 pages, 15679 KB  
Article
New Optical Voltage Sensor Based on Closed-Loop Pockels Cell and Sliding Mode Observer: Theory and Experiments
by Luis Miguel Quispe-Valencia, Ricardo Tokio Higuti, Marcelo Carvalho M. Teixeira and Claudio Kitano
Sensors 2025, 25(17), 5319; https://doi.org/10.3390/s25175319 - 27 Aug 2025
Viewed by 433
Abstract
The increasing power demand in substations and the advancement of smart-grid technology point to optical voltage sensors (OVSs) based on the Pockels effect as an attractive solution to replace traditional coil instrument transformers, due to their advantageous characteristics of lower cost and installation [...] Read more.
The increasing power demand in substations and the advancement of smart-grid technology point to optical voltage sensors (OVSs) based on the Pockels effect as an attractive solution to replace traditional coil instrument transformers, due to their advantageous characteristics of lower cost and installation space, absence of explosion risks, as well as nonlinear effects such as magnetic hysteresis. Regarding the measurement, our OVS presents excellent linearity, 3 kHz bandwidth, and high input impedance. The primary contribution of this paper is to demonstrate, for the first time, the efficiency of a versatile nonlinear digital controller, based on sliding mode theory, for the optical phase demodulation of an OVS. A simple proportional-integral feedback control is employed to prevent signal fading and generate the two quadrature signals required by the observer, which includes the nonlinear digital controller. Experimental results, for 60 Hz sinusoidal voltages with amplitudes exceeding the half-wave voltage of the OVS, prove that peak-to-peak relative errors remain below 0.8%, while total harmonic distortion (THD) relative errors are under 1.5% when compared to a commercial high-voltage probe used as a reference. These results confirm compliance with Class 1.0 of the UNE-EN 60044-7 standard and show strong potential for applications in power quality measurements. Full article
(This article belongs to the Special Issue Advanced Sensing and Measurement Control Applications)
Show Figures

Figure 1

24 pages, 1651 KB  
Article
Attentive Neural Processes for Few-Shot Learning Anomaly-Based Vessel Localization Using Magnetic Sensor Data
by Luis Fernando Fernández-Salvador, Borja Vilallonga Tejela, Alejandro Almodóvar, Juan Parras and Santiago Zazo
J. Mar. Sci. Eng. 2025, 13(9), 1627; https://doi.org/10.3390/jmse13091627 - 26 Aug 2025
Viewed by 250
Abstract
Underwater vessel localization using passive magnetic anomaly sensing is a challenging problem due to the variability in vessel magnetic signatures and operational conditions. Data-based approaches may fail to generalize even to slightly different conditions. Thus, we propose an Attentive Neural Process (ANP) approach, [...] Read more.
Underwater vessel localization using passive magnetic anomaly sensing is a challenging problem due to the variability in vessel magnetic signatures and operational conditions. Data-based approaches may fail to generalize even to slightly different conditions. Thus, we propose an Attentive Neural Process (ANP) approach, in order to take advantage of its few-shot capabilities to generalize, for robust localization of underwater vessels based on magnetic anomaly measurements. Our ANP models the mapping from multi-sensor magnetic readings to position as a stochastic function: it cross-attends to a variable-size set of context points and fuses these with a global latent code that captures trajectory-level factors. The decoder outputs a Gaussian over coordinates, providing both point estimates and well-calibrated predictive variance. We validate our approach using a comprehensive dataset of magnetic disturbance fields, covering 64 distinct vessel configurations (combinations of varying hull sizes, submersion depths (water-column height over a seabed array), and total numbers of available sensors). Six magnetometer sensors in a fixed circular arrangement record the magnetic field perturbations as a vessel traverses sinusoidal trajectories. We compare the ANP against baseline multilayer perceptron (MLP) models: (1) base MLPs trained separately on each vessel configuration, and (2) a domain-randomized search (DRS) MLP trained on the aggregate of all configurations to evaluate generalization across domains. The results demonstrate that the ANP achieves superior generalization to new vessel conditions, matching the accuracy of configuration-specific MLPs while providing well-calibrated uncertainty quantification. This uncertainty-aware prediction capability is crucial for real-world deployments, as it can inform adaptive sensing and decision-making. Across various in-distribution scenarios, the ANP halves the mean absolute error versus a domain-randomized MLP (0.43 m vs. 0.84 m). The model is even able to generalize to out-of-distribution data, which means that our approach has the potential to facilitate transferability from offline training to real-world conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 4102 KB  
Article
Research on Active Defense System for Transformer Early Fault Based on Fiber Leakage Magnetic Field Measurement
by Junchao Wang, Yaqi Liu, Jian Mao, Shaoyong Liu, Zhixiang Tong, Xiangli Deng and Wenbin Tan
Energies 2025, 18(17), 4497; https://doi.org/10.3390/en18174497 - 24 Aug 2025
Viewed by 463
Abstract
In the early faults of transformer windings, there are obvious variation characteristics of the spatial leakage magnetic field. Taking the leakage magnetic field as the fault characteristic quantity can establish an active defense system for transformer defects and faults, thereby increasing the service [...] Read more.
In the early faults of transformer windings, there are obvious variation characteristics of the spatial leakage magnetic field. Taking the leakage magnetic field as the fault characteristic quantity can establish an active defense system for transformer defects and faults, thereby increasing the service life of the equipment. However, the installation method of the optical fiber leakage magnetic field sensor, the principle of leakage magnetic field protection, the research and development of the protection device, and the dynamic model testing of the protection device are all key links in realizing the leakage magnetic field monitoring and active defense system. This paper first analyzes the symmetry of the winding leakage magnetic field, proposes invasive and non-invasive installation methods for optical fiber sensors based on different application scenarios, presents the principle of leakage magnetic field differential protection, and develops a protection device. The feasibility of the protection scheme proposed in this paper was verified through dynamic model experiments, and the early fault active defense system was put into actual on-site operation. Full article
Show Figures

Figure 1

20 pages, 5040 KB  
Article
Optimization and Analysis of Tangential Component Orientations in OPM-MEG Sensor Array
by Wenli Wang, Fuzhi Cao, Nan An, Wen Li, Chunhui Wang, Zhenfeng Gao, Min Xiang and Xiaolin Ning
Bioengineering 2025, 12(9), 903; https://doi.org/10.3390/bioengineering12090903 - 22 Aug 2025
Viewed by 370
Abstract
Optically pumped magnetometers (OPMs) have brought a transformative advancement to magnetoencephalography (MEG), enabling flexible, noncryogenic, and wearable neuroimaging systems. In particular, the development of triaxial OPM sensors allows for simultaneous measurement of full magnetic field vectors, including both radial and additional tangential components. [...] Read more.
Optically pumped magnetometers (OPMs) have brought a transformative advancement to magnetoencephalography (MEG), enabling flexible, noncryogenic, and wearable neuroimaging systems. In particular, the development of triaxial OPM sensors allows for simultaneous measurement of full magnetic field vectors, including both radial and additional tangential components. Previous studies have shown that incorporating tangential components helps enhance the separation between neural signals and external interference, but their optimal configurations remain unclear. This study systematically investigated the impact of tangential component configurations on array sensitivity and the lead field correlation coefficient (R12) in triaxial OPM-MEG sensor arrays, considering tangential component rotations, relative orientations of sensor and source, source depths, and head model types. Based on the above analysis, we proposed an optimization strategy aimed at minimizing R12, referred to as R12-minimization array optimization (RMAO), to explore the optimal configuration of tangential components. The simulation results showed that the proposed method significantly enhanced sensitivity to cortical sources and effectively suppressed external interference, enabling more accurate source localization. This study highlights the critical role of tangential components in improving system performance and provides theoretical foundation and methodological guidance for the design of triaxial OPM-MEG sensor arrays. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Graphical abstract

18 pages, 6610 KB  
Article
Design and Implementation of a Teaching Model for EESM Using a Modified Automotive Starter-Generator
by Patrik Resutík, Matúš Danko and Michal Praženica
World Electr. Veh. J. 2025, 16(9), 480; https://doi.org/10.3390/wevj16090480 - 22 Aug 2025
Viewed by 639
Abstract
This project presents the development of an open-source educational platform based on an automotive Electrically Excited Synchronous Machine (EESM) repurposed from a KIA Sportage mild-hybrid vehicle. The introduction provides an overview of hybrid drive systems and the primary configurations employed in automotive applications, [...] Read more.
This project presents the development of an open-source educational platform based on an automotive Electrically Excited Synchronous Machine (EESM) repurposed from a KIA Sportage mild-hybrid vehicle. The introduction provides an overview of hybrid drive systems and the primary configurations employed in automotive applications, including classifications based on power flow and the placement of electric motors. The focus is placed on the parallel hybrid configuration, where a belt-driven starter-generator assists the internal combustion engine (ICE). Due to the proprietary nature of the original control system, the unit was disassembled, and a custom control board was designed using a Texas Instruments C2000 Digital Signal Processor (DSP). The motor features a six-phase dual three-phase stator, offering improved torque smoothness, fault tolerance, and reduced current per phase. A compact Anisotropic Magneto Resistive (AMR) position sensor was implemented for position and speed measurements. Current sensing was achieved using both direct and magnetic field-based methods. The control algorithm was verified on a modified six-phase inverter under simulated vehicle conditions utilizing a dynamometer. Results confirmed reliable operation and validated the control approach. Future work will involve complete hardware testing with the new control board to finalize the platform as a flexible, open-source tool for research and education in hybrid drive technologies. Full article
Show Figures

Figure 1

29 pages, 9158 KB  
Review
Advancements and Future Prospects of Energy Harvesting Technology in Power Systems
by Haojie Du, Jiajing Lu, Wenye Zhang, Guang Yang, Wenzhuo Zhang, Zejun Xu, Huifeng Wang, Kejie Dai and Lingxiao Gao
Micromachines 2025, 16(8), 964; https://doi.org/10.3390/mi16080964 - 21 Aug 2025
Viewed by 590
Abstract
The electric power equipment industry is rapidly advancing toward “informationization,” with the swift progression of intelligent sensing technology serving as a key driving force behind this transformation, thereby triggering significant changes in global electric power equipment. In this process, intelligent sensing has created [...] Read more.
The electric power equipment industry is rapidly advancing toward “informationization,” with the swift progression of intelligent sensing technology serving as a key driving force behind this transformation, thereby triggering significant changes in global electric power equipment. In this process, intelligent sensing has created an urgent demand for high-performance integrated power systems that feature compact size, lightweight design, long operational life, high reliability, high energy density, and low cost. However, the performance metrics of traditional power supplies have increasingly failed to meet the requirements of modern intelligent sensing, thereby significantly hindering the advancement of intelligent power equipment. Energy harvesting technology, characterized by its long operational lifespan, compact size, environmental sustainability, and self-sufficient operation, is capable of capturing renewable energy from ambient power sources and converting it into electrical energy to supply power to sensors. Due to these advantages, it has garnered significant attention in the field of power sensing. This paper presents a comprehensive review of the current state of development of energy harvesting technologies within the power environment. It outlines recent advancements in magnetic field energy harvesting, electric field energy harvesting, vibration energy harvesting, wind energy harvesting, and solar energy harvesting. Furthermore, it explores the integration of multiple physical mechanisms and hybrid energy sources aimed at enhancing self-powered applications in this domain. A comparative analysis of the advantages and limitations associated with each technology is also provided. Additionally, the paper discusses potential future directions for the development of energy harvesting technologies in the power environment. Full article
(This article belongs to the Special Issue Nanogenerators: Design, Fabrication and Applications)
Show Figures

Figure 1

17 pages, 3055 KB  
Article
Development of an In-Situ Multifrequency Electromagnetic Sensor for Real-Time Microstructure Monitoring in a Continuous Annealing Furnace
by John W. Wilson, Mohsen A. Jolfaei, Lei Zhou, Carl Slater, Claire Davis and Anthony J. Peyton
Sensors 2025, 25(16), 5158; https://doi.org/10.3390/s25165158 - 19 Aug 2025
Viewed by 409
Abstract
The continuous annealing process is widely used in the production of advanced high-strength steels. However, to tightly regulate the mechanical properties of the steel, precise control of processing parameters is needed. Although some techniques are available to monitor the mechanical properties of the [...] Read more.
The continuous annealing process is widely used in the production of advanced high-strength steels. However, to tightly regulate the mechanical properties of the steel, precise control of processing parameters is needed. Although some techniques are available to monitor the mechanical properties of the steel on entry and exit to the furnace, monitoring the evolving microstructure of the steel through installation of sensors in the annealing line is extremely challenging due to the high temperature, high speed of the steel strip and limited space in the furnace. This study presents the development and validation of a multifrequency electromagnetic sensor system for real-time monitoring of microstructural transformations in steel during thermal cycling, intended for deployment in a continuous annealing line. Experiments were conducted on austenitic stainless steel to study the signal response to an increase in resistivity without a change in magnetic permeability. Pure nickel was tested to investigate the response to a change in magnetic permeability and the ferromagnetic-to-paramagnetic transition at its Curie temperature. A ferritic stainless steel was also tested to assess the performance of the system for high-temperature ferromagnetic materials and a higher-temperature ferromagnetic-to-paramagnetic transition. The tests indicate a strong response to material resistivity and permeability changes, with complementary information from different frequencies. Test results are supplemented by a finite element modelling study into the effect of a change in frequency and permeability on sensor response, with a discussion on the implications of experimental and modelling results for future applications. The results show that the developed system has the potential to characterise thermally induced changes in steels, establishing proof of concept for non-destructive, high-temperature electromagnetic sensing in steel processing and setting the foundation for further industrial deployment in phase and recrystallisation monitoring. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

15 pages, 4134 KB  
Article
A Novel Open-Loop Current Sensor Based on Multiple Spin Valve Sensors and Magnetic Shunt Effect with Position Deviation Calibration
by Tianbin Xu, Tian Lan, Jiaye Yu, Yu Fu, Boyan Li, Tengda Yang and Ru Bai
Micromachines 2025, 16(8), 953; https://doi.org/10.3390/mi16080953 - 19 Aug 2025
Viewed by 308
Abstract
To address the demands for wide-range and high-precision current measurement, this paper proposes a novel current sensor design that integrates spin sensing technology, magnetic shunt effect, and a multi-sensor data fusion algorithm. The spin valve sensors accurately detect the magnetic field generated by [...] Read more.
To address the demands for wide-range and high-precision current measurement, this paper proposes a novel current sensor design that integrates spin sensing technology, magnetic shunt effect, and a multi-sensor data fusion algorithm. The spin valve sensors accurately detect the magnetic field generated by the signal current, while the soft magnetic shunt structure attenuates the magnetic field to a level suitable for the spin valve sensors. Consequently, the detection current range can be extended by 6.8 times. Using four spin valve sensors and data fusion with an averaging algorithm, the system can calibrate the errors caused by the displacement or tilt of the current-carrying wire. Experimental results demonstrate that the current sensor achieves a sensitivity of 61.6 mV/V/A, an excellent linearity of 0.55%, and robust measurement performance, as well as strong anti-interference capability. Our study offers a novel solution for high-precision, wide-range current measurement in applications such as those in new energy vehicle electronics and precision electric energy metering. Full article
Show Figures

Figure 1

22 pages, 5916 KB  
Article
Research on Displacement Tracking Device Inside Hybrid Materials Based on Electromagnetic Induction Principle
by Xiansheng Sun, Yixuan Wang, Yu Chen, Mingyue Cao and Changhong Zhou
Sensors 2025, 25(16), 5143; https://doi.org/10.3390/s25165143 - 19 Aug 2025
Viewed by 399
Abstract
Magnetic induction imaging technology, as a non-invasive detection method based on the principle of electromagnetic induction, has a wide range of applications in the field of materials science and engineering with the advantages of no radiation and fast imaging. However, it has not [...] Read more.
Magnetic induction imaging technology, as a non-invasive detection method based on the principle of electromagnetic induction, has a wide range of applications in the field of materials science and engineering with the advantages of no radiation and fast imaging. However, it has not been improved to address the problems of high contact measurement interference and low spatial resolution of traditional strain detection methods in bulk materials engineering. For this reason, this study proposes a magnetic induction detection technique incorporating metal particle assistance and designs a hardware detection system based on an eight-coil sensor to improve the sensitivity and accuracy of strain detection. Through finite element simulation and an image reconstruction algorithm, the conductivity distribution reconstruction was realized. Taking asphalt concrete as the research object, particle-reinforced composite specimens with added metal particles were prepared. On this basis, a hardware detection system with eight-coil sensors was designed and constructed, and the functionality and stability of the system were verified. Using finite element analysis technology, two-dimensional and three-dimensional simulation models were established to focus on analyzing the effects of different coil turns and excitation parameters on the induced voltage signal. The method proposed in this study provides a new technical approach for non-contact strain detection in road engineering and can also be applied to other composite materials. Full article
Show Figures

Figure 1

22 pages, 4664 KB  
Article
Numerical Study of a Novel Kagome-Inspired Photonic Crystal Fiber-Based Surface Plasmon Resonance Biosensor for Detection of Blood Components and Analytical Targets
by Ayushman Ramola, Amit Kumar Shakya, Ali Droby and Arik Bergman
Biosensors 2025, 15(8), 539; https://doi.org/10.3390/bios15080539 - 15 Aug 2025
Viewed by 383
Abstract
This numerical study introduces a surface plasmon resonance (SPR)-based biosensor utilizing a kagome lattice-inspired hollow core photonic crystal fiber (PCF) for the highly sensitive detection of various blood biomarkers and analytical components. The sensor is designed to detect key blood biomarkers such as [...] Read more.
This numerical study introduces a surface plasmon resonance (SPR)-based biosensor utilizing a kagome lattice-inspired hollow core photonic crystal fiber (PCF) for the highly sensitive detection of various blood biomarkers and analytical components. The sensor is designed to detect key blood biomarkers such as water, glucose, plasma, and hemoglobin (Hb), as well as analytical targets including krypton, sylgard, ethanol, polyacrylamide (PA), and bovine serum albumin (BSA), by monitoring shifts in the resonance wavelength (RW). A dual-polarization approach is employed by analyzing both transverse magnetic (TM) and transverse electric (TE) modes. The proposed sensor demonstrates exceptional performance, achieving maximum wavelength sensitivities (Sw) of 18,900 nm RIU−1 for TM pol. and 16,800 nm RIU−1 for TE pol. Corresponding peak amplitude sensitivities (SA) of 71,224 RIU−1 for TM pol. and 58,112 RIU−1 for TE pol. were also observed. The peak sensor resolution (SR) for both modes is on the order of 10−6 RIU, underscoring its high precision. Owing to its enhanced sensitivity, compact design, and robust dual-polarization capability, the proposed biosensor holds strong promise for point-of-care diagnostics and real-time blood component analysis. Full article
(This article belongs to the Special Issue Surface Plasmon Resonance-Based Biosensors and Their Applications)
Show Figures

Graphical abstract

16 pages, 4245 KB  
Article
Van der Waals Magnetic Tunnel Junctions Based on Two-Dimensional 1T-VSe2 and Rotationally Aligned h-BN Monolayer
by Qiaoxuan Zhang, Cong Wang, Wenjie Wang, Rong Sun, Rongjie Zheng, Qingchang Ji, Hongwei Yan, Zhengbo Wang, Xin He, Hongyan Wang, Chang Yang, Jinchen Yu, Lingjiang Zhang, Ming Lei and Zhongchang Wang
Nanomaterials 2025, 15(16), 1246; https://doi.org/10.3390/nano15161246 - 14 Aug 2025
Viewed by 351
Abstract
Magnetic tunnel junctions (MTJs) are pivotal for spintronic applications such as magneto resistive memory and sensors. Two-dimensional van der Waals heterostructures offer a promising platform for miniaturizing MTJs while enabling the twist-angle engineering of their properties. Here, we investigate the impact of twisting [...] Read more.
Magnetic tunnel junctions (MTJs) are pivotal for spintronic applications such as magneto resistive memory and sensors. Two-dimensional van der Waals heterostructures offer a promising platform for miniaturizing MTJs while enabling the twist-angle engineering of their properties. Here, we investigate the impact of twisting the insulating barrier layer on the performance of a van der Waals MTJ with the structure graphene/1T-VSe2/h-BN/1T-VSe2/graphene, where 1T-VSe2 serves as the ferromagnetic electrodes and the monolayer h-BN acts as the tunnel barrier. Using first-principles calculations based on density functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) formalism, we systematically calculate the spin-dependent transport properties for 18 distinct rotational alignments of the h-BN layer (0° to 172.4°). Our results reveal that the tunneling magnetoresistance (TMR) ratio exhibits dramatic, rotation-dependent variations, ranging from 2328% to 24,608%. The maximum TMR occurs near 52.4°. An analysis shows that the twist angle modifies the d-orbital electronic states of interfacial V atoms in the 1T-VSe2 layers and alters the spin polarization at the Fermi level, thereby governing the spin-dependent transmission through the barrier. This demonstrates that rotational manipulation of the h-BN layer provides an effective means to engineer the TMR and performance of van der Waals MTJs. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop