Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = medium-entropy alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12504 KB  
Article
Effect of Si Content on the Mechanical Behavior, Corrosion Resistance, and Passive Film Characteristics of Fe–Co–Ni–Cr–Si Medium-Entropy Alloys
by Sen Yang, Ran Wei, Xin Wei, Jiayi Cao and Jiepeng Ren
Coatings 2025, 15(10), 1137; https://doi.org/10.3390/coatings15101137 - 1 Oct 2025
Viewed by 499
Abstract
The nominal compositions of Fe65Co10−xNi10−xCr15Si2x (x = 1, 2, and 3 at.%) medium-entropy alloys (MEAs) were designed and fabricated by vacuum arc melting. Their microstructure, hardness, and mechanical properties were [...] Read more.
The nominal compositions of Fe65Co10−xNi10−xCr15Si2x (x = 1, 2, and 3 at.%) medium-entropy alloys (MEAs) were designed and fabricated by vacuum arc melting. Their microstructure, hardness, and mechanical properties were systematically characterized. Corrosion behavior was evaluated in 3.5 wt.% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. The investigated MEAs exhibit a dual-phase microstructure composed of face-centered cubic (FCC) and body-centered-cubic (BCC) phases. With increasing Si content, yield strength and ultimate tensile strength increase, while uniform elongation decreases. Hardness also increases with increasing Si content. For the x = 3 MEA, the yield strength, ultimate tensile strength, and hardness of are ~518 MPa, ~1053 MPa, and 262 ± 4.8 HV, respectively. The observed strengthening can be primarily attributed to solid solution strengthening effect by Si. Polarization curves indicate that the x = 3 MEA exhibits the best corrosion resistance with the lowest corrosion current density ((0.401 ± 0.19) × 10−6 A × cm−2) and corrosion rate ((4.65 ± 0.19) × 10–2 μm × year−1)). Equivalent electric circuit analysis suggests the formation of a stable passive oxide film on the MEAs. This conclusion is supported by the capacitive behavior, high impedance values (> 104 Ω cm2) at low frequencies, and phase angles within a narrow window of 80.05°~80.64° in the medium-frequency region. The passive-film thickness was calculated and the corrosion morphology was analyzed by SEM. These results provide a reference for developing high-strength, corrosion-resistant, medium-entropy alloys. Full article
Show Figures

Figure 1

11 pages, 1746 KB  
Article
DFT-Based Analysis on Structural, Electronic and Mechanical Properties of NiCoCr Medium-Entropy Alloy with C/N/O
by Shuqin Cheng, Yunfeng Luo, Yufan Yao, Yiren Wang and Fuhua Cao
Materials 2025, 18(19), 4494; https://doi.org/10.3390/ma18194494 - 26 Sep 2025
Viewed by 455
Abstract
This study employs first-principles calculations combined with the Special Quasirandom Structure (SQS) technique to investigate the impact of three interstitial elements C, N, and O, on the mechanical properties and stacking fault energy (SFE) of NiCoCr medium-entropy alloys. The results indicate that non-metallic [...] Read more.
This study employs first-principles calculations combined with the Special Quasirandom Structure (SQS) technique to investigate the impact of three interstitial elements C, N, and O, on the mechanical properties and stacking fault energy (SFE) of NiCoCr medium-entropy alloys. The results indicate that non-metallic O, C, and N tend to occupy octahedral interstitial sites, which can effectively release stress concentration and enhance the strength and deformability of the material. Differential charge density analysis shows that the dissolution of C, N, and O significantly alters the surrounding electronic environment, strengthening the interaction between solute atoms and metal atoms, thereby hindering dislocation glide and increasing the strength and hardness of the material. Elastic property analysis indicates that NiCoCr alloys doped with C, N, and O exhibit good ductility and anisotropic characteristics. Furthermore, the study of stacking fault energy reveals that the doping with C, N, and O can significantly increase the stacking fault energy of NiCoCr alloys, thereby optimizing their mechanical properties. These findings provide theoretical evidence for the design of advanced high-entropy alloys that combine high strength with good ductility. Full article
Show Figures

Graphical abstract

18 pages, 4331 KB  
Review
Research Progress on Laser Additive Manufacturing of Oxide Dispersion-Strengthened Alloys—A Review
by Qian Zheng, Yan Yin, Chao Lu, Xiaoli Cui, Yutong Gao, Heng Zhu, Zhong Li, Junwei Shi, Wenqing Shi and Di Tie
Materials 2025, 18(17), 4094; https://doi.org/10.3390/ma18174094 - 1 Sep 2025
Viewed by 940
Abstract
Oxide dispersion-strengthened (ODS) alloys are regarded as one of the most promising materials for Generation IV nuclear fission systems, owing to their exceptional attributes such as high strength, corrosion resistance, and irradiation tolerance. The traditional methods for fabricating oxide dispersion-strengthened (ODS) alloys are [...] Read more.
Oxide dispersion-strengthened (ODS) alloys are regarded as one of the most promising materials for Generation IV nuclear fission systems, owing to their exceptional attributes such as high strength, corrosion resistance, and irradiation tolerance. The traditional methods for fabricating oxide dispersion-strengthened (ODS) alloys are both time-consuming and costly. In contrast, additive manufacturing (AM) technologies enable precise control over material composition and geometric structure at the nanoscale, thereby enhancing the mechanical properties of components while reducing their weight. This novel approach offers significant advantages over conventional techniques, including reduced production costs, improved manufacturing efficiency, and more uniform distribution of oxide nanoparticles. This review begins by summarizing the state of the art in Fe-based and Ni-based ODS alloys fabricated via traditional routes. Subsequently, it examines recent progress in the AM of ODS alloys, including Fe-based, Ni-based, high-entropy alloys, and medium-entropy alloys, using powder bed fusion (PBF), directed energy deposition (DED), and wire arc additive manufacturing (WAAM). The microstructural characteristics, including oxide particle distribution, grain morphology, and alloy properties, are discussed in the context of different AM processes. Finally, critical challenges and future research directions for laser-based AM of ODS alloys are highlighted. Full article
Show Figures

Figure 1

18 pages, 7997 KB  
Article
Cryogenic Tensile Strength of 1.6 GPa in a Precipitation-Hardened (NiCoCr)99.25C0.75 Medium-Entropy Alloy Fabricated via Laser Powder Bed Fusion
by So-Yeon Park, Young-Kyun Kim, Hyoung Seop Kim and Kee-Ahn Lee
Materials 2025, 18(15), 3656; https://doi.org/10.3390/ma18153656 - 4 Aug 2025
Viewed by 690
Abstract
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong [...] Read more.
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong <111> texture. Heat treatment at 700 °C for 1 h promoted the precipitation of Cr-rich carbides (Cr23C6) along grain and substructure boundaries, which stabilized the microstructure through Zener pinning and the consumption of carbon from the matrix. The heat-treated alloy achieved excellent cryogenic tensile properties at 77 K, with a yield strength of 1230 MPa and an ultimate tensile strength of 1.6 GPa. Compared to previously reported LPBF-built NiCoCr-based MEAs, this alloy exhibited superior strength at both room and cryogenic temperatures, indicating its potential for structural applications in extreme environments. Deformation mechanisms at cryogenic temperature revealed abundant deformation twinning, stacking faults, and strong dislocation–precipitate interactions. These features contributed to dislocation locking, resulting in a work hardening rate higher than that observed at room temperature. This study demonstrates that carbon addition and heat treatment can effectively tune the stacking fault energy and stabilize substructures, leading to enhanced cryogenic mechanical performance of LPBF-built NiCoCr MEAs. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

12 pages, 3886 KB  
Article
Effect of W Contents and Annealing Temperatures on the Microstructure and Mechanical Properties of CoFeNi Medium Entropy Alloys
by Yaqi Cui, Huan Ma, Li Yang, Yang Shao and Renguo Guan
Metals 2025, 15(8), 854; https://doi.org/10.3390/met15080854 - 30 Jul 2025
Viewed by 422
Abstract
In this work, the W element, with a larger atomic radius compared to Co, Fe, and Ni, was added to modify the microstructure and enhance the yield strength of CoFeNi medium entropy alloy (MEA). A detailed study was conducted to clarify the effects [...] Read more.
In this work, the W element, with a larger atomic radius compared to Co, Fe, and Ni, was added to modify the microstructure and enhance the yield strength of CoFeNi medium entropy alloy (MEA). A detailed study was conducted to clarify the effects of W additions and annealing temperatures on the microstructure evolution and mechanical properties of CoFeNiWx (x = 0, 0.1, and 0.3) MEAs. CoFeNiW0.1 retained a single FCC structure without the formation of precipitates in the FCC phase, indicating that W, with a larger atomic radius, can completely dissolve in CoFeNiW0.1. For CoFeNiW0.3 MEA, coarse particles with an average diameter of ~2 μm appeared after homogenizing. Nevertheless, when the alloy was annealed at 800 °C and 900 °C, fine particles formed, with the average diameters of approximately 144 nm and 225 nm, respectively. After annealing at 800 °C, the CoFeNiW0.3 with a partially recrystallized microstructure exhibited better comprehensive mechanical properties. Full article
Show Figures

Figure 1

20 pages, 7035 KB  
Article
Microstructure Evolution Mechanism and Corrosion Resistance of FeCrNi(AlTi)x Medium Entropy Alloy Prepared by Laser Melting Deposition with Al and Ti Content Changes
by Kai Wang, Mingjie Liu, Chuan Liu, Xiaohui Li and Guanghui Shao
Coatings 2025, 15(7), 851; https://doi.org/10.3390/coatings15070851 - 19 Jul 2025
Viewed by 631
Abstract
In order to improve the microstructure and corrosion resistance of entropy alloy in the FeCrNi system, laser melting deposition technology was used as a preparation method to study the effects of different contents of Al and Ti on the microstructure and corrosion resistance [...] Read more.
In order to improve the microstructure and corrosion resistance of entropy alloy in the FeCrNi system, laser melting deposition technology was used as a preparation method to study the effects of different contents of Al and Ti on the microstructure and corrosion resistance of entropy alloy in FeCrNi(AlTi)x (x = 0.17, 0.2, and 0.24). The results show that the addition of Al and Ti elements can change the phase structure of the alloy from a single FCC phase structure to an FCC + BCC biphase structure. The BCC phase volume fraction of FeCrNi(AlTi)0.2 is the highest among the three alloys, reaching 37.5%. With the addition of Al and Ti content, the grain of the alloy will be refined to a certain extent. In addition, the dual-phase structure will also improve the corrosion resistance of the alloy. In 3.5 wt.% NaCl solution, the increase of Al and Ti content can effectively improve the protection of the passivation film on the surface of the entropy alloy in FeCrNi(AlTi)x, effectively inhibit the large-scale corrosion phenomenon on the alloy surface, and thus improve the corrosion resistance of the alloy. In a certain range, increasing the content of Al and Ti elements in the FeCrNi(AlTi)x system can improve the corrosion resistance of the alloy. Full article
Show Figures

Figure 1

14 pages, 10913 KB  
Article
Lattice Distortion Effects on Mechanical Properties in Nb-Ti-V-Zr Refractory Medium-Entropy Alloys
by Xiaochang Xie, Ping Yang, Yuefei Jia and Yandong Jia
Materials 2025, 18(14), 3356; https://doi.org/10.3390/ma18143356 - 17 Jul 2025
Viewed by 442
Abstract
Medium-entropy alloys (MEAs) have attracted significant attention due to their unique structure–property relationships. In this study, we examine the effects of lattice distortion on the mechanical properties of Nb-Ti-V-Zr MEAs, focusing on two alloy series: Nb(Ti1.5V)xZr and Nb(TiV)x [...] Read more.
Medium-entropy alloys (MEAs) have attracted significant attention due to their unique structure–property relationships. In this study, we examine the effects of lattice distortion on the mechanical properties of Nb-Ti-V-Zr MEAs, focusing on two alloy series: Nb(Ti1.5V)xZr and Nb(TiV)xZr (x = 1, 2, 3, 4 and 5). Experimental results show that the Nb(TiV)xZr r alloys exhibit greater atomic size mismatches and increased lattice distortion compared to the Nb(Ti1.5V)xZr alloys, leading to higher yield strengths via enhanced solid-solution strengthening. However, excessive lattice distortion does not ensure an optimal strength–ductility balance, as the alloys with the highest distortion demonstrate limited plasticity. Thus, moderate reduction in lattice distortion proves beneficial in achieving an excellent compromise between strength and ductility. These findings offer valuable guidance for leveraging lattice distortion in the design of high-strength, high-ductility, body-centered cubic (BCC) MEAs for extreme environments. Full article
Show Figures

Graphical abstract

25 pages, 5297 KB  
Article
Composition Design and Property Prediction for AlCoCrCuFeNi High-Entropy Alloy Based on Machine Learning
by Cuixia Liu, Meng Meng and Xian Luo
Metals 2025, 15(7), 733; https://doi.org/10.3390/met15070733 - 30 Jun 2025
Viewed by 495
Abstract
Based on the innovative mode driven by “data + artificial intelligence”, in this study, three methods, namely Gaussian noise (GAUSS Noise), the Generative Adversarial Network (GAN), and the optimized Generative Adversarial Network (GANPro), are adopted to expand and enhance the collected dataset of [...] Read more.
Based on the innovative mode driven by “data + artificial intelligence”, in this study, three methods, namely Gaussian noise (GAUSS Noise), the Generative Adversarial Network (GAN), and the optimized Generative Adversarial Network (GANPro), are adopted to expand and enhance the collected dataset of element contents and the hardness of the AlCoCrCuFeNi high-entropy alloy. Bayesian optimization with grid search is used to determine the optimal combination of hyperparameters, and two interpretability methods, SHAP and permutation importance, are employed to further explore the relationship between the element features of high-entropy alloys and hardness. The results show that the optimal data augmentation method is Gaussian noise enhancement; its accuracy reaches 97.4% under the addition of medium noise (σ = 0.003), and an optimal performance prediction model based on the existing dataset is finally constructed. Through the interpretability method, it is found that the contributions of Al and Ni are the most prominent. When the Al content exceeds 0.18 mol, it has a positive promoting effect on hardness, while Ni and Cu exhibit a critical effect of promotion–inhibition near 0.175 mol and 0.14 mol, respectively, revealing the nonlinear regulation law of element contents. This study solves the problem of revealing the mutual relationship between the element contents and hardness of high-entropy alloys in the case of a lack of alloy data and provides theoretical guidance for further improving the performance of high-entropy alloys. Full article
Show Figures

Figure 1

12 pages, 4897 KB  
Article
Optimized Control of Hot-Working Parameters in Hot-Forged (CoCrNi)94Al3Ti3 Medium-Entropy Alloy
by Ao Li, Jiebo Lu, Wenjie Xin, Tengfei Ma, Xiaohong Wang and Yunting Su
Coatings 2025, 15(6), 706; https://doi.org/10.3390/coatings15060706 - 11 Jun 2025
Viewed by 618
Abstract
It is essential to develop the optimal hot-working process of the (CoCrNi)94Al3Ti3 alloy, a recently developed precipitation-hardened medium-entropy alloy with promising mechanical properties, for its industrial application. In this study, the hot workability of the as-forged (CoCrNi)94 [...] Read more.
It is essential to develop the optimal hot-working process of the (CoCrNi)94Al3Ti3 alloy, a recently developed precipitation-hardened medium-entropy alloy with promising mechanical properties, for its industrial application. In this study, the hot workability of the as-forged (CoCrNi)94Al3Ti3 alloy was investigated over a temperature range of 1000 °C to 1150 °C and a strain rate ranging from 0.001 to 1 s−1 using a Gleeble-1500D thermal simulation machine of Dynamic Systems Inc., USA. As a result, the constitutive relationship was established, and the hot deformation activation energy was calculated as 433.2 kJ/mol, suggesting its well-defined plastic flow behavior under low-energy-input conditions. Hot-processing maps were constructed to identify the stable hot-working regions. Microstructure analysis revealed that the hot-forged (CoCrNi)94Al3Ti3 alloy exhibited continuous dynamic recrystallization (CDRX) behavior under optimal hot-working conditions. Considering the hot-processing maps and DRX characteristics, the optimal hot-working window of hot-forged (CoCrNi)94Al3Ti3 alloy was identified as 1100 °C with a strain rate of 0.1 s−1. This work offers valuable guidance for developing high-efficiency forming processes for (CoCrNi)94Al3Ti3 medium-entropy alloy. Full article
(This article belongs to the Special Issue Surface Treatment and Coating of Additively Manufactured Components)
Show Figures

Graphical abstract

17 pages, 3125 KB  
Article
Tribocorrosion Behavior of a Medium-Entropy Austenitic Stainless Steel in 3.5 wt.% NaCl: A Comparative Study with 304 and S31254 Stainless Steels
by Chun-Hao Wang, Shih-Yen Huang, Yu-Ren Chu, Peng-Shu Hsu, Hung-Wei Yen, I-Chung Cheng, Peng-Wei Chu and Yueh-Lien Lee
Lubricants 2025, 13(6), 260; https://doi.org/10.3390/lubricants13060260 - 11 Jun 2025
Viewed by 863
Abstract
This study investigates the tribocorrosion behavior of 304 stainless steel (304SS), S31254 super austenitic stainless steel (S31254 SASS), and a medium-entropy austenitic stainless steel (MEASS) in 3.5 wt.% NaCl solution under sliding conditions. The objective is to clarify the performance differences among these [...] Read more.
This study investigates the tribocorrosion behavior of 304 stainless steel (304SS), S31254 super austenitic stainless steel (S31254 SASS), and a medium-entropy austenitic stainless steel (MEASS) in 3.5 wt.% NaCl solution under sliding conditions. The objective is to clarify the performance differences among these alloys when exposed to simultaneous mechanical wear and corrosion. Electrochemical techniques, including potentiodynamic polarization and potentiostatic sliding tests, were used to evaluate corrosion resistance and repassivation behavior. Quantitative analysis based on ASTM G119 revealed that MEASS showed a 68% lower total material loss compared to 304SS and a 55% lower loss compared to S31254. MEASS also exhibited the lowest corrosion current density (1.46 μA/cm2) under tribocorrosion conditions, representing an 83% reduction compared to 304SS. These improvements are attributed to the higher chromium and nickel contents of MEASS, which enhance passive film stability and reduce susceptibility to localized corrosion. The results demonstrate that MEASS offers superior resistance to combined mechanical and corrosive degradation in chloride-containing environments. Full article
(This article belongs to the Special Issue Tribology of Metals and Alloys)
Show Figures

Figure 1

13 pages, 5966 KB  
Article
Effect of Nb on Laves Phase Formation and Wear Resistance in Laser-Cladding CrFeNi Medium-Entropy Alloy Coatings
by Zehuan Chen, Fangyan Luo, Hongtao Jin, Zhen Peng, Wenqing Shi and Jiang Huang
Coatings 2025, 15(6), 667; https://doi.org/10.3390/coatings15060667 - 30 May 2025
Cited by 1 | Viewed by 744
Abstract
In this study, 20 wt.% of Nb was incorporated into a CrFeNi medium-entropy alloy (MEA) powder system to prepare CrFeNi-Nb composite coatings on a Q235B mild steel substrate by laser cladding technology. The effects of Nb addition on the phase composition, microstructure, and [...] Read more.
In this study, 20 wt.% of Nb was incorporated into a CrFeNi medium-entropy alloy (MEA) powder system to prepare CrFeNi-Nb composite coatings on a Q235B mild steel substrate by laser cladding technology. The effects of Nb addition on the phase composition, microstructure, and wear resistance of CrFeNi coatings were systematically investigated. Microstructural characterization revealed that the CrFeNi coating exhibited a single face-centered cubic (FCC) phase structure, while the CrFeNi-Nb composite coating demonstrated a dual-phase structure comprising FCC phase and Laves phase. The Laves phase significantly enhanced the microhardness and wear resistance of the coating. The average microhardness of the CrFeNi-Nb coating increased by 259.62% compared to the substrate and 190.58% compared to the Nb-free CrFeNi coating. The average coefficient of friction (COF) of the coating decreased from 0.74 to 0.68; the wear rate reduced from 5.77 × 10−4 mm3 N−1 m−1 to 2.26 × 10−4 mm3 N−1 m−1; and the weight loss decreased from 10.77 mg to 4.3 mg. The experimental results demonstrated that the addition of Nb promoted the formation of the Laves phase in the CrFeNi MEA, which effectively improved the wear resistance of the coating. Full article
Show Figures

Graphical abstract

14 pages, 8387 KB  
Article
Liquid-State Interfacial Reactions of Lead-Free Solders with FeCoNiCr and FeCoNiMn Medium-Entropy Alloys at 250 °C
by Chao-Hong Wang and Yue-Han Li
Materials 2025, 18(10), 2379; https://doi.org/10.3390/ma18102379 - 20 May 2025
Viewed by 651
Abstract
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. [...] Read more.
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. In the Sn/FeCoNiCr system, a faceted (Fe,Cr,Co)Sn2 layer initially forms at the interface. Upon aging, the significant spalling of large (Fe,Cr,Co)Sn2 particulates into the solder matrix occurs. Additionally, an extremely large, plate-like (Co,Ni)Sn4 phase forms at a later stage. In contrast, the Sn/FeCoNiMn reaction produces a finer-grained (Fe,Co,Mn)Sn2 phase dispersed in the solder, accompanied by the formation of the large (Co,Ni)Sn4 phase. This observation suggests that Mn promotes the formation of finer intermetallic compounds (IMCs), while Cr facilitates the spalling of larger IMC particulates. The Sn/FeCoNiCrMn system exhibits stable interfacial behavior, with the (Fe,Cr,Co)Sn2 layer showing no significant changes over time. The interfacial behavior and microstructure are primarily governed by the dissolution of the constituent elements and composition ratio of the HEAs, as well as their interactions with Sn. Similar trends are observed in the SAC305 solder reactions, where a larger amount of fine (Fe,Co,Cu)Sn2 particles spall from the interface. This behavior is likely attributed to Cu doping, which enhances nucleation and stabilizes the IMC phases, promoting the formation of finer particles. The wettability of SAC305 solder on MEA/HEA substrates was further evaluated by contact angle measurements. These findings suggest that the presence of Mn in the substrate enhances the wettability of the solder. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

12 pages, 3961 KB  
Article
Enhanced Mechanical Properties of Lightweight Ti65(AlCrNbV)35 Medium-Entropy Alloys via Microstructure Modification Through Minor B Doping
by Po-Sung Chen, Bao-Teng Kuo, Pei-Hua Tsai, Jason Shian-Ching Jang, Chih-Yen Chen and I-Yu Tsao
Materials 2025, 18(10), 2219; https://doi.org/10.3390/ma18102219 - 11 May 2025
Cited by 1 | Viewed by 582
Abstract
Because of their low density and excellent material properties, lightweight Ti-rich medium-entropy alloys (MEAs) have great potential for application in the aerospace and automotive industries. This study investigated the effects of B doping on the microstructure and mechanical properties of a (Ti65 [...] Read more.
Because of their low density and excellent material properties, lightweight Ti-rich medium-entropy alloys (MEAs) have great potential for application in the aerospace and automotive industries. This study investigated the effects of B doping on the microstructure and mechanical properties of a (Ti65(AlCrNbV)35)100−xBx alloy series. The mechanical properties of the alloys were then enhanced through thermomechanical treatment, and the strengthening mechanism was explored by characterizing the alloys’ microstructure and mechanical properties. X-ray diffraction revealed that the (Ti65(AlCrNbV)35)100−xBx alloys retained their body-centered cubic structure. However, the addition of B resulted in a rightward shift in the diffraction peaks due to B having a smaller atomic radius compared with the other constituent elements. Weak diffraction peaks corresponding to TiB were discovered in the diffraction patterns for the alloys with 0.4 or 0.6% B content (named B0.4 and B0.6, respectively). The hardness of the homogenized alloys was increased from 321 Hv for the base alloy (B0) to 378 Hv for B0.6. In tensile testing, the homogenized alloy with 0.2% B content (B0.2) exhibited a yield strength of 1054 MPa and 21% elongation, which represented 17% greater strength compared with B0. Conversely, the mechanical properties of B0.4 and B0.6 were poorer due to precipitation at grain boundaries. After thermomechanical treatment, the alloys’ strength and hardness increased with increasing B content despite various heat treatment conditions. The recrystallization behavior of the alloys tended to be delayed by B doping, resulting in an increase in the recrystallization temperature. After recrystallization at 900 °C, the elongation of B0, B0.1, and B0.2 exceeded 20%. Of the (Ti65(AlCrNbV)35)100−xBx alloys in the series, B0.2 presents the optimal combination of favorable yield strength and ductility (1275 MPa and 10%, respectively). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 7108 KB  
Article
Additive Manufactured FeCrNi Medium Entropy Alloy Lattice Structure with Excellent Dynamic Mechanical Properties
by Lei Yuan, Zongshu Li, Wentao Liu, Ao Fu, Jian Wang, Yuankui Cao and Bin Liu
Materials 2025, 18(10), 2173; https://doi.org/10.3390/ma18102173 - 8 May 2025
Viewed by 766
Abstract
Aerospace and marine engineering impose higher requirements on mechanical properties and lightweight design of materials. In this work, combining the high mechanical properties of FeCrNi medium entropy alloy (MEA) and the lightweight advantages of lattice structure, four types of high-performance FeCrNi MEA lattice [...] Read more.
Aerospace and marine engineering impose higher requirements on mechanical properties and lightweight design of materials. In this work, combining the high mechanical properties of FeCrNi medium entropy alloy (MEA) and the lightweight advantages of lattice structure, four types of high-performance FeCrNi MEA lattice structures (BCC, BCCZ, FCC, and FCCZ) were prepared by selective laser melting (SLM) technology, and their dynamic mechanical properties were systematically characterized via split Hopkinson pressure bar (SHPB) method. The results demonstrate that the FCCZ FeCrNi MEA lattice structure exhibits superior comprehensive performance among the four lattice structures, achieving the highest specific compressive strength of 59.1 MPa·g−1·cm−3 and specific energy absorption of 26.3 J/g, significantly outperforming conventional lattice materials including 316L and AlSi10Mg alloys. Furthermore, the finite element simulation and Johnson-Cook (J-C) constitutive model of the dynamic compression process can effectively predict the microstructural evolution and mechanical response of lattice structure, providing critical theoretical guidance for optimizing the design of high-performance lattice structure materials. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 13782 KB  
Article
Electrodeposited CoFeNi Medium-Entropy Alloy Coating on a Copper Substrate from Chlorides Solution with Enhanced Corrosion Resistance
by Katarzyna Młynarek-Żak, Monika Spilka, Krzysztof Matus, Anna Góral and Rafał Babilas
Coatings 2025, 15(5), 509; https://doi.org/10.3390/coatings15050509 - 24 Apr 2025
Viewed by 1060
Abstract
Medium-entropy alloys (MEAs) exhibit properties comparable or even superior to high-entropy alloys (HEAs). Due to their very good resistance in thermomechanical conditions and corrosive environments and unique electrical and magnetic properties, medium-entropy alloys are good candidates for coating applications. One of the most [...] Read more.
Medium-entropy alloys (MEAs) exhibit properties comparable or even superior to high-entropy alloys (HEAs). Due to their very good resistance in thermomechanical conditions and corrosive environments and unique electrical and magnetic properties, medium-entropy alloys are good candidates for coating applications. One of the most economically effective methods of producing metallic coatings is electrodeposition. In this work, the structure of an electrodeposited CoFeNi medium-entropy alloy coating on a copper substrate from a metal chlorides solution (FeCl2 ∙ 4H2O + CoCl2 ∙ 6H2O + NiCl2 ∙ 6H2O) with the addition of boric acid (H3BO3) was investigated. The coating was characterized by a nanocrystalline structure identified by transmission electron microscopy examination and X-ray diffraction methods. Based on XRD and TEM, the face-centered cubic (FCC) phase of the CoFeNi MEA coating was identified. The high corrosion resistance of the MEA coating in a 3.5% NaCl environment at 25 °C was confirmed by electrochemical tests. Full article
(This article belongs to the Special Issue Advances of Ceramic and Alloy Coatings, 2nd Edition)
Show Figures

Figure 1

Back to TopTop