Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = magnetoelastic effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1148 KB  
Article
Three-Dimensional Magneto-Elastic Analysis of Functionally Graded Plates and Shells
by Salvatore Brischetto and Domenico Cesare
J. Compos. Sci. 2025, 9(5), 214; https://doi.org/10.3390/jcs9050214 - 28 Apr 2025
Viewed by 498
Abstract
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the [...] Read more.
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the three equations of equilibrium in three-dimensional form and the three-dimensional divergence equation for the magnetic induction. Governing equations are written in the orthogonal mixed curvilinear reference system (α, β, z) allowing the analysis of several curved and flat geometries (plates, cylindrical shells and spherical shells) thanks to proper considerations of the radii of curvature. The static cases, actuator and sensor configurations and free vibration investigations are proposed. The resolution method uses the imposition of the Navier’s harmonic forms in the two in-plane directions and the exponential matrix methodology in the transverse normal direction. Single-layered and multilayered simply-supported FGPM structures have been investigated. In order to understand the behavior of FGPM structures, numerical values and trends along the thickness direction for displacements, stresses, magnetic potential, magnetic induction and free vibration modes are proposed. In the results section, a first assessment phase is proposed to demonstrate the validity of the formulation and to fix proper values for the convergence of results. Therefore, a new benchmark section is presented. Different cases are proposed for several material configurations, load boundary conditions and geometries. The possible effects involved in this problem (magneto-elastic coupling and effects related to embedded materials and thickness values of the layers) are discussed in depth for each thickness ratio. The innovative feature proposed in the present paper is the exact 3D study of magneto-elastic coupling effects in FGPM plates and shells for static and free vibration analyses by means of a unique and general formulation. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

20 pages, 12305 KB  
Article
The Effect of Graphene Nanofiller on Electromagnetic-Related Primary Resonance of an Axially Moving Nanocomposite Beam
by Liwen Wang, Jie Wang, Jinyuan Hu, Xiaomalong Pu and Liangfei Gong
Symmetry 2025, 17(5), 651; https://doi.org/10.3390/sym17050651 - 25 Apr 2025
Viewed by 441
Abstract
The primary resonance responses of high-performance nanocomposite materials used in spacecraft components in complex electromagnetic field environments were investigated. Simultaneously considering the interfacial effect, agglomeration effect, and percolation threshold, a theoretical model that can predict Young’s modulus and electrical conductivity of graphene nanocomposites [...] Read more.
The primary resonance responses of high-performance nanocomposite materials used in spacecraft components in complex electromagnetic field environments were investigated. Simultaneously considering the interfacial effect, agglomeration effect, and percolation threshold, a theoretical model that can predict Young’s modulus and electrical conductivity of graphene nanocomposites is developed by the effective medium theory (EMT), shear lag theory, and the Mori-Tanaka method. The magnetoelastic vibration equation for an axially moving graphene nanocomposite current-carrying beam was derived via the Hamilton principle. The amplitude-frequency response equations were obtained for different external loading conditions. The study reveals the significant role of graphene concentration, external force, and magnetic field on the system’s primary resonance, highlighting how electromagnetic forces play a critical role similar to external excitation forces. It is shown that the increase in graphene content could lead the system from period-doubling motion into chaotic behavior. Moreover, an enhanced magnetic field strength may lower the minimum graphene concentration needed for period-doubling motion. This work provides new insights into controlling nonlinear vibrations of such systems through applied electromagnetic fields, emphasizing the importance of designing multifunctional nanocomposites in multi-physics coupled environments. The concentration of graphene filler would significantly affect the primary resonance and bifurcation and chaos behaviors of the system. Full article
(This article belongs to the Special Issue Symmetry in Graphene and Nanomaterials)
Show Figures

Figure 1

15 pages, 3240 KB  
Article
Optimized Magnetization Distribution in Body-Centered Cubic Lattice-Structured Magnetoelastomer for High-Performance 3D Force–Tactile Sensors
by Hongfei Hou, Ziyin Xiang, Chaonan Zhi, Haodong Hu, Xingyu Zhu, Baoru Bian, Yuanzhao Wu, Yiwei Liu, Xiaohui Yi, Jie Shang and Run-Wei Li
Sensors 2025, 25(7), 2312; https://doi.org/10.3390/s25072312 - 5 Apr 2025
Viewed by 732
Abstract
Flexible magnetic tactile sensors hold transformative potential in robotics and human–computer interactions by enabling precise force detection. However, existing sensors face challenges in balancing sensitivity, detection range, and structural adaptability for sensing force. This study proposed a pre-compressed magnetization method to address these [...] Read more.
Flexible magnetic tactile sensors hold transformative potential in robotics and human–computer interactions by enabling precise force detection. However, existing sensors face challenges in balancing sensitivity, detection range, and structural adaptability for sensing force. This study proposed a pre-compressed magnetization method to address these limitations by amplifying the magnetoelastic effect through optimized magnetization direction distribution of the elastomer. A body-centered cubic lattice-structured magnetoelastomer featuring regular deformation under compression was fabricated via digital light processing (DLP) to validate this method. Finite element simulations and experimental analyses revealed that magnetizing the material under 60% compression strain optimized magnetization direction distribution, enhancing force–magnetic coupling. Integrating the magnetic elastomer with a hall sensor, the prepared tactile sensor demonstrated a low detection limit (1 mN), wide detection range (0.001–10 N), rapid response/recovery times (40 ms/50 ms), and durability (>1500 cycles). By using machine learning, the sensor enabled accurate 3D force prediction. Full article
(This article belongs to the Special Issue Flexible Pressure/Force Sensors and Their Applications)
Show Figures

Figure 1

21 pages, 4710 KB  
Article
An Amplitude Analysis-Based Magnetoelastic Biosensing Method for Quantifying Blood Coagulation
by Xi Chen, Qiong Wang, Jinan Deng, Ning Hu, Yanjian Liao and Jun Yang
Biosensors 2025, 15(4), 219; https://doi.org/10.3390/bios15040219 - 29 Mar 2025
Viewed by 706
Abstract
Blood coagulation tests are crucial in the clinical management of cardiovascular diseases and preoperative diagnostics. However, the widespread adoption of existing detection devices, such as thromboelastography (TEG) instruments, is hindered by their bulky size, prohibitive cost, and lengthy detection times. In contrast, magnetoelastic [...] Read more.
Blood coagulation tests are crucial in the clinical management of cardiovascular diseases and preoperative diagnostics. However, the widespread adoption of existing detection devices, such as thromboelastography (TEG) instruments, is hindered by their bulky size, prohibitive cost, and lengthy detection times. In contrast, magnetoelastic sensors, known for their low cost and rapid response, have garnered attention for their potential application in various coagulation tests. These sensors function by detecting resonant frequency shifts in response to changes in blood viscosity during coagulation. Nevertheless, the frequency-based detection approach necessitates continuous and precise frequency scanning, imposing stringent demands on equipment design, processing, and analytical techniques. In contrast, amplitude-based detection methods offer superior applicability in many sensing scenarios. This paper presents a comprehensive study on signal acquisition from magnetoelastic sensors. We elucidate the mathematical relationship between the resonant amplitude of the response signal and liquid viscosity, propose a quantitative viscosity measurement method based on the maximum amplitude of the signal, and construct a corresponding sensing device. The proposed method was validated using glycerol solutions, demonstrating a sensitivity of 13.83 V−1/Pa0.5s0.5Kg0.5m−1.5 and a detection limit of 0.0817 Pa0.5s0.5Kg0.5m−1.5. When applied to real-time monitoring of the coagulation process, the resulting coagulation curves and maximum amplitude (MA) parameters exhibited excellent consistency with standard TEG results (R2 values of 0.9552 and 0.9615, respectively). Additionally, other TEG parameters, such as R-time, K-time, and α-angle, were successfully obtained, effectively reflecting viscosity changes during blood coagulation. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

14 pages, 2541 KB  
Article
Magnetoelastic Effect in Ni-Zn Ferrite Under Torque Operation
by Jacek Salach, Maciej Kachniarz, Dorota Jackiewicz and Adam Bieńkowski
Materials 2024, 17(24), 6239; https://doi.org/10.3390/ma17246239 - 20 Dec 2024
Viewed by 817
Abstract
The magnetoelastic effect is known as the dependence between the magnetic properties of the material and applied mechanical stress. The stress might not be applied directly but rather generated by the applied torque. This creates the possibility of developing a torque-sensing device based [...] Read more.
The magnetoelastic effect is known as the dependence between the magnetic properties of the material and applied mechanical stress. The stress might not be applied directly but rather generated by the applied torque. This creates the possibility of developing a torque-sensing device based on the magnetoelastic effect. In this paper, the concept of an axially twisted toroidal magnetic core as a torque-sensing element is considered. Most known works in this field consider the utilization of an amorphous ribbon as the core material. However, Ni-Zn ferrites, exhibiting relatively high magnetostriction, also seem to be promising materials for magnetoelastic torque sensors. This paper introduces a theoretical description of the magnetoelastic effect under torque operation on the basis of total free energy analysis. The methodology of torque application to the toroidal core, utilized previously for coiled cores of amorphous ribbons, was successfully adapted for the bulk ferrite core. For the first time, the influence of torque on the magnetic properties of Ni-Zn ferrite was investigated in a wide range of magnetizing fields. The obtained magnetoelastic characteristics allowed the specification of the magnetoelastic torque sensitivity of the material and the determination of the optimal amplitude of the magnetizing field to maximize this parameter. High sensitivity, in comparison with previously studied amorphous alloys, and monotonic magnetoelastic characteristics indicate that the investigated Ni-Zn ferrite can be utilized in magnetoelastic torque sensors. As such, it can be used in torque-sensing applications required in mechanical engineering or civil engineering, like the evaluation of structural elements exposed to torsion. Full article
(This article belongs to the Collection Magnetoelastic Materials)
Show Figures

Figure 1

20 pages, 8135 KB  
Article
Optimizing Contact-Less Magnetoelastic Sensor Design for Detecting Substances Accumulating in Constrained Environments
by Ioannis Kalyvas and Dimitrios Dimogianopoulos
Designs 2024, 8(6), 112; https://doi.org/10.3390/designs8060112 - 31 Oct 2024
Viewed by 1205
Abstract
The optimization of a contact-less magnetoelastic sensing setup designed to detect substances/agents accumulating in its environment is presented. The setup is intended as a custom-built, low-cost yet effective magnetoelastic sensor for pest/bug detection in constrained places (small museums, labs, etc.). It involves a [...] Read more.
The optimization of a contact-less magnetoelastic sensing setup designed to detect substances/agents accumulating in its environment is presented. The setup is intended as a custom-built, low-cost yet effective magnetoelastic sensor for pest/bug detection in constrained places (small museums, labs, etc.). It involves a short, thin, and flexible polymer slab in a cantilever arrangement, with a short Metglas® 2826 MB magnetoelastic ribbon attached on part of its surface. A mobile phone both supports and supplies low-amplitude vibration to the slab’s free end. When vibrating, the magnetoelastic ribbon generates variable magnetic flux, thus inducing voltage in a contact-less manner into a pick-up coil suspended above the ribbon. This voltage carries specific characteristic frequencies of the slab’s vibration. If substances/agents accumulate on parts of the (suitably coated) slab surface, its mass distribution and, hence, characteristic frequencies change. Then, simply monitoring shifts of such frequencies in the recorded voltage enables the detection of accumulating substances/agents. The current work uses extensive testing via various vibration profiles and load positions on the slab, for statistically evaluating the sensitivity of the mass detection of the setup. It is shown that, although this custom-built substance/agent detector involves limited (low-cost) hardware and a simplified design, it achieves promising results with respect to its cost. Full article
Show Figures

Figure 1

9 pages, 1415 KB  
Article
The Interplay of Core Diameter and Diameter Ratio on the Magnetic Properties of Bistable Glass-Coated Microwires
by Valeria Kolesnikova, Irina Baraban, Alexander Omelyanchik, Larissa Panina and Valeria Rodionova
Micromachines 2024, 15(11), 1284; https://doi.org/10.3390/mi15111284 - 22 Oct 2024
Viewed by 1048
Abstract
Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter d, encased in a glass coating, with a total diameter D [...] Read more.
Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter d, encased in a glass coating, with a total diameter D. In this study, we investigated how the dimensions of both components and their ratio (d/D) influence the magnetization reversal behavior of Fe-based microwires. While previous studies have focused on either d or d/D individually, our research uniquely considered the combined effect of both parameters to provide a comprehensive understanding of their impact on magnetic properties. The metallic core diameter d varied from 10 to 19 µm and the d/D ratio was in the range of 0.48–0.68. To assess the magnetic properties of these microwires, including the shape of the hysteresis loop, coercivity, remanent magnetization, and the critical length of bistability, we employed vibrating sample magnetometry in conjunction with FORC-analysis. Additionally, to determine the critical length of bistability, magnetic measurements were conducted on microwires with various lengths, ranging from 1.5 cm down to 0.05 cm. Our findings reveal that coercivity is primarily dependent on the d/D parameter. These observations are effectively explained through an analysis that considers the competition between magnetostatic and magnetoelastic anisotropy energies. This comprehensive study paves the way for the tailored design of glass-coated microwires for diverse wireless sensing applications. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

14 pages, 2057 KB  
Article
Vibration Characteristics of Magnetostrictive Composite Cantilever Resonator with Nonlocal Effect
by Yan Xu, Xinchun Shang and Ke Xu
Sensors 2024, 24(16), 5390; https://doi.org/10.3390/s24165390 - 21 Aug 2024
Cited by 1 | Viewed by 3997
Abstract
Taking the nonlocal effect into account, the vibration governing differential equation and boundary conditions of a magnetostrictive composite cantilever resonator were established based on the Euler magnetoelastic beam theory. The frequency equation and vibration mode function of the composite cantilever were obtained by [...] Read more.
Taking the nonlocal effect into account, the vibration governing differential equation and boundary conditions of a magnetostrictive composite cantilever resonator were established based on the Euler magnetoelastic beam theory. The frequency equation and vibration mode function of the composite cantilever were obtained by means of the separation of variables method and the analytic solution of ordinary differential equations. The lateral deflection, vibration governing equations, and boundary conditions were nondimensionalized. Furthermore, the natural frequency and modal function of the composite beam were quantitatively analyzed with different nonlocal parameters and transverse geometry dimensions using numerical examples. Compared with the results without considering the nonlocal effect, the influence of the nonlocal effect on the vibration characteristics was analyzed. The numerical results show that the frequency shift and frequency band narrowing of the magnetostrictive cantilever resonator are induced by nonlocal effects. In particular, the high-frequency vibration characteristics, such as vibration amplitude and modal node of the composite beam, are significantly affected. These analysis results can provide a reference for the functional design and optimization of magnetostrictive resonators. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 24722 KB  
Article
The Estimation of the Stress State of the Iron Alloy Strip Material by the Barkhausen Noise Method
by Janusz Krawczyk, Bartosz Sułek, Adam Kokosza, Marcin Lijewski, Nikolaos Kuźniar, Marcin Majewski and Marcin Goły
Crystals 2024, 14(6), 495; https://doi.org/10.3390/cryst14060495 - 24 May 2024
Cited by 2 | Viewed by 1271
Abstract
This paper presents the effect of the complex strain state resulting from the asymmetric rolling of TRB products on the changes and distribution of the stress state in the material. The evaluation of the stress state in the material was based on measurements [...] Read more.
This paper presents the effect of the complex strain state resulting from the asymmetric rolling of TRB products on the changes and distribution of the stress state in the material. The evaluation of the stress state in the material was based on measurements of the magnetoelastic parameter (MP) using the Barkhausen magnetic noise method. The key characteristics of the material under study that enabled the use of changes in the MP parameter to assess the stress state were ferromagnetism and a lack of texture. The first of these enabled the detection of the magnetic signals produced when a magnetic field is applied to the material, causing magnetic domains to align and sudden changes in magnetization. On the other hand, the absence of texture in the material precluded the occurrence of magnetocrystalline anisotropy, which could disturb the results of measurements of the magnetoelastic parameter in the material. In order to determine these features in the material under study, its chemical composition was determined, and a phase analysis was carried out using the X-ray diffraction method. The results of these tests showed the possibility of determining the stress state of the material by means of changes in the values of the MP parameter. On this basis, it was shown that in the TRB strips studied, there is a complex state of stress, the values of which and the nature of the changes depending on the direction of the measurements carried out, as well as on the amount of rolling reduction in the studied area of the strip. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

42 pages, 101951 KB  
Review
Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials
by Weikang Xian, You-Shu Zhan, Amitesh Maiti, Andrew P. Saab and Ying Li
Polymers 2024, 16(10), 1387; https://doi.org/10.3390/polym16101387 - 13 May 2024
Cited by 6 | Viewed by 3664
Abstract
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need [...] Read more.
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need curing reactions. Incorporation of appropriated filler particles, as has been practiced for decades, can significantly enhance mechanical properties of elastomers. However, there are fundamental questions about polymer matrix composites (PMCs) that still elude complete understanding. This is because the macroscopic properties of PMCs depend not only on the overall volume fraction (ϕ) of the filler particles, but also on their spatial distribution (i.e., primary, secondary, and tertiary structure). This work aims at reviewing how the mechanical properties of PMCs are related to the microstructure of filler particles and to the interaction between filler particles and polymer matrices. Overall, soft rubbery matrices dictate the elasticity/hyperelasticity of the PMCs while the reinforcement involves polymer–particle interactions that can significantly influence the mechanical properties of the polymer matrix interface. For ϕ values higher than a threshold, percolation of the filler particles can lead to significant reinforcement. While viscoelastic behavior may be attributed to the soft rubbery component, inelastic behaviors like the Mullins and Payne effects are highly correlated to the microstructures of the polymer matrix and the filler particles, as well as that of the polymer–particle interface. Additionally, the incorporation of specific filler particles within intelligently designed polymer systems has been shown to yield a variety of functional and responsive materials, commonly termed smart materials. We review three types of smart PMCs, i.e., magnetoelastic (M-), shape-memory (SM-), and self-healing (SH-) PMCs, and discuss the constitutive models for these smart materials. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

9 pages, 2034 KB  
Article
The Effect of Magnetoelastic Anisotropy on the Magnetization Processes in Rapidly Quenched Amorphous Nanowires
by Cristian Rotarescu, Sorin Corodeanu, Costică Hlenschi, George Stoian, Horia Chiriac, Nicoleta Lupu and Tibor-Adrian Óvári
Materials 2024, 17(5), 1141; https://doi.org/10.3390/ma17051141 - 29 Feb 2024
Viewed by 1067
Abstract
In this paper, we report for the first time on the theoretical and experimental investigation of Fe77.5Si7.5B15 amorphous glass-coated nanowires by analyzing samples with the same diameters in both cases. The hysteresis curves, the dependence of the switching [...] Read more.
In this paper, we report for the first time on the theoretical and experimental investigation of Fe77.5Si7.5B15 amorphous glass-coated nanowires by analyzing samples with the same diameters in both cases. The hysteresis curves, the dependence of the switching field values on nanowire dimensions, and the effect of the magnetoelastic anisotropy on the magnetization processes were analyzed and interpreted to explain the magnetization reversal in highly magnetostrictive amorphous nanowires prepared in cylindrical shape by rapid quenching from the melt. All the measured samples were found to be magnetically bistable, being characterized by rectangular hysteresis loops. The most important feature of the study is the inclusion of the magnetoelastic anisotropy term that originates in the specific production process of these amorphous nanowires. The results show that the switching field decreases when the nanowire diameter increases and this effect is due to the reduction in anisotropy and in the intrinsic mechanical stresses. Moreover, the obtained results reveal the importance of factors such as geometry and magnetoelastic anisotropy for the experimental design of cylindrical amorphous nanowires for multiple applications in miniaturized devices, like micro and nanosensors. Full article
Show Figures

Figure 1

23 pages, 2834 KB  
Review
Progress and Challenge of Sensors for Dairy Food Safety Monitoring
by Alfonso Fernández González, Rosana Badía Laíño, José M. Costa-Fernández and Ana Soldado
Sensors 2024, 24(5), 1383; https://doi.org/10.3390/s24051383 - 21 Feb 2024
Cited by 11 | Viewed by 3595
Abstract
One of the most consumed foods is milk and milk products, and guaranteeing the suitability of these products is one of the major concerns in our society. This has led to the development of numerous sensors to enhance quality controls in the food [...] Read more.
One of the most consumed foods is milk and milk products, and guaranteeing the suitability of these products is one of the major concerns in our society. This has led to the development of numerous sensors to enhance quality controls in the food chain. However, this is not a simple task, because it is necessary to establish the parameters to be analyzed and often, not only one compound is responsible for food contamination or degradation. To attempt to address this problem, a multiplex analysis together with a non-directed (e.g., general parameters such as pH) analysis are the most relevant alternatives to identifying the safety of dairy food. In recent years, the use of new technologies in the development of devices/platforms with optical or electrochemical signals has accelerated and intensified the pursuit of systems that provide a simple, rapid, cost-effective, and/or multiparametric response to the presence of contaminants, markers of various diseases, and/or indicators of safety levels. However, achieving the simultaneous determination of two or more analytes in situ, in a single measurement, and in real time, using only one working ‘real sensor’, remains one of the most daunting challenges, primarily due to the complexity of the sample matrix. To address these requirements, different approaches have been explored. The state of the art on food safety sensors will be summarized in this review including optical, electrochemical, and other sensor-based detection methods such as magnetoelastic or mass-based sensors. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

10 pages, 2126 KB  
Article
The Two-Domain Model Utilizing the Effective Pinning Energy for Modeling the Strain-Dependent Magnetic Permeability in Anisotropic Grain-Oriented Electrical Steels
by Tadeusz Szumiata, Paweł Rekas, Małgorzata Gzik-Szumiata, Michał Nowicki and Roman Szewczyk
Materials 2024, 17(2), 369; https://doi.org/10.3390/ma17020369 - 11 Jan 2024
Cited by 4 | Viewed by 1292
Abstract
This paper presents a newly proposed domain wall energy-based model of the 2D strain dependence of relative magnetic permeability in highly grain-oriented anisotropic electrical steels. The model was verified utilizing grain-oriented M120-27s electrical steel sheet samples with magnetic characteristics measured by an automated [...] Read more.
This paper presents a newly proposed domain wall energy-based model of the 2D strain dependence of relative magnetic permeability in highly grain-oriented anisotropic electrical steels. The model was verified utilizing grain-oriented M120-27s electrical steel sheet samples with magnetic characteristics measured by an automated experimental setup with a magnetic yoke. The model’s parameters, identified in the differential evolution-based optimization process, enable a better understanding of the interaction between stress-induced anisotropy and magnetocrystalline anisotropy in electrical steels. Moreover, the consequences of the simplified description of grain-oriented magnetocrystalline anisotropy are clearly visible, which opens up the possibility for further research to improve this description. Full article
(This article belongs to the Collection Magnetoelastic Materials)
Show Figures

Figure 1

15 pages, 509 KB  
Article
Zeeman Splitting of Torsional Oscillation Frequencies of Magnetars
by Dmitry Yakovlev
Universe 2023, 9(12), 504; https://doi.org/10.3390/universe9120504 - 30 Nov 2023
Cited by 3 | Viewed by 1682
Abstract
Magnetars form a special class of neutron stars possessing superstrong magnetic fields and demonstrating power flares triggered by these fields. Observations of such flares reveal the presence of quasi-periodic oscillations (QPOs) at certain frequencies; they are thought to be excited in the flares. [...] Read more.
Magnetars form a special class of neutron stars possessing superstrong magnetic fields and demonstrating power flares triggered by these fields. Observations of such flares reveal the presence of quasi-periodic oscillations (QPOs) at certain frequencies; they are thought to be excited in the flares. QPOs carry potentially important information on magnetar structure, magnetic field, and mechanisms of magnetar activity. We calculate frequencies of torsional (magneto-elastic) oscillations of the magnetar crust treating the magnetic field effects in the first order of perturbation theory. The theory predicts the splitting of non-magnetic oscillation frequencies into Zeeman components. Zeeman splitting of the torsional oscillation spectrum of magnetars was suggested, clearly described and estimated by Shaisultanov and Eichler (2009), but their work has not been given considerable attention. To extend it, we suggest the technique of calculating oscillation frequencies, including Zeeman splitting at not too strong magnetic fields for arbitrary magnetic field configuration. Zeeman splitting enriches the oscillation spectrum and simplifies the theoretical interpretation of observations. We calculate several low-frequency oscillations of magnetars with a pure dipole magnetic field in the crust. The results qualitatively agree with the low-frequency QPOs detected in the hyperflare of SGR 1806–20 and in the giant flare of SGR 1900+14. Full article
(This article belongs to the Special Issue A New Horizon of Pulsar and Neutron Star: The 55-Year Anniversary)
Show Figures

Figure 1

29 pages, 20752 KB  
Article
Driving Signal and Geometry Analysis of a Magnetoelastic Bending Mode Pressductor Type Sensor
by Šimon Gans, Ján Molnár, Dobroslav Kováč, Irena Kováčová, Branislav Fecko, Matej Bereš, Patrik Jacko, Jozef Dziak and Tibor Vince
Sensors 2023, 23(20), 8393; https://doi.org/10.3390/s23208393 - 11 Oct 2023
Viewed by 1429
Abstract
The paper deals with a brief overview of magnetoelastic sensors and magnetoelastic sensors used in general for sensing bending forces, either directly or sensing bent structures, and defines the current state of the art. Bulk magnetoelastic force sensors are usually manufactured from transformer [...] Read more.
The paper deals with a brief overview of magnetoelastic sensors and magnetoelastic sensors used in general for sensing bending forces, either directly or sensing bent structures, and defines the current state of the art. Bulk magnetoelastic force sensors are usually manufactured from transformer sheets or amorphous alloys. In praxis, usually, a compressive force is sensed by bulk magnetoelastic sensors; however, in this paper, the sensor is used for the measurement of bending forces, one reason being that the effect of such forces is easily experimentally tested, whereas compressive forces acting on a single sheet make buckling prevention a challenge. The measurement of the material characteristics that served as inputs into a FEM simulation model of the sensor is presented and described. The used material was considered to be mechanically and magnetically isotropic and magnetically nonlinear, even though the real sheet showed anisotropic behavior to some degree. A sinusoidal magnetizing current waveform was used in the experimental part of this paper, which was created by a current source. The effects of various frequencies, amplitudes, and sensor geometries were tested. The experimental part of this paper studies the sensors’ RMS voltage changes to different loadings that bend the sheet out of its plane. The output voltage was the induced voltage in the secondary coil and was further analyzed to compute the linearity and sensitivity of the sensor at the specific current characteristic. It was found that for the given material, the most favorable operating conditions are obtained with higher frequency signals and higher excitation current amplitudes. The linearity of the sensor can be improved by placing the holes of the windings at different angles than 90° and by placing them further apart along the sheet’s length. The current source was created by a simple op-amp voltage-to-current source controlled by a signal generator, which created a stable waveform. It was found that transformer sheet bending sensors with the dimensions described in this paper are suitable for the measurement of small forces in the range of up to 2 N for the shorter sensors and approximately 0.2 N for the longer sensors. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop