Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,364)

Search Parameters:
Keywords = material stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6605 KB  
Article
Design and Finite Element Analysis of Reducer Housing Based on ANSYS
by Yingshuai Liu, Xueming Gao, Hao Huang and Jianwei Tan
Symmetry 2025, 17(10), 1663; https://doi.org/10.3390/sym17101663 - 6 Oct 2025
Abstract
As a pivotal component of the single-gear reducer, the casing of the miniature car reducer not only safeguards the internal transmission system but also interfaces seamlessly with the external structure. Currently, the structural design of domestic single-stage reducers primarily leans on experience and [...] Read more.
As a pivotal component of the single-gear reducer, the casing of the miniature car reducer not only safeguards the internal transmission system but also interfaces seamlessly with the external structure. Currently, the structural design of domestic single-stage reducers primarily leans on experience and standardized specifications. To guarantee the reliable and stable operation of the casing, a high safety factor is often incorporated, which inevitably results in increased weight and necessitates secure bolting connections. This study presents an innovative scheme to design the flange with the box and realize the lightweight nature of the box by finite element analysis to reduce the manufacturing cost. Based on the working state of maximum torque and maximum speed, this study obtains the stress distribution of each bearing seat under different working conditions and carries out static and dynamic analysis combined with other coupling constraints. The analysis results show that the structure has high stiffness and strength, which is suitable for lightweight design, and that the first ten spontaneous vibration frequencies are far away from the excitation frequency of the inner and outer boundary, avoiding the resonance phenomenon. Moreover, this study proposes a new structure design method, which effectively improves the stiffness of the structure. Through the calculation of volume ratio before and after three optimizations, the optimal volume ratio of 30% is selected, unnecessary materials around the bearing seat are removed, and the layout of ribs is determined. After structural optimization, the weight of the shell is reduced by 10.2%, and both the static and dynamic characteristics meet the design requirements. Full article
Show Figures

Figure 1

14 pages, 631 KB  
Article
The Impact of Obesity on the Left Atrium and Arrhythmia Recurrence in Patients with Atrial Fibrillation Undergoing Ablation
by Beata Uziębło-Życzkowska, Marek Kiliszek, Krystian Krzyżanowski and Paweł Krzesiński
J. Clin. Med. 2025, 14(19), 7043; https://doi.org/10.3390/jcm14197043 - 5 Oct 2025
Abstract
Objectives: Obesity and atrial fibrillation (AF) are strongly linked and are both associated with significant left atrial (LA) pathology. This study aimed to assess differences in LA size and function between obese and non-obese AF patients and to evaluate AF recurrence in [...] Read more.
Objectives: Obesity and atrial fibrillation (AF) are strongly linked and are both associated with significant left atrial (LA) pathology. This study aimed to assess differences in LA size and function between obese and non-obese AF patients and to evaluate AF recurrence in both groups. Materials and Methods: We retrospectively analyzed patients undergoing first-time ablation for AF. Obesity was defined as body mass index ≥30 kg/m2, and patients were divided accordingly into obese and non-obese groups. Results: Among 672 patients (median age of 66 years; 39.1% women), 308 (45.8%) were obese. Obese patients had significantly larger LA dimensions (LA area, LA volume, and LAVI indexed to height2 (but not that indexed to body surface area (BSA)); p < 0.001), as well as higher LA-pressure-related parameters (LA stiffness index (p = 0.004), E-wave velocity (p = 0.002), and E/e′ ratio (p < 0.001)) and invasively measured mean LA pressure (p < 0.0001). However, there were no significant differences in parameters directly reflecting LA function, such as LA emptying fraction, LA reservoir strain, or LA appendage velocity. These findings remained consistent in the sinus rhythm subgroup (n = 374). The 1-year AF recurrence rate did not differ between obese and non-obese groups (data available for 73.8% (496) patients; p = 0.40), regardless of baseline rhythm. Conclusions: In AF patients undergoing their first ablation, obesity was associated with a larger LA size and higher LA pressure. In obese individuals, indexing LA dimensions to height2 seems to better reflect LA enlargement than indexing to BSA. LA function and AF recurrence rates after a 1-year follow-up period were similar between obese and non-obese patients. Full article
(This article belongs to the Special Issue Clinical Aspects of Cardiac Arrhythmias and Arrhythmogenic Disorders)
Show Figures

Figure 1

11 pages, 3165 KB  
Article
Study of the Deformation by Compression of a Premolar with and Without Ceramic Restoration Using Speckle Optical Interferometry
by Erik Baradit, Jorge Gutiérrez, Miguel Yáñez, Claudio Sumonte and Cristhian Aguilera
Appl. Sci. 2025, 15(19), 10708; https://doi.org/10.3390/app151910708 - 4 Oct 2025
Abstract
This work aimed to quantify axial deformations of a human premolar during occlusion with its antagonist and to compare them with the same premolar restored with a ceramic crown. The deformations were put under stress using a mechanical press with a force ranging [...] Read more.
This work aimed to quantify axial deformations of a human premolar during occlusion with its antagonist and to compare them with the same premolar restored with a ceramic crown. The deformations were put under stress using a mechanical press with a force ranging from 1 to 100 Newtons. These deformations were quantified using the optical interferometry technique with a laser source (633 nm, 0.95 mW). Using a CMOS camera, interference fringes were obtained, stored, and subsequently processed. The premolars were restored with Cerasmart GC ceramic, using the CAD-CAM system. The average deformations of healthy premolars were found to be in a range of 0.69 to 1.74 µm, while the restored ones were deformed in a range of 0.53 to 1.10 µm. The results of this work showed that the Cerasmart ceramic material had similar properties to those of the natural tooth for small forces. However, for higher forces, the ceramics increased the coronal stiffness of the tooth. This modified the optimal combination of stiffness, strength, and resilience between the enamel and dentin, causing a decrease in the tooth’s ability to dissipate energy; therefore, the tooth could receive more stress. The observed mechanical properties lead to the conclusion that the Cerasmart material can be indicated for the restoration of anterior and premolar teeth in most cases where a fixed prosthesis is required. Full article
Show Figures

Figure 1

29 pages, 8366 KB  
Article
Behavior of Composite Concrete-Filled Double-Web Steel Beams: A Numerical and Experimental Investigation
by Abbas Jalal Kaishesh, Ghazi Jalal Kashesh, Sadjad Amir Hemzah, Bahaa Hussain Mohammed, Anmar Dulaimi and Luís Filipe Almeida Bernardo
J. Compos. Sci. 2025, 9(10), 541; https://doi.org/10.3390/jcs9100541 - 3 Oct 2025
Abstract
This study investigates the structural behavior of composite double-web steel beams filled with different types of concrete made from a combination of recycled concrete aggregates and normal aggregates. The research includes both experimental and numerical analyses. Seven specimens were tested under symmetrical two-point [...] Read more.
This study investigates the structural behavior of composite double-web steel beams filled with different types of concrete made from a combination of recycled concrete aggregates and normal aggregates. The research includes both experimental and numerical analyses. Seven specimens were tested under symmetrical two-point loading, all having identical geometric properties: a span length of 1100 mm, flange plates 120 mm wide and 6 mm thick, and web plates 3 mm thick and 188 mm deep. The specimens were divided into two groups, with a control beam without concrete infill. Group one included beams filled with normal concrete in different locations (middle region, two sides, and fully filled), while group two mirrored the same fill locations but used recycled concrete instead. The experimental results showed that using normal concrete improved the ultimate load by 10.19% to 55.30%, with the fully filled beam achieving a maximum increase in ductility of about 568% and a stiffness improvement ranging from 2.6% to 39% compared to the control beam. Beams filled with recycled concrete showed increases in ultimate load from 9.52% to 42.03%, ductility improvements of up to 380%, and stiffness enhancements between 4.5% and 8.03%. Numerical modeling using ABAQUS (2021) showed excellent agreement with the experimental results, with differences in ultimate load and maximum deflection averaging 5.5% and 7.9%, respectively. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

16 pages, 2994 KB  
Article
Stiffness Degradation of Expansive Soil Stabilized with Construction and Demolition Waste Under Wetting–Drying Cycles
by Haodong Xu and Chao Huang
Coatings 2025, 15(10), 1154; https://doi.org/10.3390/coatings15101154 - 3 Oct 2025
Abstract
To address the challenge of long-term stiffness retention of subgrades in humid–hot climates, this study evaluates expansive soil stabilized with construction and demolition waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and wetting–drying histories. Basic physical [...] Read more.
To address the challenge of long-term stiffness retention of subgrades in humid–hot climates, this study evaluates expansive soil stabilized with construction and demolition waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and wetting–drying histories. Basic physical and swelling tests identified an optimal CDW incorporation of about 40%, which was then used to prepare specimens subjected to controlled. Wetting–drying cycles (0, 1, 3, 6, 10) and multistage cyclic triaxial loading across confining and deviatoric stress combinations. Mr increased monotonically with both stresses, with stronger confinement hardening at higher deviatoric levels; with cycling, Mr exhibited a rapid then gradual degradation, and for most stress combinations, the ten-cycle loss was 20%–30%, slightly mitigated by higher confinement. Grey relational analysis ranked influence as follows: the number of wetting–drying cycles > deviatoric stress > confining pressure. A Lytton model, based on a modified prediction method, accurately predicted Mr across conditions (R2 ≈ 0.95–0.98). These results integrate stress dependence with environmental degradation, offering guidance on material selection (approximately 40% incorporation), construction (adequate compaction), and maintenance (priority control of early moisture fluctuations), and provide theoretical support for durable expansive soil subgrades in humid–hot regions. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

20 pages, 6667 KB  
Article
Numerical Simulation Analysis of Twin-PBL Rubber-Ring Shear Connector
by Jun Wei, Peiwen Chen and Qiaowen Hu
Buildings 2025, 15(19), 3567; https://doi.org/10.3390/buildings15193567 - 2 Oct 2025
Abstract
In recent years, a growing number of studies have focused on improving shear distribution and mitigating stress concentration in PBL shear connectors through the incorporation of composite materials. However, research on Twin-PBL shear connectors remains limited. Therefore, this study employed the finite element [...] Read more.
In recent years, a growing number of studies have focused on improving shear distribution and mitigating stress concentration in PBL shear connectors through the incorporation of composite materials. However, research on Twin-PBL shear connectors remains limited. Therefore, this study employed the finite element method to develop 23 finite element models to evaluate the shear performance of the Twin-PBL rubber-ring shear connector. The results indicate that the Twin-PBL rubber-ring shear connector with a 4 mm thick rubber ring exhibits a 7.5% decrease in shear force and a 71.1% reduction in shear stiffness compared to the conventional Twin-PBL shear connector. Furthermore, parametric analysis reveals that increasing the thickness of the rubber ring reduces both shear capacity and shear stiffness, while higher concrete strength, greater perforated rebar strength, and larger perforated rebar diameter enhance both shear capacity and stiffness. In contrast, the strength of the perfobond steel plate has minimal influence. Based on these findings, a predictive formula is proposed to estimate the shear capacity of the Twin-PBL rubber-ring shear connector. Full article
Show Figures

Figure 1

15 pages, 3467 KB  
Article
Repeated Impact Performance of Carbon Spread-Tow Woven Stitched Composite with Anti-Sandwich Structure
by Minrui Jia, Jingna Su, Ao Liu, Teng Fan, Liwei Wu, Kunpeng Luo, Qian Jiang and Zhenkai Wan
Polymers 2025, 17(19), 2670; https://doi.org/10.3390/polym17192670 - 2 Oct 2025
Abstract
Spread-tow woven fabrics (STWs) have attracted considerable attention owing to their thin-layered characteristics, high fiber strength utilization rate and superior designability, finding wide application in the aerospace field. To meet the application requirements for materials with high specific strength/specific modulus in the aerospace [...] Read more.
Spread-tow woven fabrics (STWs) have attracted considerable attention owing to their thin-layered characteristics, high fiber strength utilization rate and superior designability, finding wide application in the aerospace field. To meet the application requirements for materials with high specific strength/specific modulus in the aerospace field, this study designed an anti-sandwich structured composite with high specific load-bearing capacity. Herein, the core layer was a load-bearing structure composed of STW, while the surface layers were hybrid lightweight structures made of STW and nonwoven (NW) felt. Repeated impact test results showed that increasing the thickness ratio of the core layer enhanced the impact resistant stiffness of the overall structure, whereas increasing the proportion of NW felt in the surface layers improved the energy absorption of the composites but reduced their load-bearing stiffness and strength. The composite exhibited superior repeated impact resistance, achieving a peak impact load of 17.43 kN when the thickness ratio of the core layer to the surface layers was 2:1 and the hybrid ratio of the surface layers was 3:1. No penetration occurred after 20 repeated impacts at the 50 J or 3 repeated impacts at 100 J. Meanwhile, both the maximum displacement and impact duration increased, whereas the bending stiffness declined as the number of impacts increased. The failure mode was mainly characterized by progressive interfacial cracking in the surface layers and fracture in the core layer. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 1562 KB  
Article
Low-Velocity Impact Behavior of PLA BCC Lattice Structures: Experimental and Numerical Investigation with a Novel Dimensionless Index
by Giuseppe Iacolino, Giuseppe Mantegna, Emilio V. González, Giuseppe Catalanotti, Calogero Orlando, Davide Tumino and Andrea Alaimo
Materials 2025, 18(19), 4574; https://doi.org/10.3390/ma18194574 - 1 Oct 2025
Abstract
Lattice structures are lightweight architected materials particularly suitable for aerospace and automotive applications due to their ability to combine mechanical strength with reduced mass. Among various topologies, Body-Centered Cubic (BCC) lattices are widely employed for their geometric regularity and favorable strength-to-weight ratio. Advances [...] Read more.
Lattice structures are lightweight architected materials particularly suitable for aerospace and automotive applications due to their ability to combine mechanical strength with reduced mass. Among various topologies, Body-Centered Cubic (BCC) lattices are widely employed for their geometric regularity and favorable strength-to-weight ratio. Advances in Additive Manufacturing (AM) have enabled the precise and customizable fabrication of such complex architectures, reducing material waste and increasing design flexibility. This study investigates the low-velocity impact behavior of two polylactic acid (PLA)-based BCC lattice panels differing in strut diameter: BCC1.5 (1.5 mm) and BCC2 (2 mm). Experimental impact tests and finite element simulations were performed to evaluate their energy absorption () capabilities. In addition to conventional global performance indices, a dimensionless parameter, is introduced to quantify the ratio between local plastic indentation and global displacement, allowing for a refined characterization of deformation modes and structural efficiency. Results show that BCC1.5 absorbs more energy than BCC2, despite the latter’s higher stiffness. This suggests that thinner struts enhance energy dissipation under dynamic loading. Despite minor discrepancies, numerical simulations provide accurate estimations of and support the robustness of the index within the examined configuration, highlighting its potential to deformation heterogeneity. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
17 pages, 4463 KB  
Article
Proposal for Self-Degrading Power Cables Incorporating Graphitic Carbon Nitride to Address Electronic Waste Challenges and Evaluation of Decomposition Efficiencies
by Satoshi Horikoshi, Kanon Hirota and Nick Serpone
Molecules 2025, 30(19), 3951; https://doi.org/10.3390/molecules30193951 - 1 Oct 2025
Abstract
This study addresses challenges in recycling electronic waste (e-waste) by developing a self-degrading electrical wire coating material using graphitic carbon nitride (g-C3N4). Two types, melamine-derived carbon nitride (MCN) and urea-derived carbon nitride (UCN), were synthesized and evaluated for their [...] Read more.
This study addresses challenges in recycling electronic waste (e-waste) by developing a self-degrading electrical wire coating material using graphitic carbon nitride (g-C3N4). Two types, melamine-derived carbon nitride (MCN) and urea-derived carbon nitride (UCN), were synthesized and evaluated for their photocatalytic activity by measuring the decolorization rate of rhodamine-B (RhB). UCN demonstrated superior photocatalytic performance compared to the widely used TiO2. When incorporated into PVC film, UCN achieved a maximum weight loss of 68% in photodegradation tests after 40 days of irradiation, contributing to reduced environmental impact. A UCN-mixed coating for a vinyl-insulated cable prototype showed that photodecomposition in water facilitated copper wire separation. The study also indicated that water is vital for the decomposition process, while UCN enhanced stiffness and tensile strength of the material without compromising elongation and electrical insulation properties. Full article
(This article belongs to the Special Issue Solid Waste and Fly Ash Chemical Treatment Methods—2nd Edition)
Show Figures

Figure 1

42 pages, 6991 KB  
Review
Phenomenological Analysis of Percolation Phenomena in Porous Low-k Dielectrics
by Mungunsuvd Gerelt-Od, Md Rasadujjaman, Valerii E. Arkhincheev, Konstantin A. Vorotilov and Mikhail R. Baklanov
Coatings 2025, 15(10), 1138; https://doi.org/10.3390/coatings15101138 - 1 Oct 2025
Abstract
This work reviews percolation-related phenomena in porous organosilica glass (OSG) low-k dielectrics and their critical impact on mass transport, electrical conductivity, mechanical integrity, and dielectric breakdown. We discuss how leakage current arises from the formation of minimal percolating conductive paths along pores [...] Read more.
This work reviews percolation-related phenomena in porous organosilica glass (OSG) low-k dielectrics and their critical impact on mass transport, electrical conductivity, mechanical integrity, and dielectric breakdown. We discuss how leakage current arises from the formation of minimal percolating conductive paths along pores and defect chains, while dielectric breakdown requires system-spanning pore connectivity, resulting in a higher effective percolation threshold. Mechanical properties similarly degrade when pores coalesce into a connected network, exhibiting multiple percolation thresholds due to both chemical network modifications and porosity. Experimental trends demonstrate that leakage current increases sharply at low porosity, whereas breakdown voltage and mechanical stiffness collapse at higher porosity levels (~20%–30%). We highlight that distinct percolation classes govern transport, mechanical, and nonlinear phenomena, with correlation length and diffusion timescales providing a unified framework for understanding these effects. The analysis underscores the fundamental role of network connectivity in determining the performance of organosilicate glass-based ultra-low-k dielectrics and offers guidance for material design strategies aimed at simultaneously improving electrical, mechanical, and chemical robustness. Full article
Show Figures

Figure 1

18 pages, 5138 KB  
Article
Model Order Reduction for Rigid–Flexible–Thermal Coupled Viscoelastic Multibody System via the Modal Truncation with Complex Global Modes
by Qinglong Tian, Chengyu Pan, Zhuo Liu and Xiaoming Chen
Actuators 2025, 14(10), 479; https://doi.org/10.3390/act14100479 - 30 Sep 2025
Abstract
A spacecraft is a typical rigid–flexible–thermal coupled multibody system, and the study of such rigid–flexible–thermal coupled systems has important engineering significance. The dissipation effect of material damping has a significant impact on the response of multibody system dynamics. Owing to the increasing multitude [...] Read more.
A spacecraft is a typical rigid–flexible–thermal coupled multibody system, and the study of such rigid–flexible–thermal coupled systems has important engineering significance. The dissipation effect of material damping has a significant impact on the response of multibody system dynamics. Owing to the increasing multitude of computational dimensions, computational efficiency has remained a significant bottleneck hindering their practical applications in engineering. However, due to the fact that the stiffness matrix is a highly nonlinear function of generalized coordinates, traditional methods of modal truncation are difficult to apply directly. In this study, the absolute nodal coordinate formulation (ANCF) is used to uniformly describe the modeling of rigid–flexible–thermal coupled multibody systems with large-scale motion and deformation. The constant tangent stiffness matrix and damping matrix can be obtained by locally linearizing the dynamic equation and heat transfer equations, which are based on the Taylor expansion. The dynamic and heat transfer equations obtained by reducing the order of complex modes are transformed into a unified first-order equation, which is solved simultaneously. The orthogonal complement matrix of the constraint equation is proposed to eliminate the nonlinear constraints. A strategy based on energy preservation was proposed to update the reduced-order basis vectors, which improved the calculation accuracy and efficiency. Finally, a systematic method for rigid–flexible–thermal coupled viscoelastic multibody systems via modal truncation with complex global modes is developed. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

19 pages, 5560 KB  
Article
Application of a Kdamper with a Magnetorheological Damper for Control of Longitudinal Vibration of Propulsion Shaft System
by Kangwei Zhu, Haiyu Zhang, Weiguo Wu and Hao Liang
Appl. Sci. 2025, 15(19), 10564; https://doi.org/10.3390/app151910564 - 30 Sep 2025
Abstract
Ship noise not only has an impact on crew comfort, but also causes damage to the marine environment. Longitudinal vibration of propulsion shaft system is one of the most important causes of ship noise, so in order to indirect control the vibration noise, [...] Read more.
Ship noise not only has an impact on crew comfort, but also causes damage to the marine environment. Longitudinal vibration of propulsion shaft system is one of the most important causes of ship noise, so in order to indirect control the vibration noise, the development of a propulsion shaft system vibration controller is an effective method. In this paper, a Kdamper with a magnetorheological damper (Kdamper-MRD) is proposed to control the longitudinal vibrations transmitted along the propulsion shaft system. The vibration characteristics of the propulsion shaft system are analyzed using the transfer matrix method and the optimal Kdamper-MRD design parameters for controlling the target modes are given. Specific structural design parameters are given as well as material selection. The magnetic field distribution and the magnitude of the output damping force of the MRD are obtained by the simulation method, and the negative stiffness characteristics of the disk spring are also discussed. An on–off current switching control strategy is proposed to further improve the vibration damping performance of the Kdamper-MRD. A comparison with the traditional DVA under simple harmonic excitation and random excitation proves that the Kdamper-MRD has better low-frequency vibration damping performance and is able to attenuate longitudinal vibration of the axle system in the whole frequency domain. Full article
(This article belongs to the Special Issue Vibration Problems in Engineering Science)
Show Figures

Figure 1

11 pages, 634 KB  
Article
Effects of Sports Shoe Drop on Walking Biomechanics: A Cross-Sectional Observational Dynamometric Study
by Raquel Fragua-Blanca, Natalia Tovaruela-Carrión, Paula Cobos-Moreno, Manuel Jesús Tena-León and Elena Escamilla-Martínez
Appl. Sci. 2025, 15(19), 10515; https://doi.org/10.3390/app151910515 - 28 Sep 2025
Abstract
Sports footwear is widely used across a range of physical activities. A key factor distinguishing running shoes from other types of footwear is the “drop,” the millimeter difference between the heel and the forefoot. This study aimed to analyze the influence of different [...] Read more.
Sports footwear is widely used across a range of physical activities. A key factor distinguishing running shoes from other types of footwear is the “drop,” the millimeter difference between the heel and the forefoot. This study aimed to analyze the influence of different drops (0, 5, and 10 mm) on ground reaction forces during walking and to examine the effects of sex and body mass index (BMI) under these conditions. An observational, descriptive, and cross-sectional study was conducted with 117 participants (56 men and 61 women). The Dinascan/IBV® dynamometric platform (Instituto de Biomecánica de Valencia, Valencia, Spain) was used to measure ground reaction forces during walking (braking, take-off, propulsion, and swing forces), walking speed, and stance time. The descriptive analysis revealed comparable values for the left and right limbs, with slightly higher values observed in the right limb. Statistically significant differences were found in stance time, braking force, and swing force between the 0 mm and 10 mm drop conditions. Take-off force showed highly significant differences when comparing the 0–5 mm and 0–10 mm drop conditions. Sex-based differences were observed in all variables at the initial proposed drop condition of 0 mm, except for walking speed, possibly due to anatomical and physiological differences. Significant differences were found in stance time at 0 mm drop, braking force, and propulsion force. Highly significant values were obtained for take-off force and during the swing phase. A strong correlation was found between ground reaction forces and BMI with the different proposed drops in all forces studied, except for the support force, where a moderate correlation was obtained. Although shoe drop was found to influence ground reaction forces in this study, it is one of several factors that affect gait biomechanics. Other footwear characteristics, such as sole stiffness, material composition, weight, and elasticity, also play important roles in walking performance. Therefore, shoe drop should be considered an important but not exclusive parameter when selecting footwear. However, these results are limited to healthy young adults and may not be generalizable to other age groups or populations. Full article
(This article belongs to the Special Issue Applied Biomechanics for Sport Performance and Injury Rehabilitation)
Show Figures

Figure 1

17 pages, 3270 KB  
Article
Structural Topology Optimisation of a Composite Wind Turbine Blade Under Various Constraints
by Mohamed Noufel Ajmal Khan and Mertol Tüfekci
Wind 2025, 5(4), 23; https://doi.org/10.3390/wind5040023 - 28 Sep 2025
Abstract
This study investigates the topology optimisation of a composite wind turbine blade with the objective of improving its structural performance under static and dynamic constraints. Two distinct optimisation strategies—based on static deformation limits and modal frequency enhancement—are employed to achieve mass reduction while [...] Read more.
This study investigates the topology optimisation of a composite wind turbine blade with the objective of improving its structural performance under static and dynamic constraints. Two distinct optimisation strategies—based on static deformation limits and modal frequency enhancement—are employed to achieve mass reduction while maintaining or improving mechanical performance. The optimisation process incorporates modal characterisation of the first ten natural frequencies and a detailed static stress analysis. Results indicate that the optimised designs achieve a notable increase in the fundamental natural frequency of the blade—from 2.32 Hz to 2.99 Hz—and reduce the overall mass by approximately 49%, lowering it from 4.55 × 105 kg to around 2.34 × 105 kg compared to the original configuration. In particular, the optimised geometry offers improved stiffness and a more uniform stress distribution, especially in the flapwise bending and torsional modes. Higher-order torsional frequencies remain well-separated from typical excitation sources, minimising resonance risks. These findings highlight the effectiveness of constraint-driven topology optimisation in enhancing structural performance and reducing material usage in wind turbine blade design. Full article
Show Figures

Figure 1

17 pages, 17502 KB  
Article
Multiscale Compressive Failure Analysis of Wrinkled Laminates Based on Multiaxial Damage Model
by Jian Shi, Guang Yang, Nan Sun, Jie Zheng, Jingjing Qian, Wenjia Wang and Kun Song
Materials 2025, 18(19), 4503; https://doi.org/10.3390/ma18194503 - 27 Sep 2025
Abstract
The waviness defect, a common manufacturing flaw in composite structures, can significantly impact the mechanical performance. This study investigates the effects of wrinkles on the ultimate load and failure modes of two Carbon Fiber Reinforced Composite (CFRC) laminates through compressive experiments and simulation [...] Read more.
The waviness defect, a common manufacturing flaw in composite structures, can significantly impact the mechanical performance. This study investigates the effects of wrinkles on the ultimate load and failure modes of two Carbon Fiber Reinforced Composite (CFRC) laminates through compressive experiments and simulation analyses. The laminates have stacking sequences of [0]10S and [45/0/−45/90/45/0/−45/0/45/0]S. Each laminate includes four different waviness ratios (the ratio of wrinkle amplitude to laminate thickness) of 0%, 10%, 20% and 30%. In the simulation, a novel multiaxial progressive damage model is implemented via the user material (UMAT) subroutine to predict the compressive failure behavior of wrinkled composite laminates. This multiscale analysis framework innovatively features a 7 × 7 generalized method of cells coupled with stress-based multiaxial Hashin failure criteria to accurately analyze the impact of wrinkle defects on structural performance and efficiently transfer macro-microscopic damage variables. When any microscopic subcell within the representative unit cell (RUC) satisfies a failure criterion, its stiffness matrix is reduced to a nominal value, and the corresponding failure modes are tracked through state variables. When more than 50% fiber subcells fail in the fiber direction or more than 50% matrix subcells fail in the transverse or thickness direction, it indicates that the RUC has experienced the corresponding failure modes, which are the tensile or compressive failure of fibers, matrix, or delamination in the three axial directions. This multiscale model accurately predicted the load–displacement curves and failure modes of wrinkled composites under compressive load, showing good agreement with experimental results. The analysis results indicate that wrinkle defects can reduce the ultimate load-carrying capacity and promote local buckling deformation at the wrinkled region, leading to changes in damage distribution and failure modes. Full article
Show Figures

Figure 1

Back to TopTop