Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (30,477)

Search Parameters:
Keywords = mechanical strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 9064 KB  
Article
PLSCO: An Optimization-Driven Approach for Enhancing Predictive Maintenance Accuracy in Intelligent Manufacturing
by Aymen Ramadan Mohamed Alahwel Besha, Opeoluwa Seun Ojekemi, Tolga Oz and Oluwatayomi Adegboye
Processes 2025, 13(9), 2707; https://doi.org/10.3390/pr13092707 (registering DOI) - 25 Aug 2025
Abstract
Predictive maintenance (PdM) is a cornerstone of smart manufacturing, enabling the early detection of equipment degradation and reducing unplanned downtimes. This study proposes an advanced machine learning framework that integrates the Extreme Learning Machine (ELM) with a novel hybrid metaheuristic optimization algorithm, the [...] Read more.
Predictive maintenance (PdM) is a cornerstone of smart manufacturing, enabling the early detection of equipment degradation and reducing unplanned downtimes. This study proposes an advanced machine learning framework that integrates the Extreme Learning Machine (ELM) with a novel hybrid metaheuristic optimization algorithm, the Polar Lights Salp Cooperative Optimizer (PLSCO), to enhance predictive modeling in manufacturing processes. PLSCO combines the strengths of the Polar Light Optimizer (PLO), Competitive Swarm Optimization (CSO), and Salp Swarm Algorithm (SSA), utilizing a cooperative strategy that adaptively balances exploration and exploitation. In this mechanism, particles engage in a competitive division process, where winners intensify search via PLO and losers diversify using SSA, effectively avoiding local optima and premature convergence. The performance of PLSCO was validated on CEC2015 and CEC2020 benchmark functions, demonstrating superior convergence behavior and global search capabilities. When applied to a real-world predictive maintenance dataset, the ELM-PLSCO model achieved a high prediction accuracy of 95.4%, outperforming baseline and other optimization-assisted models. Feature importance analysis revealed that torque and tool wear are dominant indicators of machine failure, offering interpretable insights for condition monitoring. The proposed approach presents a robust, interpretable, and computationally efficient solution for predictive maintenance in intelligent manufacturing environments. Full article
Show Figures

Figure 1

13 pages, 14298 KB  
Article
Simultaneous Improvement of Glass-Forming Ability and Ductility in Co-Based BMGs Through Si/Fe Microalloying
by Xinlong Quan, Liming Xu, Yong Zhao, Xuecheng Tang, Qing Liu, Bo Zhang and Wei-Hua Wang
Metals 2025, 15(9), 943; https://doi.org/10.3390/met15090943 (registering DOI) - 25 Aug 2025
Abstract
Cobalt-based bulk metallic glasses (Co-based BMGs) offer a combination of high strength, corrosion resistance, and soft magnetic properties, yet their limited glass-forming ability (GFA) and poor room-temperature ductility restrict broader application. In this study, a microalloying strategy was applied to the Co61 [...] Read more.
Cobalt-based bulk metallic glasses (Co-based BMGs) offer a combination of high strength, corrosion resistance, and soft magnetic properties, yet their limited glass-forming ability (GFA) and poor room-temperature ductility restrict broader application. In this study, a microalloying strategy was applied to the Co61Nb8B31 base composition to develop Co-Nb-B-Si and Co-Fe-Nb-B-Si systems. The effects of Si addition and Fe substitution on GFA, thermal stability, and mechanical properties were systematically investigated. Si doping combined with Co/B ratio tuning broadened the supercooled liquid region and increased the critical glass-forming diameter from 1 mm to 3 mm. Further addition of 5 at.% Fe expanded the supercooled liquid region and enabled the fabrication of a fully amorphous plate with 1 mm thickness. The optimized Co63Nb8B27Si2 alloy exhibited a compressive strength of 5.18 GPa and a plastic strain of 3.81%. Fracture surface analysis revealed ductile fracture features in the Si-containing alloy and brittle characteristics in Fe-rich compositions. These results demonstrate that microalloying is effective in optimizing the balance between GFA and mechanical performance of Co-based BMGs, offering guidance for composition and processing design. Full article
19 pages, 4403 KB  
Article
Enhanced Mechanical Performance of GFRP Rebars Using Plasma-Treated Natural Fiber Powder Fillers
by Thaloengsak Keereemasthong, Thidarat Kanthiya, Kittiphat Kochchapong, Sattaya Chaiwithee, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Jonghwan Suhr, Choncharoen Sawangrat and Pitiwat Wattanachai
Buildings 2025, 15(17), 3030; https://doi.org/10.3390/buildings15173030 (registering DOI) - 25 Aug 2025
Abstract
In this study, glass fiber-reinforced polymer (GFRP) rebars were fabricated using epoxy resin matrix filled with 5 wt.% of hemp and bamboo powder fillers, both untreated and dielectric barrier discharge (DBD) plasma treated. The tensile, flexural, transverse shear, and pull-out bond strengths were [...] Read more.
In this study, glass fiber-reinforced polymer (GFRP) rebars were fabricated using epoxy resin matrix filled with 5 wt.% of hemp and bamboo powder fillers, both untreated and dielectric barrier discharge (DBD) plasma treated. The tensile, flexural, transverse shear, and pull-out bond strengths were evaluated to investigate the effects of filler type and surface modification. The results show that the incorporation of untreated fillers decreased tensile strength from 706.4 MPa for hemp to 682.3 MPa for bamboo. The plasma-treated hemp formulation demonstrated a higher recovery (762.1 MPa), approaching the control value (804.2 MPa). Transverse shear strength increased from 117.0 MPa (untreated hemp) to 128.3 MPa (plasma-treated hemp). The bond strength with concrete remained unaffected across all groups. Scanning electron microscopy (SEM) revealed improved filler dispersion, reduced voids, and enhanced resin wetting in the plasma-treated specimens. Fourier-transform infrared spectroscopy (FTIR) confirmed the introduction of polar functional groups such as hydroxyl and carbonyl groups onto the fiber surfaces following plasma exposure. These modifications contributed to improved interfacial adhesion and mechanical integrity. Overall, the DBD plasma treatment effectively enhanced the performance and interfacial characteristics of natural fiber-filled GFRP rebars, supporting their potential as sustainable reinforcements in structural applications. Full article
Show Figures

Figure 1

27 pages, 5123 KB  
Article
Advanced Hybrid Modeling of Cementitious Composites Using Machine Learning and Finite Element Analysis Based on the CDP Model
by Elif Ağcakoca, Sebghatullah Jueyendah, Zeynep Yaman, Yusuf Sümer and Mahyar Maali
Buildings 2025, 15(17), 3026; https://doi.org/10.3390/buildings15173026 (registering DOI) - 25 Aug 2025
Abstract
This study aims to investigate the mechanical behavior of cement mortar and concrete through a hybrid approach that integrates artificial intelligence (AI) techniques with finite element modeling (FEM). Support Vector Machine (SVM) models with Radial Basis Function (RBF) and polynomial kernels, along with [...] Read more.
This study aims to investigate the mechanical behavior of cement mortar and concrete through a hybrid approach that integrates artificial intelligence (AI) techniques with finite element modeling (FEM). Support Vector Machine (SVM) models with Radial Basis Function (RBF) and polynomial kernels, along with Multilayer Perceptron (MLP) neural networks, were employed to predict the compressive strength (Fc) and flexural strength (Fs) of cement mortar incorporating nano-silica (NS) and micro-silica (MS). The dataset comprises 89 samples characterized by six input parameters: water-to-cement ratio (W/C), sand-to-cement ratio (S/C), nano-silica-to-cement ratio (NS/C), micro-silica-to-cement ratio (MS/C), and curing age. Simultaneously, the axial compressive behavior of C20-grade concrete was numerically simulated using the Concrete Damage Plasticity (CDP) model in ABAQUS, with stress–strain responses benchmarked against the analytical models proposed by Mander, Hognestad, and Kent–Park. Due to the inherent limitations of the finite element software, it was not possible to define material models incorporating NS and MS; therefore, the simulations were conducted using the mechanical properties of conventional concrete. The SVM-RBF model demonstrated the highest predictive accuracy with RMSE values of 0.163 (R2 = 0.993) for Fs and 0.422 (R2 = 0.999) for Fc, while the Mander model showed the best agreement with experimental results among the FEM approaches. The study demonstrates that both the SVM-RBF and CDP-based modeling approaches serve as robust and complementary tools for accurately predicting the mechanical performance of cementitious composites. Furthermore, this research addresses the limitations of conventional FEM in capturing the effects of NS and MS, as well as the existing gap in integrated AI-FEM frameworks for blended cement mortars. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
23 pages, 2221 KB  
Article
Strength and Microstructural Evolution of SRX-Stabilized Aeolian Sand–Gravel Flexible Base for Desert Road Construction
by Jie Liu, Qinli Liu, Chao Pu, Bo Wu, Xin Wang and Shiyu Zhu
Materials 2025, 18(17), 3982; https://doi.org/10.3390/ma18173982 (registering DOI) - 25 Aug 2025
Abstract
This study investigates the strength and microstructural evolution of SRX-stabilized aeolian sand–gravel mixtures for flexible base applications in desert roads. CBR, UPS (uniaxial penetration strength), and compressive resilient modulus tests were conducted under varying SRX dosages (0.4–1.0%) and aeolian sand contents (30–50%). The [...] Read more.
This study investigates the strength and microstructural evolution of SRX-stabilized aeolian sand–gravel mixtures for flexible base applications in desert roads. CBR, UPS (uniaxial penetration strength), and compressive resilient modulus tests were conducted under varying SRX dosages (0.4–1.0%) and aeolian sand contents (30–50%). The results show that increasing the SRX dosage significantly improves all three indices, with the 0.5% SRX and 30% aeolian sand mixture yielding the CBR (385.89%) and UPS (0.938 MPa) and achieving a compressive resilient modulus that meets the requirements for graded aggregate base layers. XRD FTIR and SEM–EDS analyses reveal that the SRX enhances material structure primarily through physical mechanisms, forming dense films and bonding networks without inducing significant chemical reactions. Extended curing improves structural integrity, while excessive aeolian sand reduces compactness. SRX-stabilized aeolian sand gravel is a viable base and subbase material for desert highways. Full article
23 pages, 1632 KB  
Review
Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications
by Eric Fernando Vázquez-Vázquez, Yazmín Mariela Hernández-Rodríguez, Omar Solorza-Feria and Oscar Eduardo Cigarroa-Mayorga
Crystals 2025, 15(9), 753; https://doi.org/10.3390/cryst15090753 (registering DOI) - 25 Aug 2025
Abstract
Borophene, a two-dimensional (2D) allotrope of boron, has emerged as a highly promising material owing to its exceptional mechanical strength, electronic conductivity, and diverse structural phases. Unlike graphene and other 2D materials, borophene exhibits inherent anisotropy, flexibility, and metallicity, offering unique opportunities for [...] Read more.
Borophene, a two-dimensional (2D) allotrope of boron, has emerged as a highly promising material owing to its exceptional mechanical strength, electronic conductivity, and diverse structural phases. Unlike graphene and other 2D materials, borophene exhibits inherent anisotropy, flexibility, and metallicity, offering unique opportunities for advanced nanotechnological applications. This review presents a comprehensive summary of recent progress in borophene synthesis methods, highlighting both bottom–up strategies such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE), and top–down approaches, including liquid-phase exfoliation and sonochemical techniques. A key challenge discussed is the stabilization of borophene’s polymorphs, as bulk boron’s non-layered structure complicates exfoliation. The influence of substrates and doping strategies on structural stability and phase control is also explored. Moreover, the intrinsic physicochemical properties of borophene, including its high flexibility, oxidation resistance, and anisotropic charge transport, were examined in relation to their implications for electronic, catalytic, and sensing devices. Particular attention was given to borophene’s performance in hydrogen storage and hydrogen evolution reactions (HERs), where functionalization with alkali and transition metals significantly enhances H2 adsorption energy and storage capacity. Studies demonstrate that certain borophene–metal composites, such as Ti- or Li-decorated borophene, can achieve hydrogen storage capacities exceeding 10 wt.%, surpassing the U.S. Department of Energy targets for hydrogen storage materials. Despite these promising characteristics, large-scale synthesis, long-term stability, and integration into practical systems remain open challenges. This review identifies current research gaps and proposes future directions to facilitate the development of borophene-based energy solutions. The findings support borophene’s strong potential as a next-generation material for clean energy applications, particularly in hydrogen production and storage systems. Full article
(This article belongs to the Special Issue Advances in Nanocomposites: Structure, Properties and Applications)
Show Figures

Figure 1

17 pages, 1288 KB  
Article
Effect of Different Plastics on Mechanical Properties of Concrete
by Madiha Z. J. Ammari, Halil Sezen and Jose Castro
Constr. Mater. 2025, 5(3), 60; https://doi.org/10.3390/constrmater5030060 (registering DOI) - 25 Aug 2025
Abstract
In this research work, five different types of post-consumer plastics were mechanically ground into fine aggregate, and each type was used to prepare 2 in. (50 mm) mortar cubes by partial volumetric replacement of the sand. The purpose is to evaluate the effect [...] Read more.
In this research work, five different types of post-consumer plastics were mechanically ground into fine aggregate, and each type was used to prepare 2 in. (50 mm) mortar cubes by partial volumetric replacement of the sand. The purpose is to evaluate the effect of the plastic type and its shape on the density and the compressive strength of concrete. The plastic products used in this study are usually not collected by curbside recycling facilities and are discarded in landfills or incinerated. The different types of plastics investigated were Polyethylene terephthalate (PET), High-Density Polyethylene (HDPE), Polypropylene (PP), Polystyrene (PS), and Acrylonitrile Butadiene Styrene (ABS). A total of 180 cubes with 5%, 10%, and 15% replacement were prepared and tested for their densities at the age of 28 days and their compressive strengths at the ages of 7 and 28 days. This work concluded by proposing general equations to predict the reduction in the density and compressive strength of the mortar with the increment in the plastic replacement. Full article
Show Figures

Figure 1

24 pages, 6617 KB  
Article
Improvement of Environment and Mechanical Behaviour of Filling Material of Phosphate Solid Waste Using Natural Fibre
by Defeng Liu, Chenglin Ke, Fan Wu and Yantao Zheng
Materials 2025, 18(17), 3978; https://doi.org/10.3390/ma18173978 (registering DOI) - 25 Aug 2025
Abstract
To enhance both the environmental performance and mechanical properties of phosphate solid waste backfill materials, this study examines the effects of corn straw fibre (CS), rice straw fibre (RS), and jute fibre (JF), each at five lengths (3–15 mm) and five dosages (0.1–0.5 [...] Read more.
To enhance both the environmental performance and mechanical properties of phosphate solid waste backfill materials, this study examines the effects of corn straw fibre (CS), rice straw fibre (RS), and jute fibre (JF), each at five lengths (3–15 mm) and five dosages (0.1–0.5 wt%), on the rheological behaviour, mechanical strength, and microstructural characteristics of the backfill slurry. The experimental results showed that the incorporation of natural fibres markedly improved both the compressive and tensile strengths of backfill materials. For example, incorporating CS at a length of 12 mm and a dosage of 0.2 wt% increased the compressive and tensile strengths by 144.4% and 18.8%, respectively. Likewise, RS at 3 mm and 0.2 wt% increased the strengths by 68.3% and 11.9%, while JF at 12 mm and 0.5 wt% enhanced them by 108.2% and 14.9%, respectively. Ion leaching experiments and XPS analyses confirmed that the incorporation of natural fibres effectively adsorbed and immobilized phosphorus and fluorine in phosphogypsum. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that the improved mechanical strength was primarily attributed to fibre-bridging effects and enhanced fibre–matrix bonding. Furthermore, nuclear magnetic resonance (NMR) analysis demonstrated that incorporating natural fibres reduced the porosity of backfill materials (from 12.9% to 8.14%) while increasing their density. This study provides an experimental foundation for optimizing backfill materials and recommends a 12 mm CS fibre length at a dosage of 0.2 wt% to improve the stability and safety of mine fill structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 3326 KB  
Article
Influence of Tension and Tension Fluctuation on the Structure and Mechanical Properties of Polyester Fibers During the Spinning Process Based on Non-Contact Tension Detection
by Wanhe Du, Dongjian Zhang, Wei Fan, Shuzhen Yang and Xuehui Gan
Materials 2025, 18(17), 3972; https://doi.org/10.3390/ma18173972 (registering DOI) - 25 Aug 2025
Abstract
The precise measuring and control of fiber tension are critically important for enhancing structural and mechanical properties in spinning processes, as tension directly influences orientation, crystallinity, and mechanical properties. However, current tension measurement methods primarily operate offline and lack real-time measuring capabilities. A [...] Read more.
The precise measuring and control of fiber tension are critically important for enhancing structural and mechanical properties in spinning processes, as tension directly influences orientation, crystallinity, and mechanical properties. However, current tension measurement methods primarily operate offline and lack real-time measuring capabilities. A non-contact fiber tension detection system is introduced to investigate the effects of draw tension and its uniformity on the structure and mechanical properties of polyester fibers. During experiments conducted at a spinning speed of 1200 m/min across different draw ratios, the non-contact system demonstrated strong agreement with the contact tension detector. The results showed that increasing the tension from 34 cN to 164 cN reduced the monofilament diameter from 39.61 µm to 20.35 µm. Simultaneously, the orientation factor nearly tripled, while crystallinity increased from 55.72% to 77.39%. Mechanical testing revealed a 50.96% improvement in breaking strength, rising from 1.57 to 2.37 cN/dtex, accompanied by a significant decrease in elongation at break from 275.55% to 34.95%. However, tension fluctuations, characterized by an average fluctuation coefficient increase from 4.51% to 18.18%, caused diameter inconsistency. These fluctuations also reduced the orientation factor by 10.78%, lowered crystallinity, and substantially deteriorated mechanical properties. These findings underscore the critical importance of real-time, online tension monitoring for ensuring polyester fiber quality and performance during production. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

21 pages, 11638 KB  
Article
The Influence of Manufacturing Parameters and Heat Treatments on the Properties of AlSi10Mg Alloy Produced Using L-PBF
by Gleicy de Lima Xavier Ribeiro, Luis Reis, Rene de Oliveira, Marcos Massi, Rodolfo Luiz Gonçalves and Antônio Augusto Couto
Metals 2025, 15(9), 941; https://doi.org/10.3390/met15090941 (registering DOI) - 25 Aug 2025
Abstract
AlSi10Mg has been one of the most studied and employed aluminum alloys for additive manufacturing via laser powder-bed fusion (L-PBF). The optimization of manufacturing parameters is important for reducing internal defects, including porosity and inadequate surface finishes. In addition, heat treatments, such as [...] Read more.
AlSi10Mg has been one of the most studied and employed aluminum alloys for additive manufacturing via laser powder-bed fusion (L-PBF). The optimization of manufacturing parameters is important for reducing internal defects, including porosity and inadequate surface finishes. In addition, heat treatments, such as T6, are often applied to this alloy, but they degrade the characteristic microstructure obtained via L-PBF additive manufacturing—the fine cellular structures—which may, in turn, detrimentally affect the material’s properties. In this context, a new alternative to this treatment, direct aging (DA), has shown promise in improving the mechanical properties of AlSi10Mg parts produced via L-PBF, since it preserves the cellular microstructure, precipitating silicon-rich nanoparticles within the cells. Understanding how different temperatures and heat treatment times influence the microstructure and, consequently, the properties remains a field to be explored in order to optimize the treatment conditions and achieve better mechanical properties. Thus, the objective of this study was to evaluate the influence of manufacturing parameters and heat treatments on the microstructure and mechanical properties of AlSi10Mg alloy. The optimized manufacturing conditions were 300 W power, 800 mm/s scan speed, 30 µm layer thickness, and an argon atmosphere, which led to lower porosity and better finishing. Samples were heat-treated via DA at 150 °C and 170 °C for different times, as well as undergoing a T6 treatment (solution at 520 °C followed by aging at 150 °C and 170 °C). Initially, the aging curves show higher hardness values for the direct aging condition, compared to the T6 and as-built conditions, reaching a peak hardness of 195 HV for 6h of direct aging. In this way, it was followed with microstructural characterization, which demonstrated that DA maintained the fine cell microstructure of L-PBF and promoted the precipitation of Si nanoparticles, which certainly contributed to the increase in hardness compared to T6, which promoted a structure with coarser precipitates. DA at 170 °C for 6 h increased the tensile strength to 430 MPa, compared to the as-built condition, with a slight loss of ductility. Full article
(This article belongs to the Special Issue Light Alloy and Its Application (2nd Edition))
Show Figures

Figure 1

25 pages, 7861 KB  
Article
Research on Flexural Performance of Low-Strength Foamed Concrete Cold-Formed Steel Framing Composite Enclosure Wall Panels
by Xinliang Liu, Kunpeng Wang, Quanbin Zhao and Chenyuan Luo
Buildings 2025, 15(17), 3018; https://doi.org/10.3390/buildings15173018 (registering DOI) - 25 Aug 2025
Abstract
To meet the requirements of a prefabricated building with specific strength limitations and assembly rate criteria, the research proposes a Low-Strength Foamed Concrete Cold-Formed Steel (CFS) Framing Composite Enclosure Wall Panel (LFSW). The ABAQUS 2024 finite element analysis (FEA) combined with bending performance [...] Read more.
To meet the requirements of a prefabricated building with specific strength limitations and assembly rate criteria, the research proposes a Low-Strength Foamed Concrete Cold-Formed Steel (CFS) Framing Composite Enclosure Wall Panel (LFSW). The ABAQUS 2024 finite element analysis (FEA) combined with bending performance tests on five specimens were employed to examine crack propagation and failure modes of wall panels under wind load, investigating the influence mechanisms of foamed concrete strength, CFS framing wall thickness, CFS framing section height, and concrete cover thickness on the flexural performance of wall panels. The experimental results demonstrate that increasing the steel thickness from 1.8 mm to 2.5 mm enhances the ultimate load-carrying capacity by 46.15%, while enlarging the section height from 80 mm to 100 mm improves capacity by 26.67%. When the foamed concrete strength increased from 0.5 MPa to 1.0 MPa, the wall panel cracking load increased by 50%, while the ultimate load capacity changed by less than 5%. Increasing the concrete cover thickness from 25 mm to 35 mm enhanced the ultimate capacity by 7%, indicating that both parameters exert limited influence on the composite wall panel’s flexural capacity. Finite element simulations demonstrate excellent agreement with experimental results, confirming effective composite action between foamed concrete and CFS framing under service conditions. This validation establishes that the simplified analytical model neglecting interface slip provides better accuracy for engineering design, offering theoretical foundations and practical references for optimizing prefabricated building envelope systems. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 8470 KB  
Article
Experimental Investigation of Fracture Behavior in Coal-Seam Hard Roofs Using Different Fracturing Fluids
by Maolin Yang, Shuai Lv, Sicheng Wang, Xing Wang, Yu Meng and Yongjiang Luo
Appl. Sci. 2025, 15(17), 9321; https://doi.org/10.3390/app15179321 (registering DOI) - 25 Aug 2025
Abstract
In fully mechanized mining faces with large mining heights, thick and hard roofs present significant challenges, including extensive overhang areas, difficult roof control, and frequent roof failures. Hydraulic fracturing is a crucial technique for roof weakening and mine pressure control, and the performance [...] Read more.
In fully mechanized mining faces with large mining heights, thick and hard roofs present significant challenges, including extensive overhang areas, difficult roof control, and frequent roof failures. Hydraulic fracturing is a crucial technique for roof weakening and mine pressure control, and the performance of fracturing fluids directly determines the effectiveness of pressure relief. This study conducted true triaxial hydraulic fracturing experiments using three media: clear water and low-viscosity and high-viscosity fracturing fluids. Fracture propagation patterns under varying media and roof strength conditions were systematically investigated through acoustic emission (AE) monitoring, pump pressure analysis, and rock strain measurements. The results show that both fracturing fluid properties and roof compressive strength significantly influence hydraulic fracture initiation, AE characteristics, and ultimate fracture morphology. Compared to conventional clear water, high-viscosity fracturing fluid exhibits superior performance in fracture initiation efficiency (34% higher peak pressure), propagation intensity (3.7 times more AE energy), and influence range (34% greater fracture length). These advantages make it particularly suitable for hard roof conditions requiring precise fracture management. The results provide a theoretical foundation for optimizing hydraulic fracturing parameters in hard roof control engineering applications. Full article
Show Figures

Figure 1

11 pages, 6105 KB  
Article
Mechanical Performance of Prefabricated Assembly Air Ducts Subject to Assembly and Grouting Defects
by Shufeng Bao, Jinwen Zhang and Yongxing Zhang
Buildings 2025, 15(17), 3019; https://doi.org/10.3390/buildings15173019 (registering DOI) - 25 Aug 2025
Abstract
This paper presents an investigation into the mechanical performance of a subway station prefabricated assembly air duct (PAAD), constructed by assembling the prefabricated reinforced concrete segments. The study is implemented through numerical analysis, focusing on the impact from the grouting defects in the [...] Read more.
This paper presents an investigation into the mechanical performance of a subway station prefabricated assembly air duct (PAAD), constructed by assembling the prefabricated reinforced concrete segments. The study is implemented through numerical analysis, focusing on the impact from the grouting defects in the sleeve grouting connection and assembly error defects along the assembly direction. The results demonstrate that the assembly error defect has almost no impact on the mechanical performance of the PAAD, satisfying the safety requirements for use. However, the grouting defects in the sleeve grouting connection can influence the mechanical performance of the PAAD, in which the maximum tensile stress of concrete in the sleeve grouting connection with a 20 mm-long bottom grouting defect is greater than the tensile strength of that concrete, and strengthening treatment is thus required for ensuring the structure’s safety and reliability. This study provides the basis for applying a PAAD in subway station construction. Full article
Show Figures

Figure 1

19 pages, 7384 KB  
Article
Lignin-Modified Petrochemical-Source Polyester Polyurethane Enhances Nutrient Release Performance of Coated Urea
by Xiaomin Hu, Baishan Liu, Siyu Chen, Qi Chen, Heping Chen, Jingjing Dong, Kexin Zhang, Junxi Wang, Min Zhang and Zhiguang Liu
Agronomy 2025, 15(9), 2030; https://doi.org/10.3390/agronomy15092030 - 25 Aug 2025
Abstract
The development of controlled-release fertilizers (CRFs) has faced significant challenges due to high hydrophilicity and short release lifespan of bio-based materials, as well as non-renewable and high cost of polyester polyols (PPs). In this study, lignin-based polyols (LPs) and PPs were modified to [...] Read more.
The development of controlled-release fertilizers (CRFs) has faced significant challenges due to high hydrophilicity and short release lifespan of bio-based materials, as well as non-renewable and high cost of polyester polyols (PPs). In this study, lignin-based polyols (LPs) and PPs were modified to form a cross-linked polymer film on the surface of urea through an in situ reaction. This approach effectively balanced the slow-release ability and environmental protection of controlled-release fertilizer films. A two-factor, five-level orthogonal test was designed for the mass ratio of lignin/polyester polyol and polyol/polyaryl polymethylene isocyanate (PAPI), comprising a total of 25 treatments. The results indicated that the appropriateness of lignin polyols increased the hydrogen bond content of polyurethane membrane, improved the mechanical strength of the fertilizer membrane shell, and effectively reduced friction losses during storage and transportation. Moreover, optimizing the polyol-to-PAPI ratio minimized coating porosity, produced a smoother and denser surface, and prolonged the nitrogen release period. When the lignin polyol dosage was 25% and the polyol to PAPI ratio was 1:2, the nitrogen release time of the prepared coated urea extended to 32 days, which was 3.5 times longer than that of lignin polyurethane coated urea (7 days). The incorporation of lignin and the optimal ratio of coating materials significantly improved the controlled-release efficiency of coated fertilizer, providing theoretical support for the sustainable agricultural application of biomass. Full article
(This article belongs to the Special Issue Advances Towards Innovative Fertilizers for Sustainable Agriculture)
Show Figures

Figure 1

11 pages, 1946 KB  
Article
Influence of Surface Treatments on the Pull-Off Performance of Adhesively Bonded Polylactic Acid (PLA) Specimens Manufactured by Fused Deposition Modeling (FDM)
by Gianluca Parodo, Giuseppe Moffa, Alessandro Silvestri, Luca Sorrentino, Gabriel Testa and Sandro Turchetta
Materials 2025, 18(17), 3965; https://doi.org/10.3390/ma18173965 - 24 Aug 2025
Abstract
This study investigates the influence of different surface treatments (namely, mechanical abrasion and solvent cleaning with isopropyl alcohol and acetone) on the adhesive bonding performance of polylactic acid (PLA) substrates produced by Fused Deposition Modeling (FDM). Pull-off tests revealed that the isopropanol-cleaned specimens [...] Read more.
This study investigates the influence of different surface treatments (namely, mechanical abrasion and solvent cleaning with isopropyl alcohol and acetone) on the adhesive bonding performance of polylactic acid (PLA) substrates produced by Fused Deposition Modeling (FDM). Pull-off tests revealed that the isopropanol-cleaned specimens achieved the highest bond strength, with an average pull-off value exceeding 8.5 MPa, compared to approximately 5.6 MPa for untreated PLA. Conversely, acetone cleaning resulted in the lowest performance (about 3.5 MPa), while mechanical abrasion yielded intermediate values of about 6 MPa. FTIR analysis confirmed that no chemical reactions occurred, although acetone and abrasion induced significant physical surface changes, unlike isopropanol, which acted as an effective cleaning agent. These findings demonstrate that surface cleanliness plays a dominant role over morphological alterations in enhancing the adhesion of PLA-based 3D-printed joints. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

Back to TopTop