Experimental Investigation of Fracture Behavior in Coal-Seam Hard Roofs Using Different Fracturing Fluids
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Experimental Equipment
2.3. Experimental Procedures and Parameters
3. Results and Discussion
3.1. Analysis of Pump Pressure
3.2. Analysis of Characteristic Parameters of AE
3.3. Analysis of the Strain and Hydraulic Fracture Width
3.4. Analysis of AE Source Locations
4. Fracture Morphologic Evolution
4.1. Fracture Morphology
4.2. Effect of Fracture Fluids on Crack Extension
4.3. Effect of Roof Strength on Crack Extension
5. Conclusions
- (1)
- Pump pressure monitoring showed that high-viscosity fracturing fluid not only increased the fracture initiation pressure but also shortened the pressure buildup time required, enabling faster fracture expansion in hard roofs. In comparison, the low viscosity and high fluid loss of water cause delayed fracture initiation and longer stabilization times for both injection pressure and flow rate. While high-strength roofs further prolong initiation time, high-viscosity fracturing fluid maintains superior efficiency under these conditions.
- (2)
- AE monitoring indicated that higher fracturing fluid viscosity significantly increased the activity, amplitude, and energy of AE events. Clear water produced the fewest and least active AE events. Although low-viscosity fluid generates more events, they exhibit greater temporal dispersion, indicating more uniform fracture propagation. Conversely, high-viscosity fluid induces concentrated events with intense energy release, suggesting localized vigorous fracture propagation. Additionally, increased roof strength correlates with reduced AE activity and constrained fracture propagation.
- (3)
- Strain monitoring results indicated that high-viscosity fracturing fluid produced significantly wider fractures than clear water. With increasing roof strength, low-viscosity fluid produces narrower fractures, whereas high-viscosity fluid maintains a relatively constant fracture width.
- (4)
- Fracture morphology analysis showed that clear water had lower initiation pressure and produced smaller propagation areas than high-viscosity fracturing fluid but led to more complex, branched fractures. A higher UCS of the roof resulted in higher fracture initiation pressure, greater fracture complexity, and a smaller propagation range.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Jiang, C.; Jin, Z.; Wang, W.; Zhuang, W.; Yu, H. Three-dimensional physical model experiment of mining-induced deformation and failure characteristics of roof and floor in deep underground coal seams. Process Saf. Environ. Prot. 2021, 150, 400–415. [Google Scholar] [CrossRef]
- Lin, C.; Deng, J.; Liu, Y.; Yang, Q.; Duan, H. Experiment simulation of hydraulic fracture in colliery hard roof control. J. Pet. Sci. Eng. 2016, 138, 265–271. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, X.; Bai, J.; Jia, L. The mechanism and prevention of rockburst induced by the instability of the composite hard-roof coal structure and roof fractures. Eng. Fract. Mech. 2024, 310, 110512. [Google Scholar] [CrossRef]
- He, H.; Dou, L.; Fan, J.; Du, T.; Sun, X. Deep-hole directional fracturing of thick hard roof for rockburst prevention. Tunnelling Underground Space Technol. 2012, 32, 34–43. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Zhou, N.; Zhang, Q. Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential. Int. J. Rock Mech. Min. Sci. 2016, 88, 197–205. [Google Scholar] [CrossRef]
- Yu, B.; Gao, R.; Kuang, T.; Huo, B.; Meng, X. Engineering study on fracturing high-level hard rock strata by ground hydraulic action. Tunnelling Underground Space Technol. 2019, 86, 156–164. [Google Scholar] [CrossRef]
- Qiu, P.; Yue, Z.; Liang, W.; Yang, R. Mixed-mode crack-tip stress intensity factors measurements by caustics method: A comparison between low and high loading rate conditions. Eng. Fract. Mech. 2024, 310, 110446. [Google Scholar] [CrossRef]
- Ji, S.; Lai, X.; Cui, F.; Liu, Y.; Pan, R.; Karlovšek, J. The failure of edge-cracked hard roof in underground mining: An analytical study. Int. J. Rock Mech. Min. Sci. 2024, 183, 105934. [Google Scholar] [CrossRef]
- Powlay, B.; Karakus, M.; Amrouch, K.; Chester, C. Effects of Notches on Breakdown Pressures and Fracture Evolution in Hydraulic Fracturing. Rock Mech. Rock Eng. 2025, 58, 4483–4496. [Google Scholar] [CrossRef]
- Dvory, N.Z.; McLennan, J.D.; McPherson, B.J. Optimizing Hydraulic Fracturing: Managing Fracture Toughness and Stress Shadow Effects in the Paradox Basin. Rock Mech. Rock Eng. 2025. [Google Scholar] [CrossRef]
- He, Q.; Suorineni, F.T.; Ma, T.; Oh, J. Effect of discontinuity stress shadows on hydraulic fracture re-orientation. Int. J. Rock Mech. Min. Sci. 2017, 91, 179–194. [Google Scholar] [CrossRef]
- Dai, H.; Yin, T.; Wu, Y.; Chen, Y.; Ma, J.; Li, X. A study of geothermal hydraulic fracture surface morphology and heat transfer characteristics. Energy 2024, 312, 133527. [Google Scholar] [CrossRef]
- Liu, C.; Hu, Y.; Zhang, P.; Deng, E.; Huang, Y.; Nie, Z.; Zhang, X. Experimental study on directional fracturing by slotted hydraulic blasting in underground drilling. Nat. Gas Ind. B 2024, 11, 454–467. [Google Scholar] [CrossRef]
- Yang, M.; Lv, S.; Meng, Y.; Wang, X.; Wang, S.; He, J. Numerical investigation of factors influencing multiple hydraulic fracture propagation from directional long boreholes in coal seam roofs. Appl. Sci. 2025, 15, 6521. [Google Scholar] [CrossRef]
- Xia, B.; Zhang, X.; Yu, B.; Jia, J. Weakening effects of hydraulic fracture in hard roof under the influence of stress arch. Int. J. Min. Sci. Technol. 2018, 28, 951–958. [Google Scholar] [CrossRef]
- Wasantha, P.L.P.; Konietzky, H.; Xu, C. Effect of in-situ stress contrast on fracture containment during single- and multi-stage hydraulic fracturing. Eng. Fract. Mech. 2019, 205, 175–189. [Google Scholar] [CrossRef]
- Liang, L.; Ding, Y.; Liu, X.; Luo, P. A novel analytical model of initial fracture pressure for horizontal staged fracturing in fractured reservoir. Energy Sci. Eng. 2019, 7, 3297–3316. [Google Scholar] [CrossRef]
- Li, H.; Liang, W.; Jiang, Y.; Wu, P.; Wu, J.; He, W. Numerical study on the field-scale criterion of hydraulic fracture crossing the interface between roof and broken low-permeability coal. Rock Mech. Rock Eng. 2021, 54, 4543–4567. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, L.; Li, Q.; Wu, Y.; Wang, X.; Jiang, Z.; Yan, F.; Xu, Y.; Wu, X. Experimental investigation on crack competitive extension during hydraulic fracturing in coal measures strata. Fuel 2020, 265, 117003. [Google Scholar] [CrossRef]
- Wen, M.; Huang, H.; Hou, Z.; Wang, F.; Qiu, H.; Ma, N.; Zhou, S. Numerical simulation of the non-Newtonian fracturing fluid influences on the fracture propagation. Energy Sci. Eng. 2022, 10, 404–413. [Google Scholar] [CrossRef]
- Zhu, X.; Zhai, C.; Yu, X.; Xu, J.; Sun, Y.; Cong, Y.; Zheng, Y.; Tang, W.; Chen, A. Fracture damage characteristics of hard roof with different bedding angles induced by modified soundless cracking agents. Eng. Fract. Mech. 2023, 289, 109387. [Google Scholar] [CrossRef]
- Ju, Y.; Guo, F.; Zhang, G.; Fu, G.; Wu, G.; Liu, P. Effects of high temperatures and horizontal geostress differences on hydraulic fracture propagation in tight sandstones: An experimental investigation. Geoenergy Sci. Eng. 2025, 246, 213644. [Google Scholar] [CrossRef]
- Daneshy, A. Hydraulic fracture propagation in layered formations. Soc. Pet. Eng. J. 1978, 18, 33–41. [Google Scholar] [CrossRef]
- Jiang, Y.; Lian, H.; Vinh, P.N.; Liang, W. Propagation behavior of hydraulic fracture across the coal-rock interface under different interfacial friction coefficients and a new prediction model. J. Nat. Gas Sci. Eng. 2019, 68, 102894. [Google Scholar] [CrossRef]
- Silva, B.G.; Einstein, H. Physical processes involved in the laboratory hydraulic fracturing of granite: Visual observations and interpretation. Eng. Fract. Mech. 2018, 191, 125–142. [Google Scholar] [CrossRef]
- Gao, L.; Kang, X.; Huang, G.; Wang, Z.; Tang, M.; Shen, X. Experimental Study on Crack Extension Rules of Hydraulic Fracturing Based on Simulated Coal Seam Roof and Floor. Geofluids 2022, 1, 7462201. [Google Scholar] [CrossRef]
- Pettitt, W.S.; King, M.S. Acoustic emission and velocities associated with the formation of sets of parallel fractures in sandstones. Int. J. Rock Mech. Min. Sci. 2004, 41, 382. [Google Scholar] [CrossRef]
- King, M.S.; Pettitt, W.S.; Haycox, J.R.; Young, R.P. Acoustic emissions associated with the formation of fracture sets in sandstone under polyaxial stress conditions. Geophys. Prospect. 2012, 60, 93–102. [Google Scholar] [CrossRef]
- Renard, F.; Bernard, D.; Desrues, J.; Ougier-Simonin, A. 3D imaging of fracture propagation using synchrotron X-ray microtomography. Earth Planet. Sci. Lett. 2009, 286, 285–291. [Google Scholar] [CrossRef]
- Yushi, Z.; Shicheng, Z.; Tong, Z.; Xiang, Z.; Tiankui, G. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology. Rock Mech. Rock Eng. 2016, 49, 33–45. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, S.; Ma, X.; Zhang, X.; Zhang, S. Hydraulic fracture morphology and conductivity of continental shale under the true-triaxial stress conditions. Fuel 2023, 352, 129056. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, C.; Xiong, Y.; Zhen, H.; Li, X. Experimental research on hydraulic fracture propagation in group of thin coal seams. J. Nat. Gas Sci. Eng. 2022, 103, 104614. [Google Scholar] [CrossRef]
- Li, J.; Zhong, Y.; Yan, Y.; Huang, T.; Mou, Q.; Yang, B. Mechanism of hydraulic fracture propagation and the uneven propagation behavior of multiple clusters in shale oil reservoirs. Fuel 2025, 395, 135241. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, G.; Wang, B. Study on elastoplastic damage and crack propagation mechanisms in rock based on the phase field method. Appl. Sci. 2025, 15, 6206. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; He, Q.; Ma, D.; Liu, B.; Gao, X. Research on hydraulic fracturing technology for roof stratigraphic horizon in coal pillar gob-side roadway. Appl. Sci. 2025, 15, 4759. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Niu, T. Propagation characteristics of multi-cluster hydraulic fracturing in shale reservoirs with natural fractures. Appl. Sci. 2025, 15, 4418. [Google Scholar] [CrossRef]
- Nie, S.; Liu, K.; Zhong, X.; Wang, Y.; Yang, B.; Song, J. Research on hydraulic fracture propagation patterns in multilayered gas hydrate reservoirs using a three-dimensional XFEM-based cohesive zone method. Energy Fuels 2024, 38, 5106–5123. [Google Scholar] [CrossRef]
- Wang, X.; Wang, E.; He, X.; Hu, S. Study of dynamic mechanical characterization of coal with different metamorphism degrees under hydraulic fracturing. Fuel 2025, 385, 134204. [Google Scholar] [CrossRef]
- Qin, J.; Liu, W.; Wei, Y.; Zhao, F.; Chen, J.; Zhu, X. Characteristics of hydraulic crack propagation in adjacent coal seams for coalbed methane production. Energy Fuels 2025, 39, 3069–3086. [Google Scholar] [CrossRef]
- de la Fuente, J.C.; Shimoyama, Y. Correlating mean particle size of pure solids in supercritical antisolvent processes using dimensional analysis with the Buckingham π-theorem. J. Supercrit. Fluids 2025, 218, 106512. [Google Scholar] [CrossRef]
- Yu, X.; Chen, A.; Hong, L.; Zhai, C.; Regenauer-Lieb, K.; Sang, S.; Xu, J.; Jing, Y. Experimental investigation of the effects of long-period cyclic pulse loading of pulsating hydraulic fracturing on coal damage. Fuel 2024, 358, 129907. [Google Scholar] [CrossRef]
- Long, A.; Zhang, Y.; Zhao, Y.; Wu, S. Damage evolution characteristics caused by fluid infiltration across diverse injection rates: Insights from integrated NMR and hydraulic fracturing experiments. J. Rock Mech. Geotech. Eng. 2024, in press. [Google Scholar] [CrossRef]
- Zhao, H.; Liang, B.; Sun, W.; Hu, Z.; Ma, Y.; Liu, Q. Effects of hydrostatic pressure on hydraulic fracturing properties of shale using X-ray computed tomography and acoustic emission. J. Pet. Sci. Eng. 2022, 215, 110725. [Google Scholar] [CrossRef]
- Torkan, M.; Uotinen, L.; Baghbanan, A.; Rinne, M. Experimental and Numerical Characterization of Hydro-Mechanical Properties of Rock Fractures: The Effect of the Sample Size on Roughness and Hydraulic Aperture. Int. J. Rock Mech. Min. Sci. 2025, 186, 106009. [Google Scholar] [CrossRef]
- Aydın, H.; Camcı, U.; Akın, S. An Experimental Investigation of Hydraulic Fracturing Mechanisms in Menderes Metamorphic Rocks: Prospects for Enhanced Geothermal Systems. Geothermics 2025, 130, 103328. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Q.; Luo, Y.; Wang, B.; Zhao, S.; Liu, S.; Lei, Y. Experimental study of the characteristics of reverse fault slip induced by hydraulic fracturing. Pet. Sci. 2025, in press. [Google Scholar] [CrossRef]
Mine Name | Level | Young’s Modulus (GPa) | Poisson’s Ratio | Uniaxial Compressive Strengths (UCS) (MPa) | ||
---|---|---|---|---|---|---|
Maximum | Minimum | Average | ||||
Shangwan Mine | Coal seam 22 | 8 | 0.2 | 50.9 | 18.6 | 40.8 |
Shigetai Mine | Coal seam 22 | - | - | 45.47 | 9.77 | 30.41 |
Buertai Mine | Coal seam 42 | - | - | 69.5 | 30.0 | 50.2 |
Liuta Mine | Coal seam 22 | 22.4 | 0.22 | 71.5 | 20.8 | 39.7 |
Cuner Mine | Coal seam 31 | 1.23 | 0.16 | 49.0 | 24.9 | 43.7 |
Group | Material Mass Ratio (Sand: Cement) | UCS (MPa) | Poisson’s Ratio | Young’s Modulus (GPa) | Density (g/cm3) |
---|---|---|---|---|---|
1 | 1:2 | 14.1 | 0.266 | 1.73 | 2.09 |
2 | 1:1 | 24.4 | 0.198 | 3.87 | 2.26 |
Number | Fluid Properties | Dynamic Viscosity (×10−3 Pa·s) | Injection Rate (mL/min) | Compressive Strength (Mpa) | In-Situ Stress (Mpa) | ||
---|---|---|---|---|---|---|---|
σh | σH | σv | |||||
#1 | Clean water | 1.01 | 53 | 14.1 | 3.2 | 5.7 | 4.0 |
#2 | Low viscosity | 4.2 | 14.1 | ||||
#3 | High viscosity | 12.1 | 14.1 | ||||
#4 | Clean water | 1.01 | 24.4 | ||||
#5 | Low viscosity | 4.2 | 24.4 | ||||
#6 | High viscosity | 12.1 | 24.4 |
Specimen | Crack Length (cm) | Crack Width (cm) | Angle with the Direction of σH (°) | Crack Shape Features |
---|---|---|---|---|
#1 | 24 | 30 | 10 | Single vertical crack, turning occurs |
#2 | 24 | 18 | 15 | Single vertical crack with simple shape |
#3 | 30 | 32 | 0 | Single square crack, large in extent |
#4 | 18 (15) | 15 (15) | 50 (0) | Two vertical cracks with complex shapes |
#5 | 20 | 15 | 0 | Single vertical crack with simple shape |
#6 | 24 | 18 | 25 | Inverted triangular cracks, turning occurs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Lv, S.; Wang, S.; Wang, X.; Meng, Y.; Luo, Y. Experimental Investigation of Fracture Behavior in Coal-Seam Hard Roofs Using Different Fracturing Fluids. Appl. Sci. 2025, 15, 9321. https://doi.org/10.3390/app15179321
Yang M, Lv S, Wang S, Wang X, Meng Y, Luo Y. Experimental Investigation of Fracture Behavior in Coal-Seam Hard Roofs Using Different Fracturing Fluids. Applied Sciences. 2025; 15(17):9321. https://doi.org/10.3390/app15179321
Chicago/Turabian StyleYang, Maolin, Shuai Lv, Sicheng Wang, Xing Wang, Yu Meng, and Yongjiang Luo. 2025. "Experimental Investigation of Fracture Behavior in Coal-Seam Hard Roofs Using Different Fracturing Fluids" Applied Sciences 15, no. 17: 9321. https://doi.org/10.3390/app15179321
APA StyleYang, M., Lv, S., Wang, S., Wang, X., Meng, Y., & Luo, Y. (2025). Experimental Investigation of Fracture Behavior in Coal-Seam Hard Roofs Using Different Fracturing Fluids. Applied Sciences, 15(17), 9321. https://doi.org/10.3390/app15179321