Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (329)

Search Parameters:
Keywords = material surface reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5598 KB  
Article
Passivation Mechanism of (18-Crown-6) Potassium on Complex Defects in SnO2 Electron Transport Layer of Solar Cells
by Shiyan Yang, Qiuli Zhang, Qiaogang Song, Yu Zhuang, Shurong Wang, Youbo Dou, Jianjun Wang, Xintong Zhao, Longxian Zhang, Hongwen Zhang, Wenjing Lu, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(20), 4081; https://doi.org/10.3390/molecules30204081 - 14 Oct 2025
Abstract
In this study, first-principles calculations were employed to systematically investigate the interaction mechanisms between (18-crown-6) potassium (18C6-K+) and six typical defect sites on the SnO2 (110) surface, including Sni + SnO, Oi + OSn, [...] Read more.
In this study, first-principles calculations were employed to systematically investigate the interaction mechanisms between (18-crown-6) potassium (18C6-K+) and six typical defect sites on the SnO2 (110) surface, including Sni + SnO, Oi + OSn, VO + Sni, VSn + SnO, VSn + Sni, and Sni. Six intrinsic or complex defects universally coexist on the SnO2 surface, and the defect states they introduced allow for precise tuning of material performance. The results demonstrated that the 18C6-K+ molecule can stably adsorb on all six defect sites and significantly increase defect formation energies, indicating its thermodynamic capability to suppress defect generation. A subsequent density of states (DOS) analysis revealed that the 18C6-K+ molecule exhibits strong defect passivation effects at Sni + SnO, VO + Sni, VSn + Sni, and Sni sites, and partially mitigated the electronic disturbances induced by Oi + OSn and VSn + SnO defects. Furthermore, the incorporation of 18C6-K+ has been shown to reduce the electronic effective mass of defective systems, thereby enhancing surface carrier transport. A subsequent charge density difference (CDD) analysis revealed that the 18C6-K+ molecule forms Sn-ether and O-ether interactions through its ether bonds (C-O-C) with surface Sn and O atoms, inducing interfacial electronic reconstruction and charge transfer. The Bader charge analysis revealed that the H, C, and O atoms in 18C6-K+ lose electrons, whereas the Sn or O atoms at the surface defect sites gain electrons. This outcome is consistent with the CDD analysis and quantitatively confirms the extent of electron transfer from 18C6-K+ to the SnO2 defect regions. These interactions effectively passivate defect states, thereby enhancing interfacial stability. The present study offers theoretical guidance and design insights for the development of molecular passivation strategies in SnO2-based optoelectronic devices. Full article
Show Figures

Figure 1

12 pages, 776 KB  
Article
How Common Is Femoroacetabular Impingement Morphology in Asymptomatic Adults? A 3D CT-Based Insight into Hidden Risk
by Pelin İsmailoğlu, Cengiz Kazdal, Emrehan Uysal and Alp Bayramoğlu
J. Clin. Med. 2025, 14(20), 7220; https://doi.org/10.3390/jcm14207220 (registering DOI) - 13 Oct 2025
Abstract
Background and Objectives: Femoroacetabular impingement (FAI) morphology refers to structural abnormalities that can alter normal joint mechanics and potentially lead to early onset osteoarthritis. Although commonly diagnosed in symptomatic individuals, such morphological features are also found in asymptomatic adults, underlining their relevance [...] Read more.
Background and Objectives: Femoroacetabular impingement (FAI) morphology refers to structural abnormalities that can alter normal joint mechanics and potentially lead to early onset osteoarthritis. Although commonly diagnosed in symptomatic individuals, such morphological features are also found in asymptomatic adults, underlining their relevance for early detection and preventive management. This study aimed to evaluate the three-dimensional congruence of hip joint surfaces in relation to FAI and the morphology of asymptomatic hips with potential FAI features. Materials and Methods: Retrospective three-dimensional reconstructions of 86 hip joints were created using Mimics software from computed tomography (CT) scans of the lower abdomen and pelvis retrieved from the radiology archive. CT scans belonged to individuals with preserved anatomical integrity (20 females, 23 males, bilateral hips), aged 24–76 years. Lateral center-edge angle (LCEA) and alpha angle measurements were obtained from reconstructions to assess the risk of asymptomatic FAI. Results: Significant gender differences were found in alpha angles. The mean right alpha angle was 46.57 ± 3.12° in females and 49.28 ± 6.66° in males p = 0.046, while the mean left alpha angle was 43.75 ± 5.53° in females and 47.37 ± 5.77° in males p = 0.021. An alpha angle >50°, suggestive of cam type FAI, was present in 25.6% of right hips and 13.9% of left hips. LCEA values showed no significant gender or side differences, with a mean of 30.21 ± 8.96° across the cohort. Conclusions: Three-dimensional evaluation of asymptomatic hips revealed FAI-consistent morphology in a notable proportion of individuals, particularly males. Cam-type deformities tended to occur bilaterally, whereas pincer-type morphologies were more sporadic and often unilateral. Increased alpha and LCEA measurements in asymptomatic individuals suggest that FAI morphology may exist subclinically without always indicating disease. Future studies incorporating longitudinal imaging and clinical follow-up are needed to clarify the prognostic significance of these findings. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

16 pages, 3175 KB  
Article
Defects Identification in Ceramic Composites Based on Laser-Line Scanning Thermography
by Yalei Wang, Jianqiu Zhou, Leilei Ding, Xiaohan Liu and Senlin Jin
J. Compos. Sci. 2025, 9(10), 532; https://doi.org/10.3390/jcs9100532 - 1 Oct 2025
Viewed by 325
Abstract
Infrared thermography non-destructive testing technology has been widely used in the defect detection of composite structures due to its advantages, including non-contact operation, rapidity, low cost, and high precision. In this study, a laser-line scanning system combined with an infrared thermography was developed, [...] Read more.
Infrared thermography non-destructive testing technology has been widely used in the defect detection of composite structures due to its advantages, including non-contact operation, rapidity, low cost, and high precision. In this study, a laser-line scanning system combined with an infrared thermography was developed, along with a corresponding dynamic sequence image reconstruction method, enabling rapid localization of surface damages. Then, high-precision quantitative characterization of defect morphology in reconstructed images was achieved by integrating an edge gradient detection algorithm. The reconstruction method was validated through finite element simulations and experimental studies. The results demonstrated that the laser-line scanning thermography effectively enables both rapid localization of surface damages and precise quantitative characterization of their morphology. Experimental measurements of ceramic materials indicate that the relative error in detecting crack width is about 6% when the crack is perpendicular to the scanning direction, and the relative error gradually increases when the angle between the crack and the scanning direction decreases. Additionally, an alumina ceramic plate with micrometer-width cracks is inspected by the continuous laser-line scanning thermography. The morphology detection results are completely consistent with the actual morphology. However, limited by the spatial resolution of the thermal imager in the experiment, the quantitative identification of the crack width cannot be carried out. Finally, the proposed method is also effective for detecting surface damage of wrinkles in ceramic matrix composites. It can localize damage and quantify its geometric features with an average relative error of less than 3%, providing a new approach for health monitoring of large-scale ceramic matrix composite structures. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

15 pages, 2477 KB  
Article
Non-Destructive Surface Characterization Using Microscopic Imaging and Data Modeling
by Mariusz Mączka, Maciej Kusy, Anna Szlachta and Ewa Korzeniewska
Materials 2025, 18(18), 4376; https://doi.org/10.3390/ma18184376 - 19 Sep 2025
Viewed by 333
Abstract
This article presents a novel method for converting a digital image of a conductive surface into its three-dimensional spatial representation. The developed approach utilizes a mathematical transformation of pixel intensity to the height value of the represented point. The method includes interpolation, automatic [...] Read more.
This article presents a novel method for converting a digital image of a conductive surface into its three-dimensional spatial representation. The developed approach utilizes a mathematical transformation of pixel intensity to the height value of the represented point. The method includes interpolation, automatic image segmentation, and predictive reconstruction of surface profiles, which significantly improves the quality of material surface representation. The method was implemented in a 3D model of a conductive structure created in the physical vacuum deposition method, and its capabilities were demonstrated using examples of simulations of the electric field distribution within and on the surface of the tested sample. Full article
Show Figures

Figure 1

19 pages, 3882 KB  
Article
Olivine and Whole-Rock Geochemistry Constrain Petrogenesis and Geodynamics of Early Cretaceous Fangcheng Basalts, Eastern North China Craton
by Qiao-Chun Qin, Lu-Bing Hong, Yin-Hui Zhang, Hong-Xia Yu, Dan Wang, Le Zhang and Peng-Li He
Minerals 2025, 15(9), 928; https://doi.org/10.3390/min15090928 - 30 Aug 2025
Viewed by 519
Abstract
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through [...] Read more.
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through integrated geochemical analysis (major/trace elements, Sr-Nd-Pb isotopes, olivine chemistry) of Early Cretaceous (~125 Ma) Fangcheng basalts from Shandong. These basalts possess high MgO (8.14–11.31 wt%), Mg# (67.23–73.69), Ni (126–244 ppm), and Cr (342–526 ppm). Their trace elements show island arc basalt (IAB) affinities: enrichment in large-ion lithophile elements and depletion in high-field-strength elements, with negative Sr and Pb anomalies. Enriched Sr-Nd isotopic compositions [87Sr/86Sr(t) = 0.709426–0.709512; εNd(t) = −12.60 to −13.10], unradiogenic 206Pb/204Pb(t) and 208Pb/204Pb(t) ratios (17.55–17.62 and 37.77–37.83, respectively), and slightly radiogenic 207Pb/204Pb(t) ratios (15.55–15.57) reflect an upper continental crustal signature. Covariations of major elements, Cr, Ni, and trace element ratios (Sr/Nd, Sc/La) with MgO indicate dominant olivine + pyroxene fractionation. High Ce/Pb ratios and lack of correlation between Ce/Pb or εNd(t) and SiO2 preclude significant crustal contamination. The combined isotopic signature and IAB-like trace element patterns support a lithospheric mantle source that was metasomatized by upper crustal material. Olivine phenocrysts exhibit variable Ni (1564–4786 ppm), Mn (903–2406 ppm), Fe/Mn (56.63–85.49), 10,000 × Zn/Fe (9.55–19.55), and Mn/Zn (7.07–14.79), defining fields indicative of melts from both peridotite and pyroxenite sources. High-MgO samples (>10 wt%) in the Grossular/Pyrope/Diopside/Enstatite diagram show a clinopyroxene, garnet, and olivine residue. Reconstructed primary melts yield formation pressures of 3.5–3.9 GPa (110–130 km depth) and temperatures of 1474–1526 °C, corresponding to ~60 mW/m2 surface heat flow. This demonstrates retention of a ≥110–130 km thick lithosphere during peak destruction, arguing against delamination and supporting a thermo-mechanic erosion mechanism dominated by progressive convective thinning of the lithospheric base via asthenospheric flow. Our findings therefore provide crucial thermal and structural constraints essential for resolving the dynamics of cratonic lithosphere modification. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

12 pages, 2492 KB  
Case Report
Post-Mortem Animal Bite Mark Analysis Reimagined: A Pilot Study Evaluating the Use of an Intraoral Scanner and Photogrammetry for Forensic 3D Documentation
by Salvatore Nigliaccio, Davide Alessio Fontana, Emanuele Di Vita, Marco Piraino, Pietro Messina, Antonina Argo, Stefania Zerbo, Davide Albano, Enzo Cumbo and Giuseppe Alessandro Scardina
Forensic Sci. 2025, 5(3), 39; https://doi.org/10.3390/forensicsci5030039 - 29 Aug 2025
Viewed by 708
Abstract
Digital dentistry is undergoing rapid evolution, with three-dimensional imaging technologies increasingly integrated into routine clinical workflows. Originally developed for accurate dental arch reconstruction, modern intraoral scanners have demonstrated expanding versatility in capturing intraoral mucosal as well as perioral cutaneous structures. Concurrently, photogrammetry has [...] Read more.
Digital dentistry is undergoing rapid evolution, with three-dimensional imaging technologies increasingly integrated into routine clinical workflows. Originally developed for accurate dental arch reconstruction, modern intraoral scanners have demonstrated expanding versatility in capturing intraoral mucosal as well as perioral cutaneous structures. Concurrently, photogrammetry has emerged as a powerful method for full-face digital reconstruction, particularly valuable in orthodontic and prosthodontic treatment planning. These advances offer promising applications in forensic sciences, where high-resolution, three-dimensional documentation of anatomical details such as palatal rugae, lip prints, and bite marks can provide objective and enduring records for legal and investigative purposes. This study explores the forensic potential of two digital acquisition techniques by presenting two cadaveric cases of animal bite injuries. In the first case, an intraoral scanner (Dexis 3600) was used in an unconventional extraoral application to directly scan skin lesions. In the second case, photogrammetry was employed using a digital single-lens reflex (DSLR) camera and Agisoft Metashape, with standardized lighting and metric scale references to generate accurate 3D models. Both methods produced analyzable digital reconstructions suitable for forensic archiving. The intraoral scanner yielded dimensionally accurate models, with strong agreement with manual measurements, though limited by difficulties in capturing complex surface morphology. Photogrammetry, meanwhile, allowed for broader contextual reconstruction with high texture fidelity, albeit requiring more extensive processing and scale calibration. A notable advantage common to both techniques is the avoidance of physical contact and impression materials, which can compress and distort soft tissues, an especially relevant concern when documenting transient evidence like bite marks. These results suggest that both technologies, despite their different origins and operational workflows, can contribute meaningfully to forensic documentation of bite-related injuries. While constrained by the exploratory nature and small sample size of this study, the findings support the viability of digitized, non-destructive evidence preservation. Future perspectives may include the integration of artificial intelligence to assist with morphological matching and the establishment of digital forensic databases for pattern comparison and expert review. Full article
Show Figures

Figure 1

25 pages, 14188 KB  
Article
Assessment of Accuracy in Geometry Reconstruction, CAD Modeling, and MEX Additive Manufacturing for Models Characterized by Axisymmetry and Primitive Geometries
by Paweł Turek, Piotr Bielarski, Alicja Czapla, Hubert Futoma, Tomasz Hajder and Jacek Misiura
Designs 2025, 9(5), 101; https://doi.org/10.3390/designs9050101 - 28 Aug 2025
Viewed by 765
Abstract
Due to the rapid advancements in coordinate measuring systems, data processing software, and additive manufacturing (AM) techniques, it has become possible to create copies of existing models through the reverse engineering (RE) process. However, the lack of precise estimates regarding the accuracy of [...] Read more.
Due to the rapid advancements in coordinate measuring systems, data processing software, and additive manufacturing (AM) techniques, it has become possible to create copies of existing models through the reverse engineering (RE) process. However, the lack of precise estimates regarding the accuracy of the RE process—particularly at the measurement, reconstruction, and computer-aided design (CAD) modeling stages—poses significant challenges. Additionally, the assessment of dimensional and geometrical errors during the manufacturing stage using AM techniques limits the practical implementation of product replicas in the industry. This paper provides an estimation of the errors encountered in the RE process and the AM stage of various models. It includes examples of an electrical box, a lampshade for a standing lamp, a cover for a vacuum unit, and a battery cover. The geometry of these models was measured using a GOM Scan 1 (Carl Zeiss AG, Jena, Germany). Following the measurement process, data processing was performed, along with CAD modeling, which involved primitive detection, profile extraction, and auto-surface methods using Siemens NX 2406 software (Siemens Digital Industries, Plano, TX, USA). The models were produced using a Fortus 360-mc 3D printer (Stratasys, Eden Prairie, MN, USA) with ABS-M30 material. After fabrication, the models were scanned using a GOM Scan 1 scanner to identify any manufacturing errors. The research findings indicated that overall, 95% of the points representing reconstruction errors are within the maximum deviation range of ±0.6 mm to ±1 mm. The highest errors in CAD modeling were attributed to the auto-surfacing method, overall, 95% of the points are within the average range of ±0.9 mm. In contrast, the lowest errors occurred with the detect primitives method, averaging ±0.6 mm. Overall, 95% of the points representing the surface of a model made using the additive manufacturing technology fall within the deviation range ±0.2 mm on average. The findings provide crucial insights for designers utilizing RE and AM techniques in creating functional model replicas. Full article
(This article belongs to the Special Issue Design Process for Additive Manufacturing)
Show Figures

Figure 1

19 pages, 5480 KB  
Article
Numerical Study of the Filtration Performance for Electrospun Nanofiber Membranes
by Wenyuan Hu, Fuping Qian, Simin Cheng, Lumin Chen, Xiao Ma and Huaiyu Zhong
Appl. Sci. 2025, 15(15), 8667; https://doi.org/10.3390/app15158667 - 5 Aug 2025
Viewed by 522
Abstract
To solve the limitations of these models for submicron materials like electrospun nanofiber membranes, a numerical simulation was used to construct a three-dimensional model closer to the actual structure to explore the filtration resistance and efficiency of these membranes. Based on the actual [...] Read more.
To solve the limitations of these models for submicron materials like electrospun nanofiber membranes, a numerical simulation was used to construct a three-dimensional model closer to the actual structure to explore the filtration resistance and efficiency of these membranes. Based on the actual polydisperse electrospun nanofiber filter, the three-dimensional structure (fiber diameter 280 nm–1300 nm, thickness 0.0150 mm–0.0240 mm, and solid volume fraction 11.3–17.7%) was reconstructed by GeoDict software. The filtration resistance was simulated with the FlowDict module (surface velocity 6.89 cm/s, 20 °C), and the filtration efficiency was calculated with the FilterDict module (2.5 μm particles, tracking 20,000). The results are compared with the experimental values, Davids empirical formula, Happel model, and Kuwabara model. The results show that the simulated values of filtration resistance are generally higher than the experimental values (deviation ≤ 20%), among which the simulation and experiment have the highest consistency, followed by the Davids formula (such as the relative error of 41.62% at 9% spinning solution concentration), and the Kuwabara model has the largest error (59.86%). The simulated value of filtration efficiency is higher than the experimental value (deviation ≤ 7%), because the model assumes that the particles adhere directly after contacting the fiber, and the actual sliding off is not considered. This study confirms that numerical simulation can efficiently predict the filtration performance of electrospun nanofiber membranes. Therefore, it provides a basis for optimizing material structure by adjusting spinning parameters and promoting the engineering application of submicron filter materials. Full article
Show Figures

Figure 1

40 pages, 16352 KB  
Review
Surface Protection Technologies for Earthen Sites in the 21st Century: Hotspots, Evolution, and Future Trends in Digitalization, Intelligence, and Sustainability
by Yingzhi Xiao, Yi Chen, Yuhao Huang and Yu Yan
Coatings 2025, 15(7), 855; https://doi.org/10.3390/coatings15070855 - 20 Jul 2025
Viewed by 1417
Abstract
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale [...] Read more.
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale degradation and macro-scale deformation. With the deep integration of digital twin technology, spatial information technologies, intelligent systems, and sustainable concepts, earthen site surface conservation technologies are transitioning from single-point applications to multidimensional integration. However, challenges remain in terms of the insufficient systematization of technology integration and the absence of a comprehensive interdisciplinary theoretical framework. Based on the dual-core databases of Web of Science and Scopus, this study systematically reviews the technological evolution of surface conservation for earthen sites between 2000 and 2025. CiteSpace 6.2 R4 and VOSviewer 1.6 were used for bibliometric visualization analysis, which was innovatively combined with manual close reading of the key literature and GPT-assisted semantic mining (error rate < 5%) to efficiently identify core research themes and infer deeper trends. The results reveal the following: (1) technological evolution follows a three-stage trajectory—from early point-based monitoring technologies, such as remote sensing (RS) and the Global Positioning System (GPS), to spatial modeling technologies, such as light detection and ranging (LiDAR) and geographic information systems (GIS), and, finally, to today’s integrated intelligent monitoring systems based on multi-source fusion; (2) the key surface technology system comprises GIS-based spatial data management, high-precision modeling via LiDAR, 3D reconstruction using oblique photogrammetry, and building information modeling (BIM) for structural protection, while cutting-edge areas focus on digital twin (DT) and the Internet of Things (IoT) for intelligent monitoring, augmented reality (AR) for immersive visualization, and blockchain technologies for digital authentication; (3) future research is expected to integrate big data and cloud computing to enable multidimensional prediction of surface deterioration, while virtual reality (VR) will overcome spatial–temporal limitations and push conservation paradigms toward automation, intelligence, and sustainability. This study, grounded in the technological evolution of surface protection for earthen sites, constructs a triadic framework of “intelligent monitoring–technological integration–collaborative application,” revealing the integration needs between DT and VR for surface technologies. It provides methodological support for addressing current technical bottlenecks and lays the foundation for dynamic surface protection, solution optimization, and interdisciplinary collaboration. Full article
Show Figures

Graphical abstract

38 pages, 4803 KB  
Review
Charge Density Waves in Solids—From First Concepts to Modern Insights
by Danko Radić
Symmetry 2025, 17(7), 1135; https://doi.org/10.3390/sym17071135 - 15 Jul 2025
Cited by 1 | Viewed by 1569
Abstract
We present a brief overview of the field of charge density waves (CDW) in condensed systems with focus set to the underlying mechanisms behind the CDW ground state. Our intention in this short review is not to count all related facts from the [...] Read more.
We present a brief overview of the field of charge density waves (CDW) in condensed systems with focus set to the underlying mechanisms behind the CDW ground state. Our intention in this short review is not to count all related facts from the vast volume of literature about this decades-old and still developing field, but rather to pinpoint the most important, mostly theoretical ones, presenting the development of the field. Starting from the “early days”, mainly based on weakly coupled, chain-like quasi-1D systems and Peierls instability, in which the Fermi surface nesting has been the predominant and practically paradigmatic mechanism of the CDW ground state stabilisation, we track the change in paradigms while entering the field of layered quasi-2D systems, with Fermi surface far away from the nesting regime, in which rather strong, essentially momentum-dependent interactions and particular reconstructions of the Fermi surface become essential. Examples of real quasi-1D materials, such as organic and inorganic conductors like Bechgaard salts or transition metal trichalcogenides and bronzes, in which experiment and theory have been extremely successful in providing detailed understanding, are contrasted to layered quasi-2D materials, such as high-Tc superconducting cuprates, intercalated graphite compounds or transition metal dichalcogenides, for which the theory explaining an onset of the CDWs constitutes a frontier of this fast-evolving field, strongly boosted by development of modern ab initio calculation methods. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

19 pages, 13404 KB  
Article
A New Bronze Age Productive Site on the Margin of the Venice Lagoon: Preliminary Data and Considerations
by Cecilia Rossi, Rita Deiana, Gaia Alessandra Garosi, Alessandro de Leo, Stefano Di Stefano, Sandra Primon, Luca Peruzzo, Ilaria Barone, Samuele Rampin, Pietro Maniero and Paolo Mozzi
Land 2025, 14(7), 1452; https://doi.org/10.3390/land14071452 - 11 Jul 2025
Viewed by 811
Abstract
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology [...] Read more.
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology planned during some water restoration works in the Giare–Mira area. Three small excavations revealed, approximately one meter below the current surface and covered by alluvial sediments, a rather complex palimpsest dated to the late Recent and the early Final Bronze Age. Three large circular pits containing exclusively purified grey/blue clay and very rare inclusions of vegetable fibres, and many large, fired clay vessels’ bases, walls and rims clustered in concentrated assemblages and random deposits point to potential on-site production. Two pyro-technological structures, one characterised by a sub-circular combustion chamber and a long inlet channel/praefurnium, and the second one with a sub-rectangular shape with arched niches along its southern side, complete the exceptional context here discovered. To analyse the relationship between the site and the natural sedimentary succession and to evaluate the possible extension of this site, three electrical resistivity tomography (ERT) and low-frequency electromagnetic (FDEM) measurements were collected. Several manual core drillings associated with remote sensing integrated the geophysical data in the analysis of the geomorphological evolution of this area, clearly related to different phases of fluvial activity, in a framework of continuous relative sea level rise. The typology and chronology of the archaeological structures and materials, currently undergoing further analyses, support the interpretation of the site as a late Recent/early Final Bronze Age productive site. Geophysical and geomorphological data provide information on the palaeoenvironmental setting, suggesting that the site was located on a fine-grained, stable alluvial plain at a distance of a few kilometres from the lagoon shore to the south-east and the course of the Brenta River to the north. The archaeological site was buried by fine-grained floodplain deposits attributed to the Brenta River. The good preservation of the archaeological structures buried by fluvial sediments suggests that the site was abandoned soon before sedimentation started. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

13 pages, 1243 KB  
Article
Three-Dimensional Assessment of the Biological Periacetabular Defect Reconstruction in an Ovine Animal Model: A µ-CT Analysis
by Frank Sebastian Fröschen, Thomas Martin Randau, El-Mustapha Haddouti, Jacques Dominik Müller-Broich, Frank Alexander Schildberg, Werner Götz, Dominik John, Susanne Reimann, Dieter Christian Wirtz and Sascha Gravius
Bioengineering 2025, 12(7), 729; https://doi.org/10.3390/bioengineering12070729 - 3 Jul 2025
Viewed by 577
Abstract
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing [...] Read more.
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing area of the acetabulum were augmented with various materials in an ovine periacetabular defect model (Group 1: NanoBone® (artificial hydroxyapatite-silicate composite; Artoss GmbH, Germany); Group 2: autologous sheep cancellous bone; Group 3: Tutoplast® (processed allogeneic sheep cancellous bone; Tutogen Medical GmbH, Germany)) and bridged with an acetabular reinforcement ring of the Ganz type. Eight months after implantation, a μ-CT examination (n = 8 animals per group) was performed. A μ-CT analysis of the contralateral acetabula (n = 8, randomly selected from all three groups) served as the control group. In a defined volume of interest (VOI), bone volume (BV), mineral volume (MV), and bone substitute volume (BSV), as well as the bone surface (BS) relative to the total volume (TV) and the surface-to-volume ratio (BS/BV), were determined. To assess the bony microarchitecture, trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N), as well as connectivity density (Conn.D), the degree of anisotropy (DA), and the structure model index (SMI), were evaluated. The highest BV was observed for NanoBone® (Group 1), which also showed the highest proportion of residual bone substitute material in the defect. This resulted in a significant increase in BV/TV with a significant decrease in BS/BV. The assessment of the microstructure for Groups 2 and 3 compared to Group 1 showed a clear approximation of Tb.Th, Tb.Sp, Tb.N, and Conn.D to the microstructure of the control group. The SMI showed a significant decrease in Group 1. All materials demonstrated their suitability by supporting biological defect reconstruction. NanoBone® showed the highest rate of new bone formation; however, the microarchitecture indicated more advanced bone remodeling and an approximate restoration of the trabecular structure for both autologous and allogeneic Tutoplast® cancellous bone when using the impaction bone grafting technique. Full article
Show Figures

Figure 1

17 pages, 4643 KB  
Article
Semiconductor Wafer Flatness and Thickness Measurement Using Frequency Scanning Interferometry Technology
by Weisheng Cheng, Zexiao Li, Xuanzong Wu, Shuangxiong Yin, Bo Zhang and Xiaodong Zhang
Photonics 2025, 12(7), 663; https://doi.org/10.3390/photonics12070663 - 30 Jun 2025
Cited by 1 | Viewed by 2061
Abstract
Silicon (Si) and silicon carbide (SiC) are second- and third-generation semiconductor materials with excellent properties that are particularly suitable for applications in scenarios such as high temperature, high voltage, and high frequency. Si/SiC wafers face warpage and bending problems during production, which can [...] Read more.
Silicon (Si) and silicon carbide (SiC) are second- and third-generation semiconductor materials with excellent properties that are particularly suitable for applications in scenarios such as high temperature, high voltage, and high frequency. Si/SiC wafers face warpage and bending problems during production, which can seriously affect subsequent processing. Fast, accurate, and comprehensive detection of thickness, thickness variation, and flatness (including bow and warpage) of SiC and Si wafers is an industry-recognized challenge. Frequency scanning interferometry (FSI) can synchronize the upper and lower surfaces and thickness information of transparent parallel thin wafers, but it is still affected by multiple interfacial harmonic reflections, reflectivity asymmetry, and phase modulation uncertainty when measuring SiC thin wafers, which leads to thickness calculation errors and face reconstruction deviations. To this end, this paper proposes a high-precision facet reconstruction method for SiC/Si structures, which combines harmonic spectral domain decomposition, refractive index gradient constraints, and partitioning optimization strategy, and introduces interferometric signal “oversampling” and weighted fusion of multiple sets of data to effectively suppress higher-order harmonic interferences, and to enhance the accuracy of phase resolution. The multi-layer iterative optimization model further enhances the measurement accuracy and robustness of the system. The flatness measurement system constructed based on this method can realize the simultaneous acquisition of three-dimensional top and bottom surfaces on 6-inch Si/SiC wafers, and accurately reconstruct the key parameters, such as flatness, warpage, and thickness variation (TTV). A comparison with the Corning Tropel FlatMaster commercial system shows that this method has high consistency and good applicability. Full article
(This article belongs to the Special Issue Emerging Topics in Freeform Optics)
Show Figures

Figure 1

17 pages, 11579 KB  
Article
Analysis of Mesoscopic Parameters of Porous Asphalt Concrete and Its Impact on Permeability Performance
by Qiuming Zhou, Chupeng Chen, Pengguang Liu, Zebang Deng, Fucheng Guo and Dingbang Wei
Materials 2025, 18(13), 3062; https://doi.org/10.3390/ma18133062 - 27 Jun 2025
Cited by 1 | Viewed by 582
Abstract
Porous asphalt concrete (PAC) is widely recognized for its excellent performance in drainage, noise reduction, and environmental protection due to its high interconnected porosity. However, challenges remain in relationships between mesoscopic void parameters and permeability performance. To reveal the influence mechanism of meso-structural [...] Read more.
Porous asphalt concrete (PAC) is widely recognized for its excellent performance in drainage, noise reduction, and environmental protection due to its high interconnected porosity. However, challenges remain in relationships between mesoscopic void parameters and permeability performance. To reveal the influence mechanism of meso-structural parameters on the permeability performance of PAC, the X-ray CT scanning and computational fluid dynamics (CFD) simulation techniques were combined in this study. A PAC-13 mixture was selected and prepared with target porosities of 18%, 20%, and 25%. The three-dimensional meso-structure of the specimens was measured using a CT scanner with a resolution of 0.08 mm, and the void parameters were extracted using Image J v1.8.0 software. The mesoscopic parameters of PAC and its impact on permeability performance were analyzed. Moreover, a three-dimensional void model was reconstructed using Avizo 9.0 software. The seepage performance was analyzed using CFD simulation. The results show that the roundness, the ratio of long to short axes, and the equivalent diameter of the voids increase linearly with porosity from 18% to 25%. The void number distribution shows a Gaussian characteristic. The permeability coefficient of PAC mixtures gradually increases linearly with the increase in porosity from 18% to 25%. Good relationships can be found between mesoscopic distribution characteristics and the permeability coefficient, where the coefficients of determination are larger than 0.97. The surface seepage pressure is nearly ten times more than the bottom pressure. The influence depth of seepage pressure is deeper with the increase in porosity, while the seepage velocity increases with the increase in porosity. This study offers valuable insights into the functional design and performance optimization of PAC materials. Full article
Show Figures

Figure 1

28 pages, 5550 KB  
Article
Physics-Informed Preform Design for Flashless 3D Forging via Material Point Backtracking and Finite Element Simulations
by Gracious Ngaile and Karthikeyan Kumaran
J. Manuf. Mater. Process. 2025, 9(6), 202; https://doi.org/10.3390/jmmp9060202 - 18 Jun 2025
Viewed by 924
Abstract
Accurate preform design in forging processes is critical for improving part quality, conserving material, reducing manufacturing costs, and eliminating secondary operations. This paper presents a finite element (FE) simulation-based methodology for preform design aimed at achieving flashless and near-flashless forging. The approach leverages [...] Read more.
Accurate preform design in forging processes is critical for improving part quality, conserving material, reducing manufacturing costs, and eliminating secondary operations. This paper presents a finite element (FE) simulation-based methodology for preform design aimed at achieving flashless and near-flashless forging. The approach leverages material point backtracking within FE models to generate physics-informed preform geometries that capture complex material flow, die geometry interactions, and thermal gradients. An iterative scheme combining backtracking, surface reconstruction, and point-cloud solid modeling was developed and applied to several three-dimensional forging case studies, including a cross-joint and a three-lobe drive hub. The methodology demonstrated significant reductions in flash formation, particularly in parts that traditionally exhibit severe flash under conventional forging. Beyond supporting the development of new flashless forging sequences, the method also offers a framework for modifying preforms during production to minimize waste and for diagnosing preform defects linked to variability in frictional conditions, die temperatures, or material properties. Future integration of the proposed method with design of experiments (DOE) and surrogate modeling techniques could further enhance its applicability by optimizing preform designs within a localized design space. The findings suggest that this approach provides a practical and powerful tool for advancing both new and existing forging production lines toward higher efficiency and sustainability. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

Back to TopTop