Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,656)

Search Parameters:
Keywords = mechanical stimuli

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2172 KB  
Article
Bioinspired Stimulus Selection Under Multisensory Overload in Social Robots Using Reinforcement Learning
by Jesús García-Martínez, Marcos Maroto-Gómez, Arecia Segura-Bencomo, Álvaro Castro-González and José Carlos Castillo
Sensors 2025, 25(19), 6152; https://doi.org/10.3390/s25196152 (registering DOI) - 4 Oct 2025
Abstract
Autonomous social robots aim to reduce human supervision by performing various tasks. To achieve this, they are equipped with multiple perceptual channels to interpret and respond to environmental cues in real time. However, multimodal perception often leads to sensory overload, as robots may [...] Read more.
Autonomous social robots aim to reduce human supervision by performing various tasks. To achieve this, they are equipped with multiple perceptual channels to interpret and respond to environmental cues in real time. However, multimodal perception often leads to sensory overload, as robots may receive numerous simultaneous stimuli with varying durations or persistent activations across different sensory modalities. Sensor overstimulation and false positives can compromise a robot’s ability to prioritise relevant inputs, sometimes resulting in repeated or inaccurate behavioural responses that reduce the quality and coherence of the interaction. This paper presents a Bioinspired Attentional System that uses Reinforcement Learning to manage stimulus prioritisation in real time. The system draws inspiration from the following two neurocognitive mechanisms: Inhibition of Return, which progressively reduces the importance of previously attended stimuli that remain active over time, and Attentional Fatigue, which penalises stimuli of the same perception modality when they appear repeatedly or simultaneously. These mechanisms define the algorithm’s reward function to dynamically adjust the weights assigned to each stimulus, enabling the system to select the most relevant one at each moment. The system has been integrated into a social robot and tested in three representative case studies that show how it modulates sensory signals, reduces the impact of redundant inputs, and improves stimulus selection in overstimulating scenarios. Additionally, we compare the proposed method with a baseline where the robot executes expressions as soon as it receives them using a queue. The results show the system’s significant improvement in expression management, reducing the number of expressions in the queue and the delay in performing them. Full article
Show Figures

Figure 1

16 pages, 4460 KB  
Article
Fluidic Response and Sensing Mechanism of Meissner’s Corpuscles to Low-Frequency Mechanical Stimulation
by Si Chen, Tonghe Yuan, Zhiheng Yang, Weimin Ru and Ning Yang
Sensors 2025, 25(19), 6151; https://doi.org/10.3390/s25196151 (registering DOI) - 4 Oct 2025
Abstract
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and [...] Read more.
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and shear stress distribution under different vibration modes. A biomimetic microfluidic platform was developed and coupled with a dynamic mesh computational fluid dynamics (CFD) model to simulate the response of the corpuscle to 20 Hz normal and tangential vibrations. The simulation results showed clear differences in fluid behavior. Normal vibration produced localized vortices and peak wall shear stress greater than 0.0054 Pa along the short axis. In contrast, tangential vibration generated stable laminar flow with a lower average shear stress of about 0.0012 Pa along the long axis. These results suggest that the internal structure of the Meissner corpuscle is important for converting mechanical inputs from different directions into specific fluid patterns. This study provides a physical foundation for understanding mechanotransduction and supports the design of biomimetic sensors with improved directional sensitivity for use in smart skin and soft robotic systems. Full article
(This article belongs to the Section Biosensors)
26 pages, 1137 KB  
Article
“One Face, Many Roles”: The Role of Cognitive Load and Authenticity in Driving Short-Form Video Ads
by Yadi Feng, Bin Li, Yixuan Niu and Baolong Ma
J. Theor. Appl. Electron. Commer. Res. 2025, 20(4), 272; https://doi.org/10.3390/jtaer20040272 - 3 Oct 2025
Abstract
Short-form video platforms have shifted advertising from standalone, time-bounded spots to feed-embedded, swipeable stimuli, creating a high-velocity processing context that can penalize casting complexity. We ask whether a “one face, many roles” casting strategy (a single actor playing multiple characters) outperforms multi-actor executions, [...] Read more.
Short-form video platforms have shifted advertising from standalone, time-bounded spots to feed-embedded, swipeable stimuli, creating a high-velocity processing context that can penalize casting complexity. We ask whether a “one face, many roles” casting strategy (a single actor playing multiple characters) outperforms multi-actor executions, and why. A two-phase pretest (N = 3500) calibrated a realistic ceiling for “multi-actor” casts, then four experiments (total N = 4513) tested mechanisms, boundary conditions, and alternatives. Study 1 (online and offline replications) shows that single-actor ads lower cognitive load and boost account evaluations and purchase intention. Study 2, a field experiment, demonstrates that Need for Closure amplifies these gains via reduced cognitive load. Study 3 documents brand-type congruence: one actor performs better for entertaining/exciting brands, whereas multi-actor suits professional/competence-oriented brands. Study 4 rules out cost-frugality and sympathy using a budget cue and a sequential alternative path (perceived cost constraint → sympathy). Across studies, a chain mediation holds: single-actor casting reduces cognitive load, which elevates brand authenticity and increases purchase intention; a simple mediation links cognitive load to account evaluations. Effects are robust across settings and participant gender. We theorize short-form advertising as a context-embedded persuasion episode that connects information-processing efficiency to authenticity inferences, and we derive practical guidance for talent selection and script design in short-form campaigns. Full article
Show Figures

Figure 1

34 pages, 3132 KB  
Review
Innovative Applications of Hydrogels in Contemporary Medicine
by Maciej Rybicki, Karolina Czajkowska, Agata Grochowska, Bartłomiej Białas, Michał Dziatosz, Igor Karolczak, Julia Kot, Radosław Aleksander Wach and Karol Kamil Kłosiński
Gels 2025, 11(10), 798; https://doi.org/10.3390/gels11100798 - 3 Oct 2025
Abstract
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are [...] Read more.
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are discussed. Chemical, physical, or hybrid crosslinking of either synthetic or natural polymers allow for the precise control of hydrogels’ physicochemical properties and their specific characteristics for certain applications, such as stimuli-responsiveness, drug retention and release, and biodegradability. Hydrogels are employed in gynecology to regenerate the endometrium, treat infections, and prevent pregnancy. They show promise in cardiology in myocardial infarction therapy through injectable scaffolds, patches in the heart, and medication delivery. In rheumatoid arthritis, hydrogels act as drug delivery systems, lubricants, scaffolds, and immunomodulators, ensuring effective local treatment. They are being developed, among other applications, as antimicrobial coatings for stents and radiotherapy barriers for urology. Ophthalmology benefits from the use of hydrogels in contact lenses, corneal bandages, and vitreous implants. They are used as materials for chemoembolization, tumor models, and drug delivery devices in cancer therapy, with wafers of Gliadel presently used in clinics. Applications in abdominal surgery include hydrogel-coated meshes for hernia repair or Janus-type hydrogels to prevent adhesions and aid tissue repair. Results from clinical and preclinical studies illustrate hydrogels’ diversity, though problems remain with mechanical stability, long-term safety, and mass production. Hydrogels are, in general, next-generation biomaterials for regenerative medicine, individualized treatment, and new treatment protocols. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

26 pages, 1645 KB  
Review
Mechanotransduction-Epigenetic Coupling in Pulmonary Regeneration: Multifunctional Bioscaffolds as Emerging Tools
by Jing Wang and Anmin Xu
Pharmaceuticals 2025, 18(10), 1487; https://doi.org/10.3390/ph18101487 - 2 Oct 2025
Abstract
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present [...] Read more.
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present a promising therapeutic strategy through targeted modulation of critical cellular processes, including proliferation, migration, and differentiation. This review synthesizes recent advances in scaffold-based interventions for PF, with a focus on their dual mechano-epigenetic regulatory functions. We delineate how scaffold properties (elastic modulus, stiffness gradients, dynamic mechanical cues) direct cell fate decisions via mechanotransduction pathways, exemplified by focal adhesion–cytoskeleton coupling. Critically, we highlight how pathological mechanical inputs establish and perpetuate self-reinforcing epigenetic barriers to regeneration through aberrant chromatin states. Furthermore, we examine scaffolds as platforms for precision epigenetic drug delivery, particularly controlled release of inhibitors targeting DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) to disrupt this mechano-reinforced barrier. Evidence from PF murine models and ex vivo lung slice cultures demonstrate scaffold-mediated remodeling of the fibrotic niche, with key studies reporting substantial reductions in collagen deposition and significant increases in alveolar epithelial cell markers following intervention. These quantitative outcomes highlight enhanced alveolar epithelial plasticity and upregulating antifibrotic gene networks. Emerging integration of stimuli-responsive biomaterials, CRISPR/dCas9-based epigenetic editors, and AI-driven design to enhance scaffold functionality is discussed. Collectively, multifunctional bioscaffolds hold significant potential for clinical translation by uniquely co-targeting mechanotransduction and epigenetic reprogramming. Future work will need to resolve persistent challenges, including the erasure of pathological mechanical memory and precise spatiotemporal control of epigenetic modifiers in vivo, to unlock their full therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
47 pages, 8140 KB  
Review
A Review on Low-Dimensional Nanoarchitectonics for Neurochemical Sensing and Modulation in Responsive Neurological Outcomes
by Mohammad Tabish, Iram Malik, Ali Akhtar and Mohd Afzal
Biomolecules 2025, 15(10), 1405; https://doi.org/10.3390/biom15101405 - 2 Oct 2025
Abstract
Low-Dimensional Nanohybrids (LDNHs) have emerged as potent multifunctional platforms for neurosensing and neuromodulation, providing elevated spatial-temporal precision, versatility, and biocompatibility. This review examines the intersection of LDNHs with artificial intelligence, brain–computer interfaces (BCIs), and closed-loop neurotechnologies, highlighting their transformative potential in personalized neuro-nano-medicine. [...] Read more.
Low-Dimensional Nanohybrids (LDNHs) have emerged as potent multifunctional platforms for neurosensing and neuromodulation, providing elevated spatial-temporal precision, versatility, and biocompatibility. This review examines the intersection of LDNHs with artificial intelligence, brain–computer interfaces (BCIs), and closed-loop neurotechnologies, highlighting their transformative potential in personalized neuro-nano-medicine. Utilizing stimuli-responsive characteristics, optical, thermal, magnetic, and electrochemical LDNHs provide real-time feedback-controlled manipulation of brain circuits. Their pliable and adaptable structures surpass the constraints of inflexible bioelectronics, improving the neuronal interface and reducing tissue damage. We also examined their use in less invasive neurological diagnostics, targeted therapy, and adaptive intervention systems. This review delineates recent breakthroughs, integration methodologies, and fundamental mechanisms, while addressing significant challenges such as long-term biocompatibility, deep-tissue accessibility, and scalable manufacturing. A strategic plan is provided to direct future research toward clinical use. Ultimately, LDNHs signify a transformative advancement in intelligent, tailored, and closed-loop neurotechnologies, integrating materials science, neurology, and artificial intelligence to facilitate the next era of precision medicine. Full article
Show Figures

Figure 1

21 pages, 607 KB  
Article
Visual Attention to Economic Information in Simulated Ophthalmic Deficits: A Remote Eye-Tracking Study
by Cansu Yuksel Elgin and Ceyhun Elgin
J. Eye Mov. Res. 2025, 18(5), 50; https://doi.org/10.3390/jemr18050050 - 2 Oct 2025
Abstract
This study investigated how simulated ophthalmic visual field deficits affect visual attention and economic information processing. Using webcam-based eye tracking, 227 participants with normal vision recruited through Amazon Mechanical Turk were assigned to control, central vision loss, peripheral vision loss, or scattered vision [...] Read more.
This study investigated how simulated ophthalmic visual field deficits affect visual attention and economic information processing. Using webcam-based eye tracking, 227 participants with normal vision recruited through Amazon Mechanical Turk were assigned to control, central vision loss, peripheral vision loss, or scattered vision loss simulation conditions. Participants viewed economic stimuli of varying complexity while eye movements, cognitive load, and comprehension were measured. All deficit conditions showed altered oculomotor behaviors. Central vision loss produced the most severe impairments: 43.6% increased fixation durations, 68% longer scanpaths, and comprehension accuracy of 61.2% versus 87.3% for controls. Visual deficits interacted with information complexity, showing accelerated impairment for complex stimuli. Mediation analysis revealed 47% of comprehension deficits were mediated through altered attention patterns. Cognitive load was significantly elevated, with central vision loss participants reporting 84% higher mental demand than controls. These findings demonstrate that visual field deficits fundamentally alter economic information processing through both direct perceptual limitations and compensatory attention strategies. Results demonstrate the feasibility of webcam-based eye tracking for studying simulated visual deficits and suggest that different types of simulated visual deficits may require distinct information presentation strategies. Full article
Show Figures

Graphical abstract

34 pages, 4605 KB  
Article
Forehead and In-Ear EEG Acquisition and Processing: Biomarker Analysis and Memory-Efficient Deep Learning Algorithm for Sleep Staging with Optimized Feature Dimensionality
by Roberto De Fazio, Şule Esma Yalçınkaya, Ilaria Cascella, Carolina Del-Valle-Soto, Massimo De Vittorio and Paolo Visconti
Sensors 2025, 25(19), 6021; https://doi.org/10.3390/s25196021 - 1 Oct 2025
Abstract
Advancements in electroencephalography (EEG) technology and feature extraction methods have paved the way for wearable, non-invasive systems that enable continuous sleep monitoring outside clinical environments. This study presents the development and evaluation of an EEG-based acquisition system for sleep staging, which can be [...] Read more.
Advancements in electroencephalography (EEG) technology and feature extraction methods have paved the way for wearable, non-invasive systems that enable continuous sleep monitoring outside clinical environments. This study presents the development and evaluation of an EEG-based acquisition system for sleep staging, which can be adapted for wearable applications. The system utilizes a custom experimental setup with the ADS1299EEG-FE-PDK evaluation board to acquire EEG signals from the forehead and in-ear regions under various conditions, including visual and auditory stimuli. Afterward, the acquired signals were processed to extract a wide range of features in time, frequency, and non-linear domains, selected based on their physiological relevance to sleep stages and disorders. The feature set was reduced using the Minimum Redundancy Maximum Relevance (mRMR) algorithm and Principal Component Analysis (PCA), resulting in a compact and informative subset of principal components. Experiments were conducted on the Bitbrain Open Access Sleep (BOAS) dataset to validate the selected features and assess their robustness across subjects. The feature set extracted from a single EEG frontal derivation (F4-F3) was then used to train and test a two-step deep learning model that combines Long Short-Term Memory (LSTM) and dense layers for 5-class sleep stage classification, utilizing attention and augmentation mechanisms to mitigate the natural imbalance of the feature set. The results—overall accuracies of 93.5% and 94.7% using the reduced feature sets (94% and 98% cumulative explained variance, respectively) and 97.9% using the complete feature set—demonstrate the feasibility of obtaining a reliable classification using a single EEG derivation, mainly for unobtrusive, home-based sleep monitoring systems. Full article
Show Figures

Figure 1

50 pages, 2929 KB  
Review
Mechanosensing of Shear Stress and Uterine Spiral Artery Remodeling by Invasive Trophoblasts in Early Pregnancy
by Dariusz Szukiewicz, Seweryn Trojanowski, Edyta Wróbel, Piotr Wojdasiewicz and Grzegorz Szewczyk
Int. J. Mol. Sci. 2025, 26(19), 9565; https://doi.org/10.3390/ijms26199565 - 30 Sep 2025
Abstract
The development of low-resistance blood flow within the developing placenta in the early weeks of pregnancy requires trophoblast invasion of the uterine spiral arteries. Therefore, understanding the migration and differentiation of trophoblasts is necessary. Recently, researchers have focused increasingly on the regulation of [...] Read more.
The development of low-resistance blood flow within the developing placenta in the early weeks of pregnancy requires trophoblast invasion of the uterine spiral arteries. Therefore, understanding the migration and differentiation of trophoblasts is necessary. Recently, researchers have focused increasingly on the regulation of the response of endovascular extravillous trophoblasts (enEVTs) to mechanical stimuli associated with shear stress. The starting point for these studies is that enEVTs, which adopt a pseudoendothelial phenotype, functionally resemble endothelial cells in terms of ability to promote angiogenesis, vascular remodeling and cell–cell communication. The complex process of mechanotransduction requires the coordinated participation of many types of mechanoreceptors, whose activated signaling pathways are translated into whole-cell mechanosensing involving components of the cytoskeleton and extracellular matrix. The aim of this review is to comprehensively present the current knowledge on the importance of mechanical stimuli associated with shear stress in the development of local changes in the vascular system at the site of blastocyst implantation. The characteristics of individual mechanoreceptors are determined, and the most important factors influencing mechanotransduction are discussed. Understanding the importance of mechanosensing disorders in trophoblasts in the pathogenesis of unexplained recurrent abortions or preeclampsia may be helpful in the development of new therapeutic strategies based on the regulation of mechanotransduction in response to shear stress. Full article
(This article belongs to the Section Molecular Biology)
30 pages, 1346 KB  
Review
Electrospun Bio-Scaffolds for Mesenchymal Stem Cell-Mediated Neural Differentiation: Systematic Review of Advances and Future Directions
by Luigi Ruccolo, Aleksandra Evangelista, Marco Benazzo, Bice Conti and Silvia Pisani
Int. J. Mol. Sci. 2025, 26(19), 9528; https://doi.org/10.3390/ijms26199528 - 29 Sep 2025
Abstract
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly [...] Read more.
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly through the combination of electrospun nanofibrous scaffolds and mesenchymal stem cells (MSCs). Electrospun fibers mimic the neural extracellular matrix, providing topographical and mechanical cues that enhance MSC adhesion, viability, and neural differentiation. MSCs are multipotent stem cells with robust paracrine and immunomodulatory activity, capable of supporting regeneration and, under proper stimuli, acquiring neural-like phenotypes. This systematic review, following the PRISMA 2020 method, analyzes 77 selected articles from the last ten years to assess the potential of electrospun biopolymer scaffolds for MSC-mediated neural repair. We critically examine the scaffold’s composition (synthetic and natural polymers), fiber architecture (alignment and diameter), structural and mechanical properties (porosity and stiffness), and biofunctionalization strategies. The influence of MSC tissue sources (bone marrow, adipose, and dental pulp) on neural differentiation outcomes is also discussed. The results of a literature search show both in vitro and in vivo enhanced neural marker expression, neurite extension, and functional recovery when MSCs are seeded onto optimized electrospun scaffolds. Therefore, integrating stem cell therapy with advanced biomaterials offers a promising route to bridge the gap between neural injury and functional regeneration. Full article
(This article belongs to the Special Issue Tissue Engineering Related Biomaterials: Progress and Challenges)
Show Figures

Figure 1

25 pages, 2079 KB  
Review
Dynamic Hydrogels: Adaptive Biomaterials for Engineering Tumor Microenvironment and Cancer Treatment
by Yuting Wu, Yifei Xiao, Bohan Yin and Siu Hong Dexter Wong
Int. J. Mol. Sci. 2025, 26(19), 9502; https://doi.org/10.3390/ijms26199502 - 28 Sep 2025
Abstract
Dynamic hydrogels are revolutionizing tumor microenvironment (TME) engineering through their stimuli-responsive adaptability, mechanical tunability, and capacity for multifunctional integration. In addition, they are excellent biomaterials for cancer treatments, including their biomimetic properties and controlled cargo release capability. This review introduces the rational design [...] Read more.
Dynamic hydrogels are revolutionizing tumor microenvironment (TME) engineering through their stimuli-responsive adaptability, mechanical tunability, and capacity for multifunctional integration. In addition, they are excellent biomaterials for cancer treatments, including their biomimetic properties and controlled cargo release capability. This review introduces the rational design and principles of dynamic hydrogels for recreating the tumor microenvironment and cancer therapy, including natural/synthetic hydrogels, multi-stimuli responsive hydrogels, and multi-drug loading hydrogels. These designs emphasize their unique roles in overcoming drug resistance, enhancing immunotherapy, and enabling patient-specific models. We highlight breakthroughs such as dual-responsive nanocomposites and microfluidic-integrated 3D platforms while addressing translational hurdles like cytotoxicity and regulatory delays. By proposing strategies to bridge material science with clinical needs, this work positions dynamic hydrogels as pivotal tools for next-generation precision oncology. Full article
Show Figures

Figure 1

35 pages, 2417 KB  
Review
Insights into Persistent SARS-CoV-2 Reservoirs in Chronic Long COVID
by Swayam Prakash, Sweta Karan, Yassir Lekbach, Delia F. Tifrea, Cesar J. Figueroa, Jeffrey B. Ulmer, James F. Young, Greg Glenn, Daniel Gil, Trevor M. Jones, Robert R. Redfield and Lbachir BenMohamed
Viruses 2025, 17(10), 1310; https://doi.org/10.3390/v17101310 - 27 Sep 2025
Abstract
Long COVID (LC), also known as post-acute sequelae of COVID-19 infection (PASC), is a heterogeneous and debilitating chronic disease that currently affects 10 to 20 million people in the U.S. and over 420 million people globally. With no approved treatments, the long-term global [...] Read more.
Long COVID (LC), also known as post-acute sequelae of COVID-19 infection (PASC), is a heterogeneous and debilitating chronic disease that currently affects 10 to 20 million people in the U.S. and over 420 million people globally. With no approved treatments, the long-term global health and economic impact of chronic LC remains high and growing. LC affects children, adolescents, and healthy adults and is characterized by over 200 diverse symptoms that persist for months to years after the acute COVID-19 infection is resolved. These symptoms target twelve major organ systems, causing dyspnea, vascular damage, cognitive impairments (“brain fog”), physical and mental fatigue, anxiety, and depression. This heterogeneity of LC symptoms, along with the lack of specific biomarkers and diagnostic tests, presents a significant challenge to the development of LC treatments. While several biological abnormalities have emerged as potential drivers of LC, a causative factor in a large subset of patients with LC, involves reservoirs of virus and/or viral RNA (vRNA) that persist months to years in multiple organs driving chronic inflammation, respiratory, muscular, cognitive, and cardiovascular damages, and provide continuous viral antigenic stimuli that overstimulate and exhaust CD4+ and CD8+ T cells. In this review, we (i) shed light on persisting virus and vRNA reservoirs detected, either directly (from biopsy, blood, stool, and autopsy samples) or indirectly through virus-specific B and T cell responses, in patients with LC and their association with the chronic symptomatology of LC; (ii) explore potential mechanisms of inflammation, immune evasion, and immune overstimulation in LC; (iii) review animal models of virus reservoirs in LC; (iv) discuss potential T cell immunotherapeutic strategies to reduce or eliminate persistent virus reservoirs, which would mitigate chronic inflammation and alleviate symptom severity in patients with LC. Full article
(This article belongs to the Special Issue SARS-CoV-2, COVID-19 Pathologies, Long COVID, and Anti-COVID Vaccines)
Show Figures

Figure 1

15 pages, 5911 KB  
Article
Integrative Bioinformatics-Guided Analysis of Glomerular Transcriptome Implicates Potential Therapeutic Targets and Pathogenesis Mechanisms in IgA Nephropathy
by Tiange Yang, Mengde Dai, Fen Zhang and Weijie Wen
Bioengineering 2025, 12(10), 1040; https://doi.org/10.3390/bioengineering12101040 - 27 Sep 2025
Abstract
(1) Background: IgA nephropathy (IgAN) is a leading cause of chronic kidney disease worldwide. Despite its prevalence, the molecular mechanisms of IgAN remain poorly understood, partly due to limited research scale. Identifying key genes involved in IgAN’s pathogenesis is critical for novel diagnostic [...] Read more.
(1) Background: IgA nephropathy (IgAN) is a leading cause of chronic kidney disease worldwide. Despite its prevalence, the molecular mechanisms of IgAN remain poorly understood, partly due to limited research scale. Identifying key genes involved in IgAN’s pathogenesis is critical for novel diagnostic and therapeutic strategies. (2) Methods: We identified differentially expressed genes (DEGs) by analyzing public datasets from the Gene Expression Omnibus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate the biological roles of DEGs. Hub genes were screened using weighted gene co-expression network analysis combined with machine learning algorithms. Immune infiltration analysis was conducted to explore associations between hub genes and immune cell profiles. The hub genes were validated using receiver operating characteristic curves and area under the curve. (3) Results: We identified 165 DEGs associated with IgAN and revealed pathways such as IL-17 signaling and complement and coagulation cascades, and biological processes including response to xenobiotic stimuli. Four hub genes were screened: three downregulated (FOSB, SLC19A2, PER1) and one upregulated (SOX17). The AUC values for identifying IgAN in the training and testing set ranged from 0.956 to 0.995. Immune infiltration analysis indicated that hub gene expression correlated with immune cell abundance, suggesting their involvement in IgAN’s immune pathogenesis. (4) Conclusion: This study identifies FOSB, SLC19A2, PER1, and SOX17 as novel hub genes with high diagnostic accuracy for IgAN. These genes, linked to immune-related pathways such as IL-17 signaling and complement activation, offer promising targets for diagnostic development and therapeutic intervention, enhancing our understanding of IgAN’s molecular and immune mechanisms. Full article
(This article belongs to the Special Issue Advanced Biomedical Signal Communication Technology)
Show Figures

Graphical abstract

19 pages, 1443 KB  
Article
The Presence of Neutrophil Extracellular Traps (NETs) in Brain Tumor Vessels Is Linked to Platelet Aggregates and Podoplanin in the Tumor Microenvironment
by Pegah Mir Seyed Nazari, Öykü Özer, Thomas Roetzer-Pejrimovsky, Maximilian J. Mair, Julia Riedl, Christine Brostjan, Anna Sophie Berghoff, Matthias Preusser, Johannes A. Hainfellner, Christine Marosi, Ingrid Pabinger and Cihan Ay
Cancers 2025, 17(19), 3141; https://doi.org/10.3390/cancers17193141 - 27 Sep 2025
Abstract
Background: Multiple mechanisms might lead to cancer-related hypercoagulability. In brain tumors, podoplanin, via its ability to activate platelets, seems to play a crucial role in developing venous thromboembolism (VTE). Different stimuli (including activated platelets) can trigger the release of prothrombotic neutrophil extracellular [...] Read more.
Background: Multiple mechanisms might lead to cancer-related hypercoagulability. In brain tumors, podoplanin, via its ability to activate platelets, seems to play a crucial role in developing venous thromboembolism (VTE). Different stimuli (including activated platelets) can trigger the release of prothrombotic neutrophil extracellular traps (NETs) by neutrophils. It remains to be elucidated whether podoplanin-induced platelet aggregates might also impact NET formation and subsequent hypercoagulability and thrombosis. Methods: Patients with glioma were enrolled in this prospective observational cohort study. The primary endpoint was VTE. Immunohistochemical staining of NETs (via citrullinated histone H3 [H3Cit]) and neutrophils (via myeloperoxidase [MPO]) was conducted in glioma specimens and correlated with intravascular platelet clusters (via CD61) and podoplanin. Results: In total, 154 patients were included. H3Cit+ tumor vessels were found in 45/154 cases. H3Cit were significantly associated with increased intravascular platelet clusters (CD61− vs. CD61+ vs. CD61++ vs. CD61+++: 3.7% (1/27) vs. 18.6% (11/59) vs. 39.4% (13/33) vs. 57.1% (20/35), p < 0.001) and podoplanin expression (PDPN− vs. PDPN+: 14.3% (7/49) vs. 36.2% (38/105), p = 0.007) in the tumor tissue. Furthermore, H3Cit+ tumor vessels were significantly associated with tumor-infiltrating MPO+ neutrophils (H3Cit− vs. H3Cit+, median [Q1-Q3]: 6.0 [3.3–12.3] vs. 12.5 [5.9–22.0] cells/mm2, p < 0.001) and with D-dimer levels (H3Cit− vs. H3Cit+: 0.53 [0.32–1.10] vs. 0.84 [0.46–2.75] µg/mL, p = 0.034). The VTE risk was not linked to H3Cit+ tumor vessels (p = 0.613, log-rank). Conclusions: H3Cit in tumor vessels was not associated with VTE. However, H3Cit was linked to a local procoagulant phenotype in glioma, thereby potentially contributing to a systemic hypercoagulable state and thrombus formation. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

22 pages, 2431 KB  
Article
Perceptual Plasticity in Bilinguals: Language Dominance Reshapes Acoustic Cue Weightings
by Annie Tremblay and Hyoju Kim
Brain Sci. 2025, 15(10), 1053; https://doi.org/10.3390/brainsci15101053 - 27 Sep 2025
Abstract
Background/Objectives: Speech perception is shaped by language experience, with listeners learning to selectively attend to acoustic cues that are informative in their language. This study investigates how language dominance, a proxy for long-term language experience, modulates cue weighting in highly proficient Spanish–English bilinguals’ [...] Read more.
Background/Objectives: Speech perception is shaped by language experience, with listeners learning to selectively attend to acoustic cues that are informative in their language. This study investigates how language dominance, a proxy for long-term language experience, modulates cue weighting in highly proficient Spanish–English bilinguals’ perception of English lexical stress. Methods: We tested 39 bilinguals with varying dominance profiles and 40 monolingual English speakers in a stress identification task using auditory stimuli that independently manipulated vowel quality, pitch, and duration. Results: Bayesian logistic regression models revealed that, compared to monolinguals, bilinguals relied less on vowel quality and more on pitch and duration, mirroring cue distributions in Spanish versus English. Critically, cue weighting within the bilingual group varied systematically with language dominance: English-dominant bilinguals patterned more like monolingual English listeners, showing increased reliance on vowel quality and decreased reliance on pitch and duration, whereas Spanish-dominant bilinguals retained a cue weighting that was more Spanish-like. Conclusions: These results support experience-based models of speech perception and provide behavioral evidence that bilinguals’ perceptual attention to acoustic cues remains flexible and dynamically responsive to long-term input. These results are in line with a neurobiological account of speech perception in which attentional and representational mechanisms adapt to changes in the input. Full article
(This article belongs to the Special Issue Language Perception and Processing)
Show Figures

Figure 1

Back to TopTop