Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,348)

Search Parameters:
Keywords = measurement error

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2759 KB  
Article
Prospective Assessment of Embryoid Body by Deep Learning on Label-Free Time-Lapse Images from the Microwell Array
by Yoshinori Inoue, Yoshitaka Miyamoto, Shuya Suda, Koji Ikuta and Masashi Ikeuchi
Biomedicines 2026, 14(2), 445; https://doi.org/10.3390/biomedicines14020445 - 16 Feb 2026
Abstract
Background: Embryoid bodies (EBs) play a central role in organoid engineering, where their formation fidelity and size critically influence downstream differentiation outcomes. Current EB production workflows primarily rely on retrospective quality assessment, which limits reproducibility in high-throughput culture systems. Objective: This study aimed [...] Read more.
Background: Embryoid bodies (EBs) play a central role in organoid engineering, where their formation fidelity and size critically influence downstream differentiation outcomes. Current EB production workflows primarily rely on retrospective quality assessment, which limits reproducibility in high-throughput culture systems. Objective: This study aimed to develop a prospective, non-invasive framework that integrates early-phase bright-field time-lapse imaging with a three-dimensional convolutional neural network to predict EB formation outcomes and final EB diameter within the microwell platform. Methods: Time-lapse image sequences collected during the first hours after cell seeding on the microwell array were used to train 3D-CNN models for classification (formation vs. non-formation) and regression (final diameter). A balanced dataset was constructed through under-sampling, and five-fold cross-validation with data augmentation was applied to evaluate model performance. Results: The classification model achieved an accuracy of 96.5%, reliably distinguishing between successful and failed EB formation using short-duration image sequences. The regression model predicted the final EB diameter with a mean absolute error of ±7.1 µm, reflecting strong agreement with measured values and capturing seeding-density-dependent size variations. Conclusions: Early aggregation dynamics captured by bright-field time-lapse imaging contain sufficient spatiotemporal information to enable accurate, prospective EB quality prediction. The proposed framework provides a label-free and automation-compatible strategy for improving reproducibility in large-scale EB manufacturing and supports the future development of adaptive and closed-loop organoid culture systems for clinical applications. Full article
(This article belongs to the Special Issue Advanced Research in Cell and Tissue Engineering)
Show Figures

Figure 1

20 pages, 9096 KB  
Article
Beam Drift Mitigation and Wide-Range Measurement in a Miniaturized Ultrasonic Gas Flowmeter
by Shanfeng Hou, Xueying Xiu, Chengguang Liu, Haochen Lyu and Songsong Zhang
Micromachines 2026, 17(2), 254; https://doi.org/10.3390/mi17020254 - 16 Feb 2026
Abstract
To mitigate acoustic beam drift, which degrades the signal-to-noise ratio (SNR) and limits the measurement range in ultrasonic gas flowmeters (USFMs), we present a miniaturized transit-time USFM that integrates a single piezoelectric micromachined ultrasonic transducer (PMUT) with a non-axisymmetric conical cavity. This design [...] Read more.
To mitigate acoustic beam drift, which degrades the signal-to-noise ratio (SNR) and limits the measurement range in ultrasonic gas flowmeters (USFMs), we present a miniaturized transit-time USFM that integrates a single piezoelectric micromachined ultrasonic transducer (PMUT) with a non-axisymmetric conical cavity. This design increases acoustic transmission gain and produces anisotropic directivity across orthogonal radiation planes, thereby broadening acoustic coverage along the flow direction and reducing beam steering. With an optimized cavity angle combination of (50°, 70°), the system achieves a 7.4 dB transmission gain and a half-power beamwidth (HPBW) of 29.1°. Experimental validation demonstrates a sound pressure attenuation of only 0.72 dB at 18.74 m/s. Within the 0.06–12 m3/h flow range, the USFM exhibits indication errors of ±2% (<1 m3/h) and ±1.5% (≥1 m3/h), with repeatability below 0.5%. The performance meets the Class 1.5 accuracy standard specified in CJ/T 477-2015, offering an innovative solution for wide-range miniaturized gas flow measurement. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 3rd Edition)
Show Figures

Figure 1

20 pages, 3497 KB  
Article
An Assessment of the Multi-Input Spatiotemporal RF–XGBoost Hybrid Framework for PM10 Estimation in Lithuania
by Mina Adel Shokry Fahim and Jūratė Sužiedelytė Visockienė
Sustainability 2026, 18(4), 2022; https://doi.org/10.3390/su18042022 - 16 Feb 2026
Abstract
Air pollution remains a major public-health concern, and exposure to particulate matter (PM), particularly PM10 (with a diameter ≤ 10 µm), is associated with adverse respiratory and cardiovascular outcomes. Most research relies on a singular model for PM10 surface estimation. This [...] Read more.
Air pollution remains a major public-health concern, and exposure to particulate matter (PM), particularly PM10 (with a diameter ≤ 10 µm), is associated with adverse respiratory and cardiovascular outcomes. Most research relies on a singular model for PM10 surface estimation. This study is an assessment of a national-scale, daily PM10 estimation framework for Lithuania (2019–2024), using a hybrid machine-learning method that combines Random Forest (RF) and extreme gradient boosting (XGBoost) algorithms. Hourly PM10 observations were aggregated from 18 monitoring stations to obtain daily means and temporal means. The predictors integrated meteorological factors, such as temperature, wind, humidity, and precipitation, to determine satellite-based atmospheric composition from Sentinel-5P Tropospheric Monitoring Instruments (TROPOMI). Atmospheric components include nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), formaldehyde (HCHO), and the absorbing aerosol index (AI). Moderate-Resolution Imaging Spectroradiometers (MODIS) were used to record land-surface temperature and static spatial descriptors, such as elevation, land cover, Normalized Difference Vegetation Index (NDVI), population, and road proximity. The dataset was partitioned temporally into training (70%), validation (20%), and testing (10%). The hybrid model achieved an improved accuracy, compared with single-model baselines, reaching a coefficient of determination (R2) of 0.739 in validation and R2 = 0.75 in the tested dataset. Mean absolute error (MAE) was 3.15 µg/m3, and root mean square error (RMSE) was 3.98 µg/m3. The results indicate a slight tendency to overestimate PM10 concentrations at lower concentration levels. Feature-importance analysis revealed that short-term temporal persistence is the key to daily PM10 prediction, while meteorological variables provide secondary contributions. Temporal evaluation, using consecutive two-year windows, revealed a consistent improvement in predictive performance from 2019–2020 to 2023–2024, while station-level analysis showed moderate-to-strong agreement between the predicted and observed PM10 concentrations across monitoring stations, with R2 ranging from 0.455 to 0.760. This provides decision-support capabilities for air-quality management, the evaluation of mitigation measures, and integration of air-pollution considerations into sustainable urban planning strategies assessing public-health protection. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
35 pages, 43326 KB  
Article
A Hybrid LoRa/ZigBee IoT Mesh Architecture for Real-Time Performance Monitoring in Orienteering Sport Competitions: A Measurement Campaign on Different Environments
by Romeo Giuliano, Stefano Alessandro Ignazio Mocci De Martis, Antonello Tomeo, Francesco Terlizzi, Marco Gerardi, Francesca Fallucchi, Lorenzo Felli and Nicola Dall’Ora
Future Internet 2026, 18(2), 105; https://doi.org/10.3390/fi18020105 - 16 Feb 2026
Abstract
The sport of orienteering requires athletes to reach specific points marked on a map (called “punching stations”) in the shortest possible time. Currently, the recording of athletes’ passages through the stations is performed offline. In addition to delays in generating intermediate and final [...] Read more.
The sport of orienteering requires athletes to reach specific points marked on a map (called “punching stations”) in the shortest possible time. Currently, the recording of athletes’ passages through the stations is performed offline. In addition to delays in generating intermediate and final rankings, this approach often leads to detection errors and potential cheating related to the lack of authentication of an athlete’s actual passage at a given station. This paper aims to define and design a system enabling three main functionalities: 1. real-time monitoring of athletes’ trajectories through a sensor network connected to control stations; 2. multi-modal authentication of athletes at each station; and 3. immutable certification of each athlete’s passage through blockchain-based recording. System performance is evaluated in terms of wireless network coverage and data collection efficiency across three representative environments: urban, rural, and forested areas. Results are obtained through a measurement campaign for two dedicated wireless technologies: ZigBee for local mesh network and LoRa for long-range links to connect local mesh networks to the cloud over the Internet, which is then accessed by the race organizers. Furthermore, two supporting subsystems are described, addressing athlete authentication and data integrity assurance, as well as a blockchain recording for the overall event management framework. Results are in terms of coverage distances for both technologies, proving highly effective across varied terrains. Field tests demonstrated significant communication capabilities, achieving distances of up to 1800 m in open spaces. Even in challenging, dense wooded environments, the system maintained reliable coverage, reaching transmission distances of up to 600 m. Local ZigBee links between punching stations achieved ranges between 70 and 150 m in forested areas. These findings validate the use of a wireless multi-hop network designed to minimize packet loss and ensure reliable data delivery in competitive scenarios. The feasibility is also investigated in terms of WSN performance, delay analysis and power consumption evaluation. Full article
Show Figures

Figure 1

31 pages, 10739 KB  
Article
Multi-Point Contact Dynamics of a Novel Self-Centring Mechanism for In-Space Robotic Assembly
by Yuanxin Wang, Jiafu Liu, Shujie Ma, Jianping Jiang, Yuanyuan Li and Xing Wang
Aerospace 2026, 13(2), 188; https://doi.org/10.3390/aerospace13020188 - 16 Feb 2026
Abstract
Autonomous in-space assembly using a free-flying robot can lead to residual vibrations and positioning errors of the target modules during the grasping process. This places stringent demands on end-effectors, which must tolerate large misalignments while maintaining high positioning accuracy. In this regard, this [...] Read more.
Autonomous in-space assembly using a free-flying robot can lead to residual vibrations and positioning errors of the target modules during the grasping process. This places stringent demands on end-effectors, which must tolerate large misalignments while maintaining high positioning accuracy. In this regard, this paper presents a novel self-centring mechanism, which consists of two self-centring fingers mounted on the end-effector and a double V-groove mechanism attached to the target module. The proposed compact structural design passively corrects substantial parallel offsets and angular misalignments between the end-effector and the module. A multi-point contact model consistent with this mechanism is then developed using the virtual sphere layer method to describe the self-centring process. This model incorporates a normal contact force model and a three-dimensional bristle frictional force model to characterise the multi-point bouncing contact behaviours during the self-centring process. Numerical simulations and experimental tests involving the grasping of a module with a single robotic arm confirm that the self-centring mechanism effectively eliminates initial misalignments, achieving sub-millimetre positioning accuracy. The measured parallel offsets and contact forces align closely with numerical predictions, with minor discrepancies attributed to environmental noise and vibrations from the elastic bungees in the gravity compensation system. Finally, the self-centring mechanism is applied to grasp two modules with a dual-arm robot in the Space Proximity Operations Test facility. The centroid displacements of the robot closely match the simulation results, further validating the accuracy of the proposed multi-point contact model. Full article
Show Figures

Figure 1

14 pages, 2590 KB  
Article
Development and Validation of Internet of Things-Enabled Weighing System for Cage-Free Poultry Houses
by Anjan Dhungana, Bidur Paneru, Samin Dahal, Zhihang Song and Lilong Chai
Sensors 2026, 26(4), 1279; https://doi.org/10.3390/s26041279 - 16 Feb 2026
Abstract
Accurate body-weight monitoring is essential for assessing welfare in cage-free poultry. However, commercial farms continue to rely on manual weighing because of concerns regarding the accuracy and reliability of automated methods. This study developed and evaluated an Internet of things (IoT)-enabled weighing platform [...] Read more.
Accurate body-weight monitoring is essential for assessing welfare in cage-free poultry. However, commercial farms continue to rely on manual weighing because of concerns regarding the accuracy and reliability of automated methods. This study developed and evaluated an Internet of things (IoT)-enabled weighing platform integrating load cells, an microcontroller, a Raspberry Pi 5, and Node-RED for data acquisition, processing, and visualization. The system recorded weight measurements at 1 Hz, detected individual weighing sessions, and applied a rolling-median filter to produce stable weight estimates. Validation was performed against a reference scale during two weighing sessions one week apart using 75 cage-free hens randomly selected from a flock of 750 Hy-Line W80 birds. Bland–Altman analysis and a linear mixed-effects model indicated a small overestimation of approximately 6–9 g, with most measurements falling within the 95% limits of agreement, while overall mean absolute percentage error remained below 3%. Improved accuracy during the second session suggests that platform stability influenced performance. Overall, the system demonstrates strong potential for continuous low-stress weight monitoring in poultry farms. Future improvements should focus on refining calibration methods, enhancing mechanical stability, and integrating bird identification and presence-detection mechanisms to further support flock management and welfare monitoring. Full article
Show Figures

Figure 1

16 pages, 10205 KB  
Article
Sparse Auto-Encoder Networks to Detect and Localize Structural Changes in Metallic Bridges
by Marco Pirrò and Carmelo Gentile
Buildings 2026, 16(4), 802; https://doi.org/10.3390/buildings16040802 - 15 Feb 2026
Abstract
The application of vibration monitoring integrated with sparse Auto-Encoder (SAE) networks is investigated in this paper with the objective of detecting and localizing structural anomalies or damages. Unlike previous studies on SAE networks, the methodology proposed is based on the definition of a [...] Read more.
The application of vibration monitoring integrated with sparse Auto-Encoder (SAE) networks is investigated in this paper with the objective of detecting and localizing structural anomalies or damages. Unlike previous studies on SAE networks, the methodology proposed is based on the definition of a single SAE model, trained with the signals simultaneously collected from several sensors. Once the SAE has been trained using measurements that represent the baseline (undamaged) condition of the structure, the network is likely to reconstruct well newly collected data if the structure maintains its intact condition. When damage or structural degradation processes start developing, an increase in the reconstruction error—defined as the residual between the original input and the reconstructed output—has to be expected, so that a deviation from the normal state is highlighted. Moreover, this rise in reconstruction errors is typically more significant near the damaged areas, allowing for precise localization of the affected zones. The performance and robustness of the proposed approach are illustrated and validated using experimental data from two real-world bridge structures. Full article
Show Figures

Figure 1

33 pages, 7637 KB  
Article
Revisiting Thermal Performance of Shallow Ground-Heat Exchangers Based on Response Factor Methods and Dimension Reduction Algorithms
by Wentan Wang, Haoran Cheng, Jiangtao Wen, Xi Wang, Kui Yin, Xin Wang, Weiwei Liu and Yongqiang Luo
Processes 2026, 14(4), 672; https://doi.org/10.3390/pr14040672 - 15 Feb 2026
Abstract
Geothermal energy assumes an increasingly crucial role in advancing carbon neutrality. However, heat transfer calculations for shallow ground-heat exchangers (GHE) face challenges, including large computational loads for pipe arrays and insufficient long-term operational analysis. This study proposes two key innovations: first, the introduction [...] Read more.
Geothermal energy assumes an increasingly crucial role in advancing carbon neutrality. However, heat transfer calculations for shallow ground-heat exchangers (GHE) face challenges, including large computational loads for pipe arrays and insufficient long-term operational analysis. This study proposes two key innovations: first, the introduction of the Response Factor Method (RFM), which accelerates long-term heat-transfer calculations by constructing a coefficient matrix library; second, a dimension-reduction algorithm for large-scale pipe arrays (LADR), balancing simulation speed and accuracy. The simulation model is developed and validated experimentally, with the simulated outlet temperature showing a 0.2% average relative error compared to measured values, with a 20-times speed-up of simulation time compared to the original method. Moreover, the LADR can realize a reduction in calculation load into only two or three boreholes while the neglectable errors do not affect numerical results. The study found that heat extraction increases linearly with borehole depth, but with diminishing returns. Increasing pipe diameter and spacing enhances heat extraction, while overloading reduces reliability. Intermittent operation significantly boosts the load-bearing capacity of individual pipes. The thermal effect radius during the transitional period is larger than that during the heating/cooling periods. We observed and explained the ground heat accumulation in a thermally balanced system for the first time. Additionally, there are differences in thermal performance at different borehole locations within the array, along with a load transfer effect. This research provides valuable insights for optimizing shallow GSHPs. Full article
(This article belongs to the Section Energy Systems)
21 pages, 869 KB  
Article
Low-Cost CO2 Sensors: On-Site Performance Evaluation and Co-Location Correction Procedure for Reliable Ventilation Assessments in Schools
by David Honan, John Garvey, John Littlewood, Matthew Horrigan and John Gallagher
Sensors 2026, 26(4), 1265; https://doi.org/10.3390/s26041265 - 15 Feb 2026
Abstract
Adequate ventilation is essential for maintaining indoor environmental quality in schools, where ventilation standards are often based on an indoor concentration of human-generated carbon dioxide (CO2) above ambient levels. Low-cost non-dispersive infrared (NDIR) CO2 sensors offer a practical solution for [...] Read more.
Adequate ventilation is essential for maintaining indoor environmental quality in schools, where ventilation standards are often based on an indoor concentration of human-generated carbon dioxide (CO2) above ambient levels. Low-cost non-dispersive infrared (NDIR) CO2 sensors offer a practical solution for ventilation monitoring, yet variability between sensors can compromise accuracy, particularly when applications depend on the determination of precise concentration differences. This study evaluates the performance of twenty-three low-cost CO2 sensors, developing normalisation functions to improve comparability across sensors, introducing an accessible methodology for on-site sensor calibration without the need for laboratory-grade reference equipment. The sensors were co-located for three independent test periods in 2025 representing typical school internal conditions in Ireland. Pre-normalisation analysis showed strong linearity (coefficient of determination (R2) = 0.999) but notable variability, with a mean root mean square error (RMSE) of 18.3 ppm and 0.45% of measurements outside manufacturers stated accuracy. Normalisation models were trained and validated using a leave-one-period-out approach. Regression-based correction yielded the greatest improvement, reducing RMSE by 16%. When applied to the full dataset, final correction factors reduced RMSE by 27%, out-of-range measurements by 43%, and proportional bias by 31%. Corrected sensors demonstrated highly consistent performance, particularly within the CO2 ranges most relevant for classroom ventilation assessment, with an RMSE = 7.4 parts per million (ppm) at ambient concentrations and 11.9 ppm at concentrations below 1500 ppm. Field-based co-location in the deployment environment across full CO2 cycles, combined with a network-derived global reference, produced effective correction factors. Performance declined marginally above 1500 ppm and during dynamic occupancy, while overall accuracy remained strong. The study presents a practical and accessible methodology for evaluating and normalising low-cost CO2 sensors without specialised laboratory equipment, supporting reliable ventilation assessments in schools. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

19 pages, 852 KB  
Article
Extending a Matrix Lie Group Model of Measurement Symmetries
by William R. Nugent
Symmetry 2026, 18(2), 361; https://doi.org/10.3390/sym18020361 - 14 Feb 2026
Viewed by 38
Abstract
This paper advances a Lie-group approach to measurement by identifying symmetry conditions that determine when effect sizes from different instruments can be meaningfully compared. Measurement transformations are modeled as elements of a two-parameter affine Lie group, and the associated Lie algebra describes the [...] Read more.
This paper advances a Lie-group approach to measurement by identifying symmetry conditions that determine when effect sizes from different instruments can be meaningfully compared. Measurement transformations are modeled as elements of a two-parameter affine Lie group, and the associated Lie algebra describes the infinitesimal flow linking true scores and measurement-error variability across instruments. Within this framework, it is shown that the population standardized mean difference (SMD) is invariant across measures if and only if the transformation between them consists of a uniform affine transformation of true scores together with a uniform scaling of measurement-error standard deviations by the same factor. These symmetry conditions arise directly from the Lie algebra and ensure that the SMD remains constant along the exponential transformation flow; even slight departures from this symmetry produce a non-zero derivative of the SMD, marking a precise breakdown of invariance. A simulation study demonstrates how small nonlinear perturbations of the affine symmetry generate systematic distortions in the population true-score SMD. The results provide a mathematically grounded characterization of effect-size comparability and illustrate how continuous symmetries, Lie algebras, and transformation flows can clarify fundamental issues in measurement equivalence, meta-analysis, and longitudinal or cross-cultural research. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

28 pages, 8567 KB  
Article
Discrete Element Method-Based Simulation for Rice Straw Comminution and Device of Parameter Optimization
by Xiubo Chen, Yufeng Li, Weihong Sun, Hongjian Zhang, Shuangxi Liu, Jinxing Wang, Linlong Jing and Qi Song
Appl. Sci. 2026, 16(4), 1934; https://doi.org/10.3390/app16041934 - 14 Feb 2026
Viewed by 40
Abstract
To mitigate the entanglement, agglomeration, and unstable conveying of high-moisture rice residues during stubble crushing for field incorporation, a discrete element method (DEM)-based modeling and optimization framework was developed to enhance the performance of a stubble-crushing device under wet paddy-field conditions. The device [...] Read more.
To mitigate the entanglement, agglomeration, and unstable conveying of high-moisture rice residues during stubble crushing for field incorporation, a discrete element method (DEM)-based modeling and optimization framework was developed to enhance the performance of a stubble-crushing device under wet paddy-field conditions. The device structure and kinematics were first analyzed, and the physical and mechanical properties of the residues were obtained through field measurements. A hollow wet–flexible straw model was then proposed to account for both mechanical breakage and moisture-induced adhesive interactions. Key contact and material parameters were calibrated using DEM simulations coupled with laboratory shear and three-point bending tests, showing good agreement with experimental trends. The validated model was subsequently extended to the device scale to characterize the cyclic capture–acceleration–throwing behavior of residues inside the crushing chamber. The individual and interactive effects of rotor speed, forward speed, and throwing-chamber clearance on comminution efficiency and conveying stability were investigated. A multi-objective response surface optimization identified an optimal parameter combination of 2000 rpm rotor speed, 0.87 m s−1 forward speed, and 10.5 cm clearance. Under these conditions, the comminution rate reached 96.94%, and the coefficient of variation in throwing uniformity was 8.71%. Field validation further confirmed the reliability of the simulation results, with relative errors below 6%. Overall, the proposed framework provides an effective tool for the design optimization and parameter selection of wet-residue comminution equipment. Full article
15 pages, 1628 KB  
Article
Comparative Performance of the Halphen-A and Pearson Type III Distributions in Modeling Annual Maximum Discharges in Romania
by Dan Ianculescu and Cristian Gabriel Anghel
Climate 2026, 14(2), 56; https://doi.org/10.3390/cli14020056 - 14 Feb 2026
Viewed by 88
Abstract
This study presents a comparative flood frequency analysis of annual maximum discharges for major Romanian river basins, assessing the performance of the Halphen-A distribution relative to the Pearson Type III distribution, the reference model in Romanian hydrological practice. Four long-term discharge series from [...] Read more.
This study presents a comparative flood frequency analysis of annual maximum discharges for major Romanian river basins, assessing the performance of the Halphen-A distribution relative to the Pearson Type III distribution, the reference model in Romanian hydrological practice. Four long-term discharge series from the Siret, Ialomița, and Danube rivers are analyzed, covering diverse hydroclimatic conditions. Distribution parameters are estimated using the method of moments and maximum likelihood estimation. Model performance is evaluated using RMSE and MAE, complemented by an analysis of extreme quantile behavior. The results show that both distributions fit the observed data well, with only minor differences in global error metrics. However, for high return periods (T > 100 years), Halphen-A exhibits smoother extrapolation and yields more stable extreme quantile estimates, particularly when estimated by MLE. Although Pearson III often achieves slightly lower metrics values, its upper tail is more constrained and sensitive to skewness and record length. The study concludes that classical goodness-of-fit measures alone are insufficient for selecting models for design floods and that Halphen-A provides a robust complementary alternative for extreme flood estimation. Full article
(This article belongs to the Special Issue Mathematical Modeling and Advanced Statistics of Climate Change)
Show Figures

Figure 1

26 pages, 4779 KB  
Article
A Day–Night-Differentiated Method for Sea Surface Temperature Retrieval with Emissivity Correction
by Caixia Gao, Qinghua Zhang, Yaru Meng, Yun Wang, Wan Li, Enyu Zhao and Yongguang Zhao
Remote Sens. 2026, 18(4), 604; https://doi.org/10.3390/rs18040604 - 14 Feb 2026
Viewed by 38
Abstract
Sea surface temperature (SST) is widely used to characterize marine productivity, environmental pollution, and climate variability, and is commonly derived from thermal infrared measurements obtained by optical satellite sensors. However, accurately retrieving large-scale SSTs remains challenging due to the complexity of air–sea coupling [...] Read more.
Sea surface temperature (SST) is widely used to characterize marine productivity, environmental pollution, and climate variability, and is commonly derived from thermal infrared measurements obtained by optical satellite sensors. However, accurately retrieving large-scale SSTs remains challenging due to the complexity of air–sea coupling processes and the difficulty of accurately obtaining key intermediate parameters. This study proposes a day–night-differentiated SST retrieval method with emissivity correction rather than treating it as a fixed value. Specifically, radiance characteristics from the mid-infrared band are integrated alongside those from thermal infrared bands. The retrieved SSTs are then validated against the MODIS SST product and in situ measurements. The results demonstrate strong consistency between the retrieved SST and the MODIS SST product, with overall root mean square errors (RMSEs) of 0.66 K and 0.82 K for daytime and nighttime, respectively. In winter the RMSEs improve to 0.37 K (day) and 0.42 K (night). In situ validation against Argo measurements in 2019 shows that the RMSEs of the retrieved SSTs are approximately 0.26 K for both day and night. This confirms the efficacy of the proposed SST retrieval approach, providing a feasible solution for high-precision SST retrieval in high-latitude regions with large view zenith angles. Full article
21 pages, 7758 KB  
Article
Comparative Selection of Staggered Jacking Schemes for a Large-Span Double-Layer Space Frame: A Case Study of the Han Culture Museum Grand Hall
by Xiangwei Zhang, Zheng Yang, Jianbo Ren, Yanchao Yue, Yuanyuan Dong, Jiaguo Zhang, Haibin Guan, Chenlu Liu, Li Cui and Jianjun Ma
Buildings 2026, 16(4), 791; https://doi.org/10.3390/buildings16040791 - 14 Feb 2026
Viewed by 110
Abstract
Focusing on the construction of a 58-m-diameter double-layer steel space frame dome at the Han Culture Museum Assembly Hall, this study addresses scheme selection and safety control challenges in staggered jacking of large-span spatial structures. A three-dimensional finite element model in MIDAS Gen [...] Read more.
Focusing on the construction of a 58-m-diameter double-layer steel space frame dome at the Han Culture Museum Assembly Hall, this study addresses scheme selection and safety control challenges in staggered jacking of large-span spatial structures. A three-dimensional finite element model in MIDAS Gen simulated the three-stage jacking process to compare three temporary support layouts. Numerical evaluation metrics included maximum vertical displacements, peak internal forces, the proportion of members undergoing stress state transitions, and spatio-temporal evolution of stress concentrations. Scheme B demonstrated superior performance, reducing peak vertical displacement by 44% under critical conditions, lowering peak stresses, and enabling more uniform internal force redistribution—effectively mitigating tension–compression cycling and buckling risks. Crucially, only nodal displacements and support elevations were monitored in situ using a 3D system based on magnetic prisms and total stations; no strain or force measurements were conducted due to practical constraints during construction. Monitoring data show good agreement with simulated displacements and support elevations under Scheme B, validating the model’s deformation response. However, localized deviations—including a 29 mm deflection discrepancy and elevation errors up to 28 mm—reveal the influence of uneven boundary conditions, with potential implications for long-term structural behavior. The findings confirm that numerical predictions of deformation are reliable, while internal forces remain unvalidated by field data. The integrated approach of “scheme comparison–construction simulation–full-process displacement monitoring” proves effective for safety control and decision-making in complex jacking operations, offering a transferable framework for similar large-span double-layer space frame projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 854 KB  
Article
Fault Location and Calibration of Multi-Terminal DC Ring Network Based on Traveling Wave Redundant Information
by Zewen Li, Wenxian Chen, Fangming Deng and Yuzhe Liu
Eng 2026, 7(2), 89; https://doi.org/10.3390/eng7020089 (registering DOI) - 14 Feb 2026
Viewed by 36
Abstract
Traditional single-ended traveling wave fault location is sensitive to velocity uncertainty, complex topologies, and variations in the equivalent impedance of converter stations. This paper proposes a fault distance calibration method based on the fusion of traveling wave redundant information and inverse weighting: multiple [...] Read more.
Traditional single-ended traveling wave fault location is sensitive to velocity uncertainty, complex topologies, and variations in the equivalent impedance of converter stations. This paper proposes a fault distance calibration method based on the fusion of traveling wave redundant information and inverse weighting: multiple sets of initial distance estimates are formed using wave fronts arrival times measured at multiple terminals. These estimates are then calibrated through inverse weighting fusion according to the error sensitivity of each redundant observation, thereby suppressing errors caused by wave velocity deviations and structural inhomogeneities. Simulation verification using PSCAD/EMTDC for a four-terminal VSC-MTDC loop network demonstrates that this method reduces dependence on precise wave velocity measurements while enhancing the accuracy and robustness of DC loop network fault location. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

Back to TopTop