Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (546)

Search Parameters:
Keywords = mechatronic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4433 KB  
Article
Conceptually Simple Method for Optimizing Model Computations in MATLAB Simulink
by Štefan Ondočko, Jozef Svetlík, Rudolf Jánoš, Ján Semjon, Marek Sukop, Tomáš Stejskal and Peter Marcinko
Appl. Sci. 2025, 15(21), 11312; https://doi.org/10.3390/app152111312 - 22 Oct 2025
Viewed by 184
Abstract
This article describes a procedure for enhancing computational accuracy in MATLAB’s Simulink and Simscape environments, as illustrated through specific example cases. It builds on earlier published by the authors’ team, which demonstrated the practical application of the Simscape Multibody tool—originally designed for dynamic [...] Read more.
This article describes a procedure for enhancing computational accuracy in MATLAB’s Simulink and Simscape environments, as illustrated through specific example cases. It builds on earlier published by the authors’ team, which demonstrated the practical application of the Simscape Multibody tool—originally designed for dynamic and kinematic analyses—for making static computations in truss systems. Simscape Multibody serves as an effective platform for realistic and simplified simulations of mechanical components, incorporating various mechanical properties. Consequently, it is valuable in simulating mechatronic systems, where the integration of mechanics, electronics, control systems, and information technologies is essential. Multiple models were tested and analyzed across different scenarios to facilitate a comparative assessment of the results. The significance of this work lies in its achievement of highly accurate computational results without relying purely on theoretical calculations, with superior values in terms of accuracy. The primary objective was to provide a clear and practical description of a simple procedure for improving computational accuracy, based on scaling. Full article
(This article belongs to the Special Issue Advanced Digital Design and Intelligent Manufacturing)
Show Figures

Figure 1

20 pages, 3569 KB  
Article
Adjustable-Stiffness Hip Exoskeleton with Flexible Energy-Storage Module for 3D Gait Correction
by Tianyu Xu, Zhenkun Sun, Sujiao Li, Hongyan Tang, Yanbin Zhang, Raymond Kaiyu Tong, Qiaoling Meng and Hongliu Yu
Machines 2025, 13(10), 959; https://doi.org/10.3390/machines13100959 - 17 Oct 2025
Viewed by 299
Abstract
This paper presents a lower-limb hip exoskeleton system integrated with an adjustable-stiffness flexible energy-storage module for three-dimensional gait correction. This system features a modular flexible mechanical design and a stiffness-gain scheduled PID control strategy for dynamic, personalized assistance. Based on biomechanical analysis of [...] Read more.
This paper presents a lower-limb hip exoskeleton system integrated with an adjustable-stiffness flexible energy-storage module for three-dimensional gait correction. This system features a modular flexible mechanical design and a stiffness-gain scheduled PID control strategy for dynamic, personalized assistance. Based on biomechanical analysis of the hip joint, a 3D gait correction model was constructed targeting impairments in flexion, abduction, and adduction. The control strategy adjusts system stiffness in real-time according to gait phase and user-specific parameters. Experimental results demonstrated that the exoskeleton effectively reduced joint trajectory variability (22% decrease in standard deviation of hip flexion angle) and improved muscle activation patterns (21.4% increase in rectus femoris activity), thereby enhancing gait symmetry and stability. This study offers a feasible mechatronic solution for pathological gait correction with promising clinical applicability. Full article
Show Figures

Figure 1

22 pages, 5278 KB  
Article
Modeling and Simulation of Lower Limb Rehabilitation Exoskeletons: A Comparative Analysis for Dynamic Model Validation and Optimal Approach Selection
by Rana Sami Ullah Khan, Muhammad Tallal Saeed, Zeashan Khan, Urooj Abid, Hafiz Zia Ur Rehman, Zareena Kausar and Shiyin Qin
Robotics 2025, 14(10), 143; https://doi.org/10.3390/robotics14100143 - 16 Oct 2025
Viewed by 425
Abstract
Accurate modeling and simulation of lower limb rehabilitation exoskeleton (LLRE) enables effective control resulting in enhanced performance and ensuring efficient rehabilitation. There are two primary objectives of this study. First is to validate the existing models and second is to identify the optimal [...] Read more.
Accurate modeling and simulation of lower limb rehabilitation exoskeleton (LLRE) enables effective control resulting in enhanced performance and ensuring efficient rehabilitation. There are two primary objectives of this study. First is to validate the existing models and second is to identify the optimal modeling approach for exoskeletons. For validation, firstly a lower limb rehabilitation exoskeleton is modeled using three different modeling approaches which include analytical modeling, bond graph modeling, and modeling through Simscape (SS). Thereafter, dynamic responses of analytical and graphical modeling are compared with SS model using key dynamic response parameters, including rise time, peak time, and others. The SS-based physical model can be employed for validation because SS, unlike mathematical modeling, uses unit-consistent physical domain data and, therefore, serves as an intermediate step between mathematical modeling and hardware validation. Secondly, to identify the most suitable modeling approach, a structured and comprehensive comparison of different modeling approaches based on aspects such as control domain, complexity, ease of use, and other relevant factors is carried out. The results highlight the qualitative strengths and limitations of the three approaches. Previous studies focus on individual methods and lack such comparison. This work contributes to the validation of models and identification of an efficient and effective modeling methodology for LLRE. The findings reveal that Simscape™ is the most suitable approach for modeling LLREs as it provides multidisciplinary system modeling and supports real-time simulation. The validated model can now be employed for advancements in model-based control design. Moreover, the identified optimal approach provides an insight to researchers and engineers for model selection in early-stage design and control development of complex mechatronic systems. Future work includes comparison of dynamic responses with actual hardware responses to experimentally validate the effectiveness of the model for real-world patient assistance and mobility restoration. Full article
(This article belongs to the Special Issue Development of Biomedical Robotics)
Show Figures

Figure 1

18 pages, 9141 KB  
Article
Investigation of Aerodynamic Interference Between Vertically Aligned Quadcopters at Varying Rotor Speeds and Separations
by Khan Muhammad Arslan, Liangyu Zhao and Kuiju Xue
Drones 2025, 9(10), 712; https://doi.org/10.3390/drones9100712 - 15 Oct 2025
Viewed by 409
Abstract
With the rapid proliferation of drone applications, multi-UAV formation flights are becoming increasingly prevalent. While most existing studies focus on the aerodynamics of a single drone, aerodynamic interactions within UAV formations—particularly in close-proximity hovering configurations—remain inadequately understood. This study employs computational fluid dynamics [...] Read more.
With the rapid proliferation of drone applications, multi-UAV formation flights are becoming increasingly prevalent. While most existing studies focus on the aerodynamics of a single drone, aerodynamic interactions within UAV formations—particularly in close-proximity hovering configurations—remain inadequately understood. This study employs computational fluid dynamics simulations to investigate the aerodynamic interactions between two hovering quadcopters at vertical distances of 1 m and 0.5 m, operating under different RPMs. The results indicate that, when the two quadrotors are spaced 1 m apart, increasing RPM enhances the downward airflow from the upper quadcopter, which benefits the lower quadcopter. When the vertical spacing is reduced to 0.5 m, the aerodynamic interaction between the UAVs becomes more pronounced. This configuration can be advantageous if the drones remain perfectly aligned at lower RPMs. However, at higher RPMs, especially above 5000, the intensified vortices disturb the lower UAV, causing destabilization. Additionally, the reduced spacing amplifies the downwash effect, increasing the risk of collisions and loss of control. This work highlights the importance of managing the spacing and RPMs of drone pairs to optimize performance and ensure stability in multiple drone formations. Full article
Show Figures

Figure 1

32 pages, 12821 KB  
Article
Virtual Commissioning and Digital Twins for Energy-Aware Industrial Electric Drive Systems
by Sara Bysko, Szymon Bysko and Tomasz Blachowicz
Energies 2025, 18(20), 5375; https://doi.org/10.3390/en18205375 - 13 Oct 2025
Viewed by 515
Abstract
Industrial electric drives account for a dominant share of electricity consumption in manufacturing, making their optimal configuration a critical factor for both sustainability and cost reduction. Traditional design approaches based on prototyping and empirical testing are often costly and insufficient for systematically exploring [...] Read more.
Industrial electric drives account for a dominant share of electricity consumption in manufacturing, making their optimal configuration a critical factor for both sustainability and cost reduction. Traditional design approaches based on prototyping and empirical testing are often costly and insufficient for systematically exploring alternative configurations. This study introduces an integrated computational framework that combines digital twin (DT) modeling and virtual commissioning (VC) to enable energy-aware configuration of industrial electric drive systems at early design stages. The methodology employs parameterized component models derived from manufacturer catalog data, implemented in a commercial simulation environment and integrated into an industrial-grade VC platform. Validation is performed on two conveyor-based testbeds, enabling systematic comparison of simulation outputs with physical measurements. The results demonstrate predictive accuracy sufficient to quantify trade-offs in energy consumption, losses, and efficiency across different vendor solutions. Case studies involving belt and strap conveyors highlighted how the framework supports vendor-neutral decision making, revealing nonintuitive optimization trade-offs between minimizing energy consumption and maximizing efficiency. The proposed framework advances sustainable automation by embedding energy analysis directly into commissioning workflows, offering reproducible, scalable, and cross-domain applicability. Its modular design supports transfer to sectors such as renewable energy, transportation, and biomedical mechatronics, where energy efficiency is equally decisive. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

28 pages, 6660 KB  
Article
Self-Regulating Fuzzy-LQR Control of an Inverted Pendulum System via Adaptive Hyperbolic Error Modulation
by Omer Saleem, Jamshed Iqbal and Soltan Alharbi
Machines 2025, 13(10), 939; https://doi.org/10.3390/machines13100939 - 12 Oct 2025
Viewed by 387
Abstract
This study introduces an innovative self-regulating intelligent optimal balancing control framework for inverted pendulum-type mechatronic platforms, designed to enhance reference tracking accuracy and improve disturbance rejection capability. The control procedure is synthesized by synergistically integrating a baseline Linear Quadratic Regulator (LQR) with a [...] Read more.
This study introduces an innovative self-regulating intelligent optimal balancing control framework for inverted pendulum-type mechatronic platforms, designed to enhance reference tracking accuracy and improve disturbance rejection capability. The control procedure is synthesized by synergistically integrating a baseline Linear Quadratic Regulator (LQR) with a fuzzy controller via a customized linear decomposition function (LDF). The LDF dissociates and transforms the LQR control law into compounded state tracking error and tracking error derivative variables that are eventually used to drive the fuzzy controller. The principal contribution of this study lies in the adaptive modulation of these compounded variables using reconfigurable tangent hyperbolic functions driven by the cubic power of the error signals. This nonlinear preprocessing of the input variables selectively amplifies large errors while attenuating small ones, thereby improving robustness and reducing oscillations. Moreover, a model-free online self-tuning law dynamically adjusts the variation rates of the hyperbolic functions through dissipative and anti-dissipative terms of the state errors, enabling autonomous reconfiguration of the nonlinear preprocessing layer. This dual-level adaptation enhances the flexibility and resilience of the controller under perturbations. The robustness of the designed controller is substantiated via tailored experimental trials conducted on the Quanser rotary pendulum platform. Comparative results show that the prescribed scheme reduces pendulum angle variance by 41.8%, arm position variance by 34.6%, and average control energy by 28.3% relative to the baseline LQR, while outperforming conventional fuzzy-LQR by similar margins. These results show that the prescribed controller significantly enhances disturbance rejection and tracking accuracy, thereby offering a numerically superior control of inverted pendulum systems. Full article
(This article belongs to the Special Issue Mechatronic Systems: Developments and Applications)
Show Figures

Figure 1

57 pages, 5274 KB  
Article
Aerospace Bionic Robotics: BEAM-D Technical Standard of Biomimetic Engineering Design Methodology Applied to Mechatronics Systems
by Jose Cornejo, Alfredo Weitzenfeld, José Baca and Cecilia E. García Cena
Biomimetics 2025, 10(10), 668; https://doi.org/10.3390/biomimetics10100668 - 5 Oct 2025
Cited by 1 | Viewed by 916
Abstract
The origin of life initiated an evolutionary continuum yielding biologically optimized systems capable of operating under extreme environmental constraints. Biomimetics, defined as the systematic abstraction and transfer of biological principles into engineering domains, has become a strategic design paradigm for addressing the multifactorial [...] Read more.
The origin of life initiated an evolutionary continuum yielding biologically optimized systems capable of operating under extreme environmental constraints. Biomimetics, defined as the systematic abstraction and transfer of biological principles into engineering domains, has become a strategic design paradigm for addressing the multifactorial challenges of space systems. This study introduces two core contributions to formally establish the discipline of Aerospace Bionic Robotics (ABR): First, it elucidates the relevance of biologically derived functionalities such as autonomy, adaptability, and multifunctionality to enhance the efficiency of space robotic platforms operating in microgravity environments. Second, it proposed the BEAM-D (Biomimetic Engineering and Aerospace Mechatronics Design), a standard for the development of Aerospace Bionic Robotics. By integrating biological abstraction levels (morphological, functional, and behavioral) with engineering protocols including ISO, VDI, and NASA’s TRL, BEAM-D enables a structured design pathway encompassing subsystem specification, cyber–physical integration, in situ testing, and full-scale mission deployment. It is implemented through a modular BEAM-DX framework and reinforced by iterative BIOX design steps. This study thus establishes formalized bio-inspired design tools for advanced orbital and planetary robotic systems capable of sustained autonomous operations in deep space exploration scenarios. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications 2025)
Show Figures

Graphical abstract

20 pages, 1951 KB  
Article
Virtual Prototyping of the Human–Robot Ecosystem for Multiphysics Simulation of Upper Limb Motion Assistance
by Rocco Adduci, Francesca Alvaro, Michele Perrelli and Domenico Mundo
Machines 2025, 13(10), 895; https://doi.org/10.3390/machines13100895 - 1 Oct 2025
Viewed by 359
Abstract
As stroke is becoming more frequent nowadays, cutting edge rehabilitation approaches are required to recover upper limb functionalities and to support patients during daily activities. Recently, focus has moved to robotic rehabilitation; however, therapeutic devices are still highly expensive, making rehabilitation not easily [...] Read more.
As stroke is becoming more frequent nowadays, cutting edge rehabilitation approaches are required to recover upper limb functionalities and to support patients during daily activities. Recently, focus has moved to robotic rehabilitation; however, therapeutic devices are still highly expensive, making rehabilitation not easily affordable. Moreover, devices are not easily accepted by patients, who can refuse to use them due to not feeling comfortable. The presented work proposes the exploitation of a virtual prototype of the human–robot ecosystem for the study and analysis of patient–robot interactions, enabling their simulation-based investigation in multiple scenarios. For the accomplishment of this task, the Dynamics of Multi-physical Systems platform, previously presented by the authors, is further developed to enable the integration of biomechanical models of the human body with mechatronics models of robotic devices for motion assistance, as well as with PID-based control strategies. The work begins with (1) a description of the background; hence, the current state of the art and purpose of the study; (2) the platform is then presented and the system is formalized, first from a general side and then (3) in the application-specific scenario. (4) The use case is described, presenting a controlled gym weightlifting exercise supported by an exoskeleton and the results are analyzed in a final paragraph (5). Full article
Show Figures

Figure 1

15 pages, 1297 KB  
Review
Haircutting Robots: From Theory to Practice
by Shuai Li
Automation 2025, 6(3), 47; https://doi.org/10.3390/automation6030047 - 18 Sep 2025
Viewed by 1238
Abstract
The field of haircutting robots is poised for a significant transformation, driven by advancements in artificial intelligence, mechatronics, and humanoid robotics. This perspective paper examines the emerging market for haircutting robots, propelled by decreasing hardware costs and a growing demand for automated grooming [...] Read more.
The field of haircutting robots is poised for a significant transformation, driven by advancements in artificial intelligence, mechatronics, and humanoid robotics. This perspective paper examines the emerging market for haircutting robots, propelled by decreasing hardware costs and a growing demand for automated grooming services. We review foundational technologies, including advanced hair modeling, real-time motion planning, and haptic feedback, and analyze their application in both teleoperated and fully autonomous systems. Key technical requirements and challenges in safety certification are discussed in detail. Furthermore, we explore how cutting-edge technologies like direct-drive systems, large language models, virtual reality, and big data collection can empower these robots to offer a human-like, personalized, and efficient experience. We propose a business model centered on supervised autonomy, which enables early commercialization and sets a path toward future scalability. This perspective paper provides a theoretical and technical framework for the future deployment and commercialization of haircutting robots, highlighting their potential to create a new sector in the automation industry. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

16 pages, 7120 KB  
Article
Ultra-Long, Minor-Diameter, Untethered Growing Continuum Robot via Tip Actuation and Steering
by Pan Zhou, Zhaoyi Lin, Lang Zhou, Haili Li, Michael Basin and Jiantao Yao
Machines 2025, 13(9), 851; https://doi.org/10.3390/machines13090851 - 15 Sep 2025
Viewed by 643
Abstract
Continuum robots with outstanding compliance, dexterity, and lean bodies are successfully applied in medicine, aerospace engineering, the nuclear industry, rescue operations, construction, service, and manipulation. However, the inherent low stiffness characteristics of continuum bodies make it challenging to develop ultra-long and small-diameter continuum [...] Read more.
Continuum robots with outstanding compliance, dexterity, and lean bodies are successfully applied in medicine, aerospace engineering, the nuclear industry, rescue operations, construction, service, and manipulation. However, the inherent low stiffness characteristics of continuum bodies make it challenging to develop ultra-long and small-diameter continuum robots. To address this size–scale challenge of continuum robots, we developed an 8 m long continuum robot with a diameter of 23 mm by a tip actuation and growth mechanism. Meanwhile, we also realized the untethered design of the continuum robot, which greatly increased its usable space range, portability, and mobility. Demonstration experiments prove that the developed growing continuum robot has good flexibility and manipulability, as well as the ability to cross obstacles and search for targets. Its continuum body can transport liquids over long distances, providing water, medicine, and other rescue items for trapped individuals. The functionality of an untethered growing continuum robot (UGCR) can be expanded by installing multiple tools, such as a grasping tool at its tip to pick up objects in deep wells, pits, and other scenarios. In addition, we established a static model to predict the deformation of UGCR, and the prediction error of its tip position was within 2.6% of its length. We verified the motion performance of the continuum robot through a series of tests involving workspace, disturbance resistance, collision with obstacles, and load performance, thus proving its good anti-interference ability and collision stability. The main contribution of this work is to provide a technical reference for the development of ultra-long continuum robots based on the tip actuation and steering principle. Full article
(This article belongs to the Special Issue Advances and Challenges in Robotic Manipulation)
Show Figures

Figure 1

27 pages, 12819 KB  
Article
A CPS-Based Architecture for Mobile Robotics: Design, Integration, and Localisation Experiments
by Dominika Líšková, Anna Jadlovská and Filip Pazdič
Sensors 2025, 25(18), 5715; https://doi.org/10.3390/s25185715 - 12 Sep 2025
Viewed by 723
Abstract
This paper presents the design and implementation of a mobile robotic platform modelled as a layered Cyber–Physical System (CPS). Inspired by architectures commonly used in industrial Distributed Control Systems (DCSs) and large-scale scientific infrastructures, the proposed system incorporates modular hardware, distributed embedded control, [...] Read more.
This paper presents the design and implementation of a mobile robotic platform modelled as a layered Cyber–Physical System (CPS). Inspired by architectures commonly used in industrial Distributed Control Systems (DCSs) and large-scale scientific infrastructures, the proposed system incorporates modular hardware, distributed embedded control, and multi-level coordination. The robotic platform, named MapBot, is structured according to a five-layer CPS model encompassing component, control, coordination, supervisory, and management layers. This structure facilitates modular development, system scalability, and integration of advanced features such as a digital twin. The platform is implemented using embedded computing elements, diverse sensors, and communication protocols including Ethernet and I2C. The system operates within the ROS2 framework, supporting flexible task distribution across processing nodes. As a use case, two localization techniques—Adaptive Monte Carlo Localization (AMCL) and pose graph SLAM—are deployed and evaluated, highlighting the performance trade-offs in map quality, update frequency, and computational load. The results demonstrate that CPS-based design principles offer clear advantages for robotic platforms in terms of modularity, maintainability, and real-time integration. The proposed approach can be generalised for other robotic or mechatronic systems requiring structured, layered control and embedded intelligence. Full article
Show Figures

Figure 1

34 pages, 12322 KB  
Article
A Mechatronic Design Procedure for Self-Balancing Vehicles According to the MBSE Approach
by Paolo Righettini, Roberto Strada, Filippo Cortinovis and Jasmine Santinelli
Machines 2025, 13(9), 826; https://doi.org/10.3390/machines13090826 - 7 Sep 2025
Viewed by 565
Abstract
Several types of self-balancing vehicles have been successfully developed and commercialized in the past two decades, both as manned vehicles and as autonomous mobile robots. At the same time, due to their characteristic instability and underactuation, a large body of research has been [...] Read more.
Several types of self-balancing vehicles have been successfully developed and commercialized in the past two decades, both as manned vehicles and as autonomous mobile robots. At the same time, due to their characteristic instability and underactuation, a large body of research has been devoted to their control. However, despite this practical and theoretical interest, the current publicly available literature does not cover their systematic design and development. In particular, overall processes that lead to a finished vehicle starting from a set of requirements and specifications have not been examined in the literature. Within this context, this paper contributes a comprehensive mechatronic, dynamics-based procedure for the design of this class of vehicles; to promote clarity of exposition, the procedure is systematically presented using Model-Based Systems Engineering tools and principles. In particular, the proposed design method is developed and formalized starting from an original description of the vehicle, which is treated as a complex system composed of several interconnected multi-domain components that exchange power and logical flows through suitable interfaces. A key focus of this work is the analysis of these exchanges, with the goal of defining a minimal set of quantities that should be necessarily considered to properly design the vehicle. As a salient result, the design process is organized in a logical sequence of steps, each having well-defined inputs and outputs. The procedure is also graphically outlined using standardized formalisms. The design method is shown to cover all the mechanical, electrical, actuation, measurement and control components of the system, and to allow the unified treatment of a large variety of different vehicle variants. The procedure is then applied to a specific case study, with the goal of developing the detailed design of a full-scale vehicle. The main strengths of the proposed approach are then widely highlighted and discussed. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

23 pages, 2256 KB  
Article
Tsukamoto Fuzzy Logic Controller for Motion Control Applications: Assessment of Energy Performance
by Luis F. Olmedo-García, José R. García-Martínez, Juvenal Rodríguez-Reséndiz, Brenda S. Dublan-Barragán, Edson E. Cruz-Miguel and Omar A. Barra-Vázquez
Technologies 2025, 13(9), 387; https://doi.org/10.3390/technologies13090387 - 1 Sep 2025
Viewed by 815
Abstract
This work presents a control strategy designed to reduce the energy consumption of direct current motors by implementing smooth motion trajectories in a point-to-point control system, utilizing a fuzzy logic controller based on the Tsukamoto inference method. The proposed controller’s energy performance was [...] Read more.
This work presents a control strategy designed to reduce the energy consumption of direct current motors by implementing smooth motion trajectories in a point-to-point control system, utilizing a fuzzy logic controller based on the Tsukamoto inference method. The proposed controller’s energy performance was experimentally compared to that of a conventional PID controller, considering three motion profiles: parabolic, trapezoidal, and S-curve. The results demonstrate that the combination of the fuzzy controller with smooth trajectories effectively reduces energy consumption without compromising motion accuracy. Under no-load conditions, average energy savings of 11.77% for the parabolic profile, 9.27% for the trapezoidal profile, and 3.45% for the S-curve profile were achieved. This improvement remained consistent even when a load was introduced to the system. To validate these findings, the coefficient of variation was calculated, revealing lower dispersion in the fuzzy controller’s results, indicating greater consistency in energy efficiency. Furthermore, Welch’s t-tests were conducted for each profile and load condition, with all p-values falling below the 0.05 significance threshold, confirming the statistical relevance of the observed differences. Full article
Show Figures

Graphical abstract

22 pages, 4206 KB  
Article
Piezoelectric Hysteresis Modeling Under a Variable Frequency Based on a Committee Machine Approach
by Francesco Aggogeri and Nicola Pellegrini
Sensors 2025, 25(17), 5371; https://doi.org/10.3390/s25175371 - 31 Aug 2025
Viewed by 518
Abstract
Piezoelectric actuators, widely used in micro-positioning and active control systems, show important hysteresis characteristics. In particular, the hysteresis contribution is a complex phenomenon that is difficult to model when the input amplitude and frequency are time-dependent. Existing dynamic physical models poorly describe the [...] Read more.
Piezoelectric actuators, widely used in micro-positioning and active control systems, show important hysteresis characteristics. In particular, the hysteresis contribution is a complex phenomenon that is difficult to model when the input amplitude and frequency are time-dependent. Existing dynamic physical models poorly describe the hysteresis influence of industrial mechatronic devices. This paper proposes a novel hybrid data-driven model based on the Bouc–Wen and backlash hysteresis formulations to appraise and compensate for the nonlinear effects. Firstly, the performance of the piezoelectric actuator was simulated and then tested in a complete representative domain, and then using the committee machine approach. Experimental campaigns were conducted to develop an algorithm that incorporated Bouc–Wen and backlash hysteresis parameters derived via genetic algorithm (GA) and particle swarm optimization (PSO) approaches for identification. These parameters were combined in a committee machine using a set of frequency clusters. The results obtained demonstrated an error reduction of 23.54% for the committee machine approach compared with the complete approach. The root mean square error (RMSE) was 0.42 µm, and the maximum absolute error (MAE) appraisal was close to 0.86 µm in the 150–250 Hz domain via the Bouc–Wen sub-model tuned with the genetic algorithm (GA). Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

20 pages, 5528 KB  
Article
Wearable Smart Gloves for Optimization Analysis of Disassembly and Assembly of Mechatronic Machines
by Chin-Shan Chen, Hung Wei Chang and Bo-Chen Jiang
Sensors 2025, 25(17), 5223; https://doi.org/10.3390/s25175223 - 22 Aug 2025
Viewed by 825
Abstract
With the rapid development of smart manufacturing, the optimization of real-time monitoring in operating procedures has become a crucial issue in modern industry. Traditional disassembly and assembly (D/A) work, relying on human experience and visual inspection, lacks immediacy and a quantitative basis, further [...] Read more.
With the rapid development of smart manufacturing, the optimization of real-time monitoring in operating procedures has become a crucial issue in modern industry. Traditional disassembly and assembly (D/A) work, relying on human experience and visual inspection, lacks immediacy and a quantitative basis, further affecting operating quality and efficiency. This study aims to develop a thin-film force sensor and an inertial measurement unit (IMU)-integrated wearable device for monitoring and analyzing operators’ behavioral characteristics during D/A tasks. First, by having operators wear self-made smart gloves and 17 IMU sensors, the work tables with three different heights are equipped with a mechatronics machine for the D/A experiment. Common D/A motions are designed into the experiment. Several subjects are invited to execute the standardized operating procedure, with upper limbs used to collect data on operators’ hand gestures and movements. Then, the measured data are applied to verify the performance measure functional best path of machine D/A. The results reveal that the system could effectively identify various D/A motions as well as observe operators’ force difference and motion mode, which, through the theory of performance indicator optimization and the verification of data analysis, could provide a reference for the best path planning, D/A sequence, and work table height design in the machine D/A process. The optimal workbench height for a standing operator is 5 to 10 cm above their elbow height. Performing assembly and disassembly tasks at this optimal height can help the operator save between 14.3933% and 35.2579% of physical effort. Such outcomes could aid in D/A behavior monitoring in industry, worker training, and operational optimization, as well as expand the application to instant feedback design for automation and smartization in a smart factory. Full article
Show Figures

Figure 1

Back to TopTop