Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (255)

Search Parameters:
Keywords = marine colonization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6269 KB  
Review
Lobsters of the Southeastern Levantine Sea and the Northern Red Sea—An Up-to-Date Review
by Ehud Spanier
J. Mar. Sci. Eng. 2025, 13(10), 1952; https://doi.org/10.3390/jmse13101952 - 12 Oct 2025
Viewed by 613
Abstract
Despite the oligotrophic conditions of the southeastern Levantine Sea and northern Red Sea, six lobster species—five slipper lobsters (Scyllaridae) and one spiny lobster (Palinuridae)—maintain permanent, reproducing populations in the study area. Additionally, there are isolated records of four other [...] Read more.
Despite the oligotrophic conditions of the southeastern Levantine Sea and northern Red Sea, six lobster species—five slipper lobsters (Scyllaridae) and one spiny lobster (Palinuridae)—maintain permanent, reproducing populations in the study area. Additionally, there are isolated records of four other sporadic lobster species. In the southeastern Mediterranean, permanent species include the Mediterranean slipper lobster,Scyllarides latus, small European locust lobster, Scyllarus arctus, and pygmy locust lobster, Scyllarus pygmaeus. In the northern Red Sea, they include the clamkiller slipper lobster, Scyllarides tridacnophaga, Lewinsohn locust slipper lobster, Eduarctus lewinsohni, and pronghorn spiny lobster, Panulirus penicillatus. This review synthesizes current knowledge of their biology and ecology, including distribution, habitat, reproduction and development, feeding, predators and anti-predatory adaptations, behavior, sensory modalities, environmental impacts, threats, and conservation. Recent advances focus mainly on larger, commercially valuable species (S. latus, S. tridacnophaga, P. penicillatus), while major gaps remain for oceanic post-embryonic stages and the nektonic nisto postlarva, as well as for smaller, often cryptic species (S. arctus, S. pygmaeus, E. lewinsohni). Addressing these gaps will require targeted research, using modern methodologies, in coastal, deep, and open waters, coupled with citizen-science surveys. While many Indo-Pacific decapods have been established in the Mediterranean, no immigrant lobster species have successfully colonized Levant waters, despite rare records of three non-indigenous species (NIS). However potential NIS predators and shifts in mollusk compositions, the main prey of some native lobsters, may affect the latter. Large lobsters remain targeted by fisheries despite protective regulations, which are not always effective or obeyed. No-take marine protected areas (MPAs) or nature reserves can be effective if sufficiently large and well-managed. Habitat loss from marine construction can be partly compensated by stable, environmentally safe artificial reefs tailored to lobster behavioral ecology. The categories of the studied lobsters’ species in the International Union for Conservation of Nature (IUCN) Red List of Threatened Species, last updated over fifteen years ago, should be re-evaluated. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

35 pages, 3325 KB  
Review
Strategies for Biofouling Control: A Review from an Environmental Perspective of Innovation and Trends
by Virgínia Rayanne Soares de Souza, Camila Ferreira Alves, Larissa Felix de Lucena, Luana Caroline Costa Silva, Everthon de Albuquerque Xavier, Cláudio José Galdino da Silva Jr., Attilio Converti, Renata Laranjeiras Gouveia and Leonie Asfora Sarubbo
Coatings 2025, 15(10), 1185; https://doi.org/10.3390/coatings15101185 - 9 Oct 2025
Viewed by 694
Abstract
Biofouling is the colonization and attachment of sessile organisms on submerged surfaces, whether natural or artificial. The presence of these communities compromises the structural integrity, operational efficiency, and durability of coastal structures, resulting in high economic and environmental costs, especially when conventional removal [...] Read more.
Biofouling is the colonization and attachment of sessile organisms on submerged surfaces, whether natural or artificial. The presence of these communities compromises the structural integrity, operational efficiency, and durability of coastal structures, resulting in high economic and environmental costs, especially when conventional removal methods involve the use of toxic biocides. In this context, this article aimed to evaluate the scientific productivity of the literature related to sustainable antifouling strategies, with an emphasis on technologically and environmentally sustainable solutions, through a bibliometric analysis. We analyzed 160 research articles and 90 patents published between 2004 and 2024. It was observed that, since 2019, there has been an increase in publications about biofouling solutions, with a notable emphasis on China’s leadership in both scientific production and patent filings. This topic has also attracted extensive international collaboration. The most promising strategies for controlling marine biofouling involve a combination of physical, chemical, and biological methods, integrated with sustainable coatings. The growing demand for low-environmental-impact solutions has driven the development of safer, more effective, and economically viable antifouling technologies. Therefore, the integration of traditional techniques with advances in biotechnology represents a strategic path to mitigating the impacts of biofouling in marine environments. Full article
(This article belongs to the Special Issue Eco-Friendly Antifouling Coatings and Paint in Marine Coating Systems)
Show Figures

Figure 1

11 pages, 2198 KB  
Article
Interaction Between Colaconema daviesii and the Microscopic Stages of the Giant Kelp Macrocystis pyrifera Shows Negative Consequences to Gametophytes and Young Sporophytes
by Diego Videla and Cristian Bulboa
Phycology 2025, 5(4), 54; https://doi.org/10.3390/phycology5040054 - 1 Oct 2025
Viewed by 317
Abstract
Colaconema daviesii has been described as an epi-endophyte of red algae. However, it has also been observed in vitro to colonize thalli of Macrocystis pyrifera, a giant kelp classified as a foundational organism of coastal marine ecosystems. This study aimed to determine, [...] Read more.
Colaconema daviesii has been described as an epi-endophyte of red algae. However, it has also been observed in vitro to colonize thalli of Macrocystis pyrifera, a giant kelp classified as a foundational organism of coastal marine ecosystems. This study aimed to determine, through co-cultivations, how C. daviesii affects the early stages of M. pyrifera, specifically gametophyte and sporophyte development. Determined were growth, oogonia formation, and gametophyte fertility, as well as sporophyte growth rate and survival. The results showed that the presence of C. daviesii negatively altered oogonia production and gametophyte fertility. Moreover, the survival of young sporophytes in co-cultures decreased. These findings demonstrate that the early developmental stages of M. pyrifera could be susceptible to infestation by a filamentous red alga, with negative consequences on fitness. Full article
Show Figures

Figure 1

24 pages, 3374 KB  
Article
Characterization of the Meiobenthic Community Inhabiting the Zwin Coastal Lagoon (Belgium, the Netherlands) and the Role of the Sedimentary Environment
by Elisa Baldrighi, Francesca Alvisi, Carl Van Colen, Eleonora Grassi, Linda Catani, Francesca Ape, Claudio Vasapollo, Elena Manini, Jeffrey G. Baguley and Federica Semprucci
Water 2025, 17(18), 2669; https://doi.org/10.3390/w17182669 - 9 Sep 2025
Cited by 1 | Viewed by 721
Abstract
Coastal waters are sensitive habitats that support high biodiversity and provide essential ecosystem goods. Changes in sedimentation regimes due to land-use and engineering activities in the coastal zone affect biodiversity and these habitats’ ecological value. This study aims to characterize the meiobenthic communities [...] Read more.
Coastal waters are sensitive habitats that support high biodiversity and provide essential ecosystem goods. Changes in sedimentation regimes due to land-use and engineering activities in the coastal zone affect biodiversity and these habitats’ ecological value. This study aims to characterize the meiobenthic communities inhabiting the Zwin tidal lagoon, located on the border between Belgium and the Netherlands, and to evaluate to what extent the sedimentological characteristics and the quantity and composition of organic matter influence the composition and distribution of meiofauna. The meiobenthic community showed traits of a well-established population dominated by nematodes, followed by copepods + nauplii. Notably, meiofauna rapidly colonized the area after its opening to the sea in February 2019 (two years before sampling), showing that even very weak tidal currents were sufficient to suspend and transport these animals to the new environment. Our results suggest that the Zwin lagoon is a productive system with high food quality (i.e., PRT/CHO ≥ 1), predominantly of marine origin. Major structural differences in communities were related to the sedimentary environments at the investigated stations and estimations of the quantity of food. The present findings confirm that sedimentary dynamics and depositional processes, through their influence on sediment properties (e.g., grain size) and organic matter’s quantity and composition, shape meiofaunal communities and their vertical and horizontal distributions. Full article
(This article belongs to the Special Issue Marine Biodiversity and Its Relationship with Climate/Environment)
Show Figures

Figure 1

35 pages, 3189 KB  
Article
In Situ and Laboratory Investigation of the Anti-Corrosion and Anti-Fouling Efficacy of an Innovative Biocide-Free Coating for Naval Steels
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Metals 2025, 15(9), 1000; https://doi.org/10.3390/met15091000 - 9 Sep 2025
Viewed by 693
Abstract
This study presents an in situ and laboratory evaluation of an innovative biocide-free nanocomposite coating designed to provide dual anti-corrosion and anti-fouling protection for EH36 naval steel in marine environments. The coating, comprising polyaniline nanorods, titanium dioxide nanoparticles, and Fe3O4 [...] Read more.
This study presents an in situ and laboratory evaluation of an innovative biocide-free nanocomposite coating designed to provide dual anti-corrosion and anti-fouling protection for EH36 naval steel in marine environments. The coating, comprising polyaniline nanorods, titanium dioxide nanoparticles, and Fe3O4-functionalized multiwalled carbon nanotubes embedded in a robust resin matrix, was systematically assessed through electrochemical, microscopic, and field-based methods. Laboratory immersion tests and extended exposures at two Mediterranean sea sites (Thessaloniki and Heraklion) revealed substantial improvements in corrosion resistance and significant suppression of marine biofouling over periods of up to 24 months. Electrochemical measurements demonstrated that coated specimens maintained a corrosion inhibition efficiency exceeding 93% throughout the study, exhibiting markedly lower corrosion current densities and higher charge transfer resistances than uncoated controls. Impedance spectroscopy and equivalent circuit modeling confirmed sustained barrier properties, while digital imaging and qualitative biological assessments showed reduced colonization by both micro- and macrofouling organisms. Comparative analysis with conventional biocidal and alternative eco-friendly coatings underscored the superior durability, environmental compatibility, and anti-fouling efficacy of the developed system. The results highlight the coating’s promise as a sustainable, high-performance solution for long-term protection of naval steels against the combined challenges of corrosion and biofouling in harsh marine settings. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials)
Show Figures

Graphical abstract

24 pages, 3034 KB  
Article
Rhodotorula mucilaginosa Supplementation Could Significantly Affect the Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, Immune Function, and Intestinal Health in Red Claw Crayfish (Cherax quadricarinatus)
by Qin Zhang, Yuguan Liang, Jiqing Li, Luoqing Li, Liuqing Meng, Qinghui Zeng, Dapeng Wang, Rui Wang, Tong Tong, Yongqiang Liu and Huizan Yang
Biology 2025, 14(9), 1164; https://doi.org/10.3390/biology14091164 - 1 Sep 2025
Viewed by 718
Abstract
This study investigated the effects of dietary Rhodotorula mucilaginosa supplementation with different concentrations (0.0 g/kg, 0.1 g/kg, 1.0 g/kg, 10.0 g/kg) on red claw crayfish (Cherax quadricarinatus). Four groups were established: control group (CK, 0.0 g/kg), low-dose group (HL, 0.1 g/kg), [...] Read more.
This study investigated the effects of dietary Rhodotorula mucilaginosa supplementation with different concentrations (0.0 g/kg, 0.1 g/kg, 1.0 g/kg, 10.0 g/kg) on red claw crayfish (Cherax quadricarinatus). Four groups were established: control group (CK, 0.0 g/kg), low-dose group (HL, 0.1 g/kg), medium-dose group (HM, 1.0 g/kg), and high-dose group (HH, 10.0 g/kg). The feeding trial lasted for 56 days. The results showed that, compared with the control group, all supplementation groups exhibited significantly reduced feed conversion ratios (p < 0.05). The HM and HH groups demonstrated significant increases in body length growth rate, specific growth rate, weight gain rate, hepatosomatic index, and survival rate (p < 0.05). All supplemented groups showed significantly enhanced trypsin and lipase activities in intestines and trypsin activity in the hepatopancreas (p < 0.05). The HM and HH groups exhibited elevated α-amylase activity in the hepatopancreas (p < 0.05). Compared with the control group, marine red yeast supplementation reduced colonization of potential pathogens while increasing probiotic abundance, effectively improving intestinal microbiota structure. The HM group significantly improved intestinal villus length, width, and muscular thickness (p < 0.05). All supplemented groups showed considerable upregulation of hepatopancreatic genes related to immunity (heat shock protein 70, down syndrome cell adhesion molecule, crustacean antibacterial peptide, serine proteinase inhibitors, crustacean hyperglycemic hormone, anti-lipopolysaccharide factor, lysozyme, and alkaline phosphatase) and antioxidant defense (superoxide dismutase, glutathione peroxidase, glutathione, and catalase) (p < 0.05). These findings indicate that R. mucilaginosa can significantly enhance digestive enzyme activity, maintain intestinal health, improve antioxidant and immune-related gene expression, and promote growth performance in red claw crayfish, with the HM group (1.0 g/kg R. mucilaginosa) showing optimal promotion effects. Full article
Show Figures

Figure 1

14 pages, 3967 KB  
Article
Converging Transmission Routes of the Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Virus in Uruguay: Phylogeographic Insights into Its Spread Across South America
by Ana Marandino, Gonzalo Tomás, Yanina Panzera, Joaquín Williman, Filipe Zimmer Dezordi, Gabriel Luz Wallau, Sirley Rodríguez, Ramiro Pérez, Lucía Bassetti, Raúl Negro, Valeria Uriarte, Carmen Leizagoyen and Ruben Pérez
Pathogens 2025, 14(8), 793; https://doi.org/10.3390/pathogens14080793 - 8 Aug 2025
Viewed by 1453
Abstract
The highly pathogenic avian influenza H5N1 2.3.4.4b clade virus has caused widespread outbreaks across South America, primarily affecting seabirds, poultry, and marine mammals. The virus likely reached the continent through migratory birds from North America, initially spreading along the Pacific coast before advancing [...] Read more.
The highly pathogenic avian influenza H5N1 2.3.4.4b clade virus has caused widespread outbreaks across South America, primarily affecting seabirds, poultry, and marine mammals. The virus likely reached the continent through migratory birds from North America, initially spreading along the Pacific coast before advancing into Atlantic-bordering countries such as Argentina, Uruguay, and Brazil. This study investigated the dynamics of H5N1 strains in Uruguay during outbreaks from February and October 2023. We analyzed an updated South American database, including a newly sequenced viral genome from a royal tern (Thalasseus maximus) collected at the end of the outbreaks. Phylogeographic reconstruction revealed two distinct South American phylogroups comprising Uruguayan strains: one mainly driven by wild birds and poultry, with the royal tern strain clustering with Brazilian isolates, and another primarily associated with marine mammals, displaying adaptive residues in the PB2 protein. In Uruguay, these phylogroups delineate two main transmission routes: (i) an avian-derived pathway originating in Argentina and (ii) a pinniped-derived route from Chile. Brazil, initially colonized via the Argentine route, later emerged as a secondary source for Uruguay. This host-pathway interplay underscores the virus’s cross-species potential and highlights the need for coordinated regional surveillance within a One Health framework to mitigate zoonotic risks. Full article
(This article belongs to the Special Issue Genomic Epidemiology of High-Consequence Viruses)
Show Figures

Figure 1

15 pages, 1894 KB  
Article
Microbial Communities’ Composition of Supralittoral and Intertidal Sediments in Two East African Beaches (Djibouti Republic)
by Sonia Renzi, Alessandro Russo, Aldo D’Alessandro, Samuele Ciattini, Saida Chideh Soliman, Annamaria Nistri, Carlo Pretti, Duccio Cavalieri and Alberto Ugolini
Microbiol. Res. 2025, 16(8), 173; https://doi.org/10.3390/microbiolres16080173 - 1 Aug 2025
Viewed by 473
Abstract
Tropical sandy beaches are dynamic ecosystems where microbial communities play crucial roles in biogeochemical processes and tracking human impact. Despite their importance, these habitats remain underexplored. Here, using amplicon-based sequencing of bacterial (V3-V4 16S rRNA) and fungal (ITS2) markers, we first describe microbial [...] Read more.
Tropical sandy beaches are dynamic ecosystems where microbial communities play crucial roles in biogeochemical processes and tracking human impact. Despite their importance, these habitats remain underexplored. Here, using amplicon-based sequencing of bacterial (V3-V4 16S rRNA) and fungal (ITS2) markers, we first describe microbial communities inhabiting supralittoral–intertidal sediments of two contrasting sandy beaches in the Tadjoura Gulf (Djibouti Republic): Sagallou-Kalaf (SK, rural, siliceous sand) and Siesta Plage (SP, urban, calcareous sand). Sand samples were collected at low tide along 10 m transects perpendicular to the shoreline. Bacterial communities differed significantly between sites and along the sea-to-land gradient, suggesting an influence from both anthropogenic activity and sediment granulometry. SK was dominated by Escherichia-Shigella, Staphylococcus, and Bifidobacterium, associated with human and agricultural sources. SP showed higher richness, with enriched marine-associated genera such as Hoeflea, Xanthomarina, and Marinobacter, also linked to hydrocarbon degradation. Fungal diversity was less variable, but showed significant shifts along transects. SK communities were dominated by Kluyveromyces and Candida, while SP hosted a broader fungal assemblage, including Pichia, Rhodotorula, and Aureobasidium. The higher richness at SP suggests that calcium-rich sands, possibly due to their buffering capacity and greater moisture retention, offer more favorable conditions for microbial colonization. Full article
Show Figures

Graphical abstract

25 pages, 12443 KB  
Article
Exploring Continental and Submerged Paleolandscapes at the Pre-Neolithic Site of Ouriakos, Lemnos Island, Northeastern Aegean, Greece
by Myrsini Gkouma, Panagiotis Karkanas, Olga Koukousioura, George Syrides, Areti Chalkioti, Evangelos Tsakalos, Maria Ntinou and Nikos Efstratiou
Quaternary 2025, 8(3), 42; https://doi.org/10.3390/quat8030042 - 1 Aug 2025
Viewed by 1016
Abstract
Recent archaeological discoveries across the Aegean, Cyprus, and western Anatolia have renewed interest in pre-Neolithic seafaring and early island colonization. However, the environmental contexts that support such early coastal occupations remain poorly understood, largely due to the submergence of Pleistocene shorelines following post-glacial [...] Read more.
Recent archaeological discoveries across the Aegean, Cyprus, and western Anatolia have renewed interest in pre-Neolithic seafaring and early island colonization. However, the environmental contexts that support such early coastal occupations remain poorly understood, largely due to the submergence of Pleistocene shorelines following post-glacial sea-level rise. This study addresses this gap through an integrated geoarchaeological investigation of the pre-Neolithic site of Ouriakos on Lemnos Island, northeastern Aegean (Greece), dated to the mid-11th millennium BCE. By reconstructing both the terrestrial and submerged paleolandscapes of the site, we examine ecological conditions, resource availability, and sedimentary processes that shaped human activity and site preservation. Employing a multiscale methodological approach—combining bathymetric survey, geomorphological mapping, soil micromorphology, geochemical analysis, and Optically Stimulated Luminescence (OSL) dating—we present a comprehensive framework for identifying and interpreting early coastal settlements. Stratigraphic evidence reveals phases of fluvial, aeolian, and colluvial deposition associated with an alternating coastline. The core findings reveal that Ouriakos was established during a phase of environmental stability marked by paleosol development, indicating sustained human presence. By bridging terrestrial and marine data, this research contributes significantly to the understanding of human coastal mobility during the Pleistocene–Holocene transition. Full article
Show Figures

Figure 1

23 pages, 1285 KB  
Review
An Exploratory Review of Microplastic Pollution, Associated Microbiomes and Pathogens in Water
by Paulina Cholewińska, Konrad Wojnarowski, Hanna Moniuszko, Przemysław Pokorny and Dušan Palić
Appl. Sci. 2025, 15(15), 8128; https://doi.org/10.3390/app15158128 - 22 Jul 2025
Cited by 2 | Viewed by 2135
Abstract
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations [...] Read more.
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations of MPs in surface waters across five continents. The findings confirm that MPs are present in both marine and freshwater systems, with concentrations varying by region, hydrology, and proximity to anthropogenic sources. Polyethylene and polypropylene were identified as the most common polymers, often enriched in river mouths, estuaries, and aquaculture zones. A key focus of this review is the plastisphere—microbial biofilms colonizing MPs—which includes both environmental and pathogenic bacteria such as Vibrio, Pseudomonas, and Acinetobacter. Notably, MPs serve as vectors for the spread of antibiotic resistance genes (ARGs), including sul1, tetA and ermF, and β-lactamase genes like blaCTX-M. This highlights their role in enhancing horizontal gene transfer and microbial dissemination. The results emphasize the need for standardized monitoring protocols and further interdisciplinary research. In light of the One Health approach, understanding the microbial dimension of MP pollution is essential for managing risks to environmental and public health. Full article
Show Figures

Figure 1

18 pages, 1768 KB  
Article
Comparative Risk Assessment of Legionella spp. Colonization in Water Distribution Systems Across Hotels, Passenger Ships, and Healthcare Facilities During the COVID-19 Era
by Antonios Papadakis, Eleftherios Koufakis, Elias Ath Chaidoutis, Dimosthenis Chochlakis and Anna Psaroulaki
Water 2025, 17(14), 2149; https://doi.org/10.3390/w17142149 - 19 Jul 2025
Cited by 1 | Viewed by 2862
Abstract
The colonization of Legionella spp. in engineered water systems constitutes a major public health threat. In this study, a six-year environmental surveillance (2020–2025) of Legionella colonization in five different types of facilities in Crete, Greece is presented, including hotels, passenger ships, primary healthcare [...] Read more.
The colonization of Legionella spp. in engineered water systems constitutes a major public health threat. In this study, a six-year environmental surveillance (2020–2025) of Legionella colonization in five different types of facilities in Crete, Greece is presented, including hotels, passenger ships, primary healthcare facilities, public hospitals, and private clinics. A total of 1081 water samples were collected and analyzed, and the overall positivity was calculated using culture-based methods. Only 16.46% of the samples exceeded the regulatory limit (>103 CFU/L) in the total sample, with 44.59% overall Legionella positivity. Colonization by facility category showed the highest rates in primary healthcare facilities with 85.96%, followed by public hospitals (46.36%), passenger ships with 36.93%, hotels with 38.08%, and finally private clinics (21.42%). The association of environmental risk factors with Legionella positivity revealed a strong effect at hot water temperatures < 50 °C (RR = 2.05) and free chlorine residuals < 0.2 mg/L (RR = 2.22) (p < 0.0001). Serotyping analysis revealed the overall dominance of Serogroups 2–15 of L. pneumophila; nevertheless, Serogroup 1 was particularly prevalent in hospitals, passenger ships, and hotels. Based on these findings, the requirement for continuous environmental monitoring and risk management plans with preventive thermochemical controls tailored to each facility is highlighted. Finally, operational disruptions, such as those experienced during the COVID-19 pandemic, especially in primary care facilities and marine systems, require special attention. Full article
(This article belongs to the Special Issue Legionella: A Key Organism in Water Management)
Show Figures

Figure 1

26 pages, 5137 KB  
Review
Tetracyclic Bis-Piperidine Alkaloids: Structures, Bioinspired Synthesis, Synthesis, and Bioactivities
by Stan Iridio Gómez, Esveidy Isabel Oceguera Nava, Abbas Dadawalla, Dennis Ashong, Guanglin Chen and Qiao-Hong Chen
Molecules 2025, 30(14), 2907; https://doi.org/10.3390/molecules30142907 - 9 Jul 2025
Viewed by 1432
Abstract
Tetracyclic bis-piperidine alkaloids (TcBPAs) are structurally complex natural products primarily isolated from marine sponges of the order Haplosclerida. Distinguished by their intricate architecture, TcBPAs feature two central piperidine units linked by dual macrocyclic rings. These unique structural motifs contribute significantly to their biological [...] Read more.
Tetracyclic bis-piperidine alkaloids (TcBPAs) are structurally complex natural products primarily isolated from marine sponges of the order Haplosclerida. Distinguished by their intricate architecture, TcBPAs feature two central piperidine units linked by dual macrocyclic rings. These unique structural motifs contribute significantly to their biological activities. For example, TcBPAs exhibit antiproliferative activities at low micromolar concentrations across various cancer cell lines, including leukemia, melanoma, breast, colon, fibrosarcoma, and glioblastoma. Despite this promising therapeutic profile, the structural intricacy of TcBPAs has posed considerable challenges to the development of efficient synthetic methodologies, thereby limiting comprehensive exploration and potential clinical advancement. This review highlights recent progress and persisting challenges in the synthesis, structural analysis, and biological evaluation of TcBPAs, underscoring their therapeutic potential in anticancer drug discovery. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds, 3rd Edition)
Show Figures

Figure 1

19 pages, 6683 KB  
Article
Bioinspired Co-Assembled Hydrogels Constructed from Marine Self-Assembling Peptides and Polyphenol Network: Antioxidant and Infected Wound Healing
by Chuhan Wang, Dingyi Yu, Wen Liu, Xiang Zhu, Hanzhe Zhang, Shuang Zheng and Jingdi Chen
Antioxidants 2025, 14(7), 785; https://doi.org/10.3390/antiox14070785 - 26 Jun 2025
Viewed by 983
Abstract
Infectious wounds pose formidable clinical challenges due to hypoxia, exacerbated inflammation, and persistent microbial colonization. To address this, we developed a bioinspired multifunctional hydrogel (PTDPs) through the in situ freeze-thaw co-assembly of polyvinyl alcohol (PVA), tea polyphenols (TP), polydopamine (PDA), and marine-derived self-assembling [...] Read more.
Infectious wounds pose formidable clinical challenges due to hypoxia, exacerbated inflammation, and persistent microbial colonization. To address this, we developed a bioinspired multifunctional hydrogel (PTDPs) through the in situ freeze-thaw co-assembly of polyvinyl alcohol (PVA), tea polyphenols (TP), polydopamine (PDA), and marine-derived self-assembling peptides (AAPs). The resultant PTDP hydrogel formed an intricate hydrogen-bonded network that enhanced mechanical robustness and substrate adhesion. TP and PDA synergistically confer potent antioxidant properties: TP scavenges radicals via phenolic hydroxyl groups while PDA enhances responsiveness to diverse radicals in hypoxic environments. Integrated with AAPs’ pro-regenerative functions and PDA’s broad-spectrum antimicrobial efficacy, this system generates therapeutic synergy. Characterization revealed outstanding physicochemical properties including tunable plasticity, high swelling ratios, and sustained hydration retention. In vitro studies demonstrated potent antioxidant activity, efficient inhibition of Staphylococcus aureus and Escherichia coli proliferation, and cytocompatibility facilitating endothelial cell migration/proliferation. In murine full-thickness infected wound models, the PTDP hydrogel significantly accelerated wound closure, enhanced neovascularization, and improved collagen deposition, underscoring its potential as an innovative therapeutic platform for infected and chronic wounds with strong translational prospects. Full article
Show Figures

Figure 1

22 pages, 3738 KB  
Article
Field Experiments of Mineral Deposition by Cathodic Polarization as a Sustainable Management Strategy for the Reuse of Marine Steel Structures
by Tiziano Bellezze, Giuseppina Colaleo, Pasquale Contestabile, Pietro Forcellese, Simone Ranieri, Nicola Simoncini, Gianni Barucca, Cinzia Corinaldesi, Fabio Conversano, Oriano Francescangeli, Luigi Montalto, Michela Pisani, Simona Sabbatini, Francesco Vita, Diego Vicinanza and Antonio Dell’Anno
Sustainability 2025, 17(13), 5720; https://doi.org/10.3390/su17135720 - 21 Jun 2025
Viewed by 3034
Abstract
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to [...] Read more.
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to both protect steel from corrosion in the absence of a cathodic current, thus operating as an inorganic coating, and provide an effective substrate for colonization by microorganisms still needs to be fully explained. To this end, two identical steel structure prototypes were installed at a depth of 20 m: one was submitted to cathodic polarization, while the other was left under free corrosion for comparison. After 6 months, the current supplied to the electrified structure was interrupted. A multidisciplinary approach was used to analyze the deposits on steel round bars installed in the prototypes over time, in the presence and in the absence of a cathodic current. Different investigation techniques were employed to provide the following information on the deposit: the composition in terms of elements, compounds and macro-biofouling; the morphology; the thickness and the degree of protection estimated by electrochemical impedance spectroscopy (EIS). The results showed that under cathodic polarization, the thickness of the deposit increased to 2.5 mm and then remained almost constant after the current was interrupted. Conversely, the surface impedance decreased from 3 kΩ cm2 to about 1.5 kΩ cm2 at the same time, and the aragonite–brucite ratio also decreased. This indicates a deterioration in the protection performance and soundness of the deposit, respectively. Considering the trends in thickness and impedance together, it can be concluded that the preformed mineral deposit does not undergo generalized deterioration after current interruption, which would result in a reduction in thickness, but rather localized degradation. This phenomenon was attributed to the burrowing action of marine organisms, which created porosities and/or capillary pathways through the deposit. Therefore, the corrosion protection offered by the mineral deposit without a cathodic current is insufficient because it loses its protective properties. However, the necessary current can be quite limited in the presence of the deposit, which in any case provides a suitable substrate for sustaining the colonization and growth of sessile marine organisms, thus promoting biodiversity. Full article
Show Figures

Figure 1

23 pages, 8131 KB  
Article
Marés Stone and Structural Slenderness: A Material-Based Diagnostic Study of Palma Cathedral
by Rubén Rodríguez Elizalde
Constr. Mater. 2025, 5(2), 41; https://doi.org/10.3390/constrmater5020041 - 18 Jun 2025
Viewed by 979
Abstract
The Palma Cathedral, a landmark of Mediterranean Gothic architecture, features some of the most structurally daring slender piers in European ecclesiastical design. This study examines the role of marés stone—a local marine calcarenite—in enabling such architectural feats despite its inherent fragility. A multi-technique, [...] Read more.
The Palma Cathedral, a landmark of Mediterranean Gothic architecture, features some of the most structurally daring slender piers in European ecclesiastical design. This study examines the role of marés stone—a local marine calcarenite—in enabling such architectural feats despite its inherent fragility. A multi-technique, non-invasive diagnostic campaign was conducted, including visual inspection, portable microscopy, and infrared thermography, to evaluate the physical condition and behavior of the stone under structural and environmental stress. The results reveal widespread deterioration processes—granular disintegration, alveolization, biological colonization, and structural cracking—exacerbated by the stone’s high porosity and exposure to marine aerosols and thermal fluctuations. Thermographic analysis highlighted moisture retention zones and hidden material discontinuities, while crack monitoring confirmed long-standing, localized structural strain. These findings demonstrate that the Cathedral’s formal audacity was grounded in a refined empirical understanding of marés’ properties. The study underscores the importance of material-based diagnostics for the sustainable conservation of Gothic heritage architecture. Full article
Show Figures

Figure 1

Back to TopTop