Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,140)

Search Parameters:
Keywords = melt stabilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2257 KB  
Article
The Development and Characterization of Layered Pellets Containing a Combination of Amorphized Amlodipine Besylate and Hydrochlorothiazide Using a High-Shear Granulator
by Azza A. K. Mahmoud, Krisztina Ludasi, Dorina Gabriella Dobó, Dániel Sebők, Ákos Kukovecz, Viktória Hornok, Kadosa Sajdik, Tamás Szabó, Tamás Sovány, Géza Regdon and Katalin Kristó
Pharmaceuticals 2025, 18(10), 1496; https://doi.org/10.3390/ph18101496 (registering DOI) - 5 Oct 2025
Abstract
Background/Objective: The high-shear granulator is considered an effective piece of equipment for layering pelletization because it enhances drug amorphization and improves drug dissolution. This study aimed to apply a high-shear granulator to prepare layered pellets containing a combination of hydrochlorothiazide and amlodipine besylate [...] Read more.
Background/Objective: The high-shear granulator is considered an effective piece of equipment for layering pelletization because it enhances drug amorphization and improves drug dissolution. This study aimed to apply a high-shear granulator to prepare layered pellets containing a combination of hydrochlorothiazide and amlodipine besylate with improved physicochemical properties. Methods: Different molar ratios (2:1, 1:1, and 1:2) of the hydrochlorothiazide and amlodipine besylate mixture were deposited on the surface of the inert spheres of the microcrystalline cellulose (MCC) core by the mechanical effect of the high impeller speed. The resulting layered pellets were characterized using X-ray powder diffractometry (XRPD) and differential scanning calorimetry (DSC) to estimate the degree of the drug amorphization, and consequently a dissolution test was performed to determine the degree of the enhancement of the percentage of release. Additionally, micro-computed tomography (micro-CT) and a texture analyzer were used to determine the morphological characteristics and hardness of the resulting pellets, and then a stability study was performed. Results: On the basis of the micro-CT images, the MCC core was successfully loaded with a uniform layer of the drug combination at the pellet surface, which exhibited higher diameters than pure cellets. Furthermore, the drug combination in layered pellets was partially amorphized with a lower crystallinity percentage, a lower intensity, a broadening of the hydrochlorothiazide melting peak, and a higher cumulative release of both drugs with good stability, except pellets with a molar ratio of 1:2 that were recrystallized with a higher crystallinity percentage of 79.9%. Conclusions: Modifying the physical form and dissolution behavior of the hydrochlorothiazide and amlodipine besylate combination was achieved by single-step layering pelletization. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

17 pages, 3115 KB  
Article
Leakage-Proof and High-Conductivity Composite Phase Change Material Using Low-Melting-Point-Alloy-Encapsulated Copper Foam/Paraffin for Superior Thermal Homogeneity in Lithium-Ion Battery Modules
by Shengzhi He, Jiajun Zhao, Dongxu Ouyang and Mingyi Chen
Materials 2025, 18(19), 4604; https://doi.org/10.3390/ma18194604 (registering DOI) - 4 Oct 2025
Abstract
Ensuring thermal stability is a major concern in lithium-ion battery systems. Although phase change materials (PCMs) provide a passive approach for temperature regulation, they are limited by poor heat conduction and potential leakage during phase transitions. This study develops a novel composite PCM [...] Read more.
Ensuring thermal stability is a major concern in lithium-ion battery systems. Although phase change materials (PCMs) provide a passive approach for temperature regulation, they are limited by poor heat conduction and potential leakage during phase transitions. This study develops a novel composite PCM (CPCM) using paraffin (PA) as the matrix, copper foam (CF) as a conductive skeleton (10–30 pores per inch, PPI), and a low-melting-point alloy (LMA) as an encapsulant to prevent leakage. The effects of CF pore size on thermal conductivity, impregnation ratio, and leakage resistance were systematically investigated. Results show that CPCM with 10 PPI CF achieved the highest thermal conductivity (4.42 W·m−1·K−1), while LMA encapsulation effectively eliminated leakage. The thermal management performance was evaluated on both a single 18,650 LIB cell and a 2S2P module during rate discharging at 1C, 2C, and 3C. For the module at 3C, the 10 PPI CPCM significantly lowered the maximum temperature from 75.9 °C to 44.6 °C and critically reduced the maximum temperature difference between cells from 10.2 °C to a safe level of 1.2 °C, significantly improving temperature uniformity. This work provides a high-conductivity and leakage-proof CPCM solution based on LMA-encapsulated CF/PA for enhanced thermal safety and uniformity in LIB modules. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

38 pages, 3536 KB  
Article
Application of Cooling Layer and Thin Thickness Between Coolant and Cavity for Mold Temperature Control and Improving Filling Ability of Thin-Wall Injection Molding Product
by Tran Minh The Uyen, Pham Son Minh and Bui Chan Thanh
Polymers 2025, 17(19), 2658; https://doi.org/10.3390/polym17192658 - 30 Sep 2025
Abstract
Effective thermal management of molds is a governing factor of the quality and stability of the injection molding process. This study introduces and validates an integrated cooling layer within a thin-walled insert mold designed to enhance thermal control and cavity filling performance. A [...] Read more.
Effective thermal management of molds is a governing factor of the quality and stability of the injection molding process. This study introduces and validates an integrated cooling layer within a thin-walled insert mold designed to enhance thermal control and cavity filling performance. A coupled heat transfer simulation model was developed and subsequently calibrated against experimental temperature measurements. To isolate the mold’s intrinsic thermal response, temperatures were measured during distinct heating and cooling cycles, free from the perturbations of polymer melt flow. The validated mold was then installed on a Haitian MA1200 III injection molding machine to conduct molding trials under various injection pressures. A strong correlation was found between the simulation and experimental results, particularly as pressure increased, which significantly improved cavity filling and reduced the deviation between the two methods. The integrated cooling layer was shown to enhance heat dissipation, minimize thermal gradients, and promote a more uniform thermal field. This, in turn, improved filling stability, especially at moderate injection pressures. These findings provide robust quantitative data for simulation model calibration and mold design optimization, highlighting the potential of advanced cooling strategies to significantly enhance injection molding performance. Full article
(This article belongs to the Special Issue Advances in Polymer Processing Technologies: Injection Molding)
12 pages, 1565 KB  
Article
Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics
by Marcin Środa, Szymon Świontek and Maciej Szal
Crystals 2025, 15(10), 859; https://doi.org/10.3390/cryst15100859 - 30 Sep 2025
Abstract
This study examines the impact of varying the content of lanthanum oxide and lanthanum fluoride on the formation of glass-ceramics and their effect on the thermal stability of Na-aluminosilicate glasses, depending on the type and concentration of the raw material used. The aim [...] Read more.
This study examines the impact of varying the content of lanthanum oxide and lanthanum fluoride on the formation of glass-ceramics and their effect on the thermal stability of Na-aluminosilicate glasses, depending on the type and concentration of the raw material used. The aim of this study is to obtain a fluoride crystalline phase in the glassy matrix. Such a phase, due to its low phonon energy, increases the probability of radiative transitions (decay) of optically active lanthanide dopants, thereby enhancing luminescence. The scope of the work included the preparation of two glass series with varying amounts of La2O3 and LaF3 to determine the glass-forming range and to identify the characteristic temperatures of the glasses using Differential Thermal Analysis. It was found that increasing the La2O3 content above 10 mol% in this glass leads to exceeding the target melting temperature (1400 °C) of the glass batch. In contrast, the introduction of 10 mol% LaF3 prevents the formation of homogeneous glass. Based on these results, a controlled crystallization process was designed, and the resulting crystalline phases were identified using X-ray diffraction (XRD). In the base glass, two crystalline phases were identified: Na2O·Al2O3·SiO2 and Na2SiO3. For the La-oxide series, the crystallization of NaAlSiO4 and La2SiO5 was confirmed. In the case of the La-fluoride series, the formation of LaF3 was observed. It was found that by introducing an appropriate amount of LaF3 (7.5 mol%) into the aluminosilicate network, it is possible to obtain a glass suitable for controlled crystallization, leading to the formation of a low-phonon LaF3 phase. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
24 pages, 5112 KB  
Article
Thermally Stable Collagen from Black Carp (Mylopharyngodon piceus) Swim Bladder: Preparation, Structure, Rheological, and Functional Properties
by Lichi Wei, Yushuang Li, Cong Ke, Junde Chen and Jing Zhang
Foods 2025, 14(19), 3359; https://doi.org/10.3390/foods14193359 - 28 Sep 2025
Abstract
Fish-derived collagen can reduce the risk of disease transmission and has no religious or cultural restrictions. However, it has limited applications due to its poor thermal stability. In this study, black carp swim bladder collagen (BBC), classified as a type I collagen, was [...] Read more.
Fish-derived collagen can reduce the risk of disease transmission and has no religious or cultural restrictions. However, it has limited applications due to its poor thermal stability. In this study, black carp swim bladder collagen (BBC), classified as a type I collagen, was extracted. Amino acid composition analysis revealed that BBC had a higher proline hydroxylation rate of 39.57%. Fourier transform infrared spectroscopy revealed that BBC exhibited a complete triple-helix structure. The fractional viscosity curve and differential scanning calorimetry curves revealed that the thermal denaturation temperature (Td) and the melting temperature (Tm) were 30.85 °C and 107.19 °C, respectively. The dynamic rheological analysis showed that as the concentration increased from 5 mg/mL to 20 mg/mL at 0.01 Hz, the storage modulus increased from 0.979 Pa to 84.2 Pa. When the temperature exceeded the Td, the BBC solution exhibited viscous behaviour as the frequency increased. The steady-shear analysis showed that the BBC was a shear-thinning fluid. Functional properties analysis revealed that BBC exhibited better emulsification properties, foaming properties, water absorption capacity and oil absorption capacity than land-derived collagen, making it suitable for emulsifiers, bubbling beverages, and frozen meat preservation. Additionally, BBC promoted the growth of MT3C3-E1 cells and maintained the normal morphology of the cells. These results showed that BBC is a promising substitute for terrestrial collagen in functional foods, cosmetics, and biofunctional materials. Full article
Show Figures

Figure 1

13 pages, 2686 KB  
Article
Influence of Molecular Structure of POM on Processability Within Metal Injection Molding
by Thomas Forstner, Simon Cholewa, Tobias Früh and Dietmar Drummer
Polymers 2025, 17(19), 2621; https://doi.org/10.3390/polym17192621 - 28 Sep 2025
Abstract
Metal Injection Molding (MIM) is based on the processing of highly filled polymers via the well established polymer injection molding process. It offers a highly efficient processing route for the indirect manufacturing of especially small and complex metal parts. In this regard, polyoxymethylene [...] Read more.
Metal Injection Molding (MIM) is based on the processing of highly filled polymers via the well established polymer injection molding process. It offers a highly efficient processing route for the indirect manufacturing of especially small and complex metal parts. In this regard, polyoxymethylene (POM) is often used as a primary binder component in MIM feedstocks due to its high debinding rate through a time-saving catalytic debinding process, utilizing the acid-catalyzed degradation of POM for polymer removal. However, thermally induced degradation of POM under processing conditions can also lead to changes in processing behavior, which is particularly important in highly filled polymers due to their already challenging processability. In this context, the present work demonstrates the impact of POM homopolymers (POM-H) and copolymers (POM-C) with varying viscosities on feedstock characteristics, their influence on the thermal processing stability, and their significance for the properties of the green parts. Within the study, the thermal degradation of both material types was assessed by viscosity measurements and thermogravimetry, with POM-H exhibiting more significant degradation compared to the thermally more stable POM-C, especially at higher temperatures. Catalytic debinding performance was found to be adequate for all materials. However, lower viscosity POM-C grades are preferred to optimize processability in MIM. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 3150 KB  
Article
Design of Near-UV Photoluminescent Liquid-Crystalline Dimers: Roles of Fluorinated Aromatic Ring Position and Flexible Linker
by Sorato Inui, Hayato Kitaoka, Yuto Eguchi, Motohiro Yasui, Tsutomu Konno and Shigeyuki Yamada
Crystals 2025, 15(10), 840; https://doi.org/10.3390/cryst15100840 - 27 Sep 2025
Abstract
Near-ultraviolet photoluminescence liquid-crystalline molecules (PLLCs) have attracted attention for temperature-responsive photoluminescence (PL) modulation and ON/OFF sensing under external stimuli. We recently developed mesogenic dimers composed of two hexyloxy-substituted, fluorinated tolane-type cores linked by alkylene-1,n-dioxy chains that exhibited near-UV PL in the [...] Read more.
Near-ultraviolet photoluminescence liquid-crystalline molecules (PLLCs) have attracted attention for temperature-responsive photoluminescence (PL) modulation and ON/OFF sensing under external stimuli. We recently developed mesogenic dimers composed of two hexyloxy-substituted, fluorinated tolane-type cores linked by alkylene-1,n-dioxy chains that exhibited near-UV PL in the solid state. However, the formation of LC phases and the temperature range of the LC state were limited. To improve LC phase stability, in this study, we extended the flexible terminal chains and repositioned the fluorinated aromatic rings from the outer to the inner core positions. Accordingly, we synthesized mesogenic dimers with even-numbered alkylene-1,n-dioxy linkers (hexylene, octylene, and decylene) and outer- or inner-ring fluorination. Outer-ring fluorination led to high melting temperatures and stable crystalline phases with limited mesophase formation. In contrast, inner-ring fluorination induced nematic phases upon heating and cooling owing to zig-zag molecular structures that disrupted crystallinity. Photophysical studies confirmed near-UV PL in solution and solid states; however, the quantum yield of the solution PL was low (<0.01). In the solid state, the PL efficiencies and wavelengths were influenced by the fluorinated aromatic ring position and linker length. This study provides important molecular design criteria for developing stable LC materials with tunable near-UV luminescence for temperature-responsive optical devices. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

27 pages, 1325 KB  
Systematic Review
Sustained-Release Oral Delivery of NSAIDs and Acetaminophen: Advances and Recent Formulation Strategies—A Systematic Review
by Paulina Drapińska, Katarzyna Skulmowska-Polok, Joanna Chałupka and Adam Sikora
Pharmaceutics 2025, 17(10), 1264; https://doi.org/10.3390/pharmaceutics17101264 - 26 Sep 2025
Abstract
Background: Sustained-release (SR) formulations of non-steroidal anti-inflammatory drugs (NSAIDs) aim to prolong therapeutic activity, reduce dosing frequency, and improve patient adherence. However, currently marketed SR NSAIDs exhibit persistent limitations, including incomplete control over release kinetics, high interpatient variability in bioavailability, limited reduction [...] Read more.
Background: Sustained-release (SR) formulations of non-steroidal anti-inflammatory drugs (NSAIDs) aim to prolong therapeutic activity, reduce dosing frequency, and improve patient adherence. However, currently marketed SR NSAIDs exhibit persistent limitations, including incomplete control over release kinetics, high interpatient variability in bioavailability, limited reduction in gastrointestinal adverse effects, and insufficient dose flexibility for individualized therapy. In many cases, conventional excipients and release mechanisms remain predominant, leaving drug-specific physicochemical and pharmacokinetic constraints only partially addressed. These gaps highlight the need for a comprehensive synthesis of recent technological advances to guide the development of more effective, patient-centered delivery systems. Methods: A narrative literature review was conducted using Web of Science and PubMed databases to identify original research articles and comprehensive technological studies on oral SR formulations of NSAIDs and paracetamol published between January 2020 and March 2025. Inclusion criteria focused on preclinical and technological research addressing formulation design, excipient innovations, and manufacturing approaches. Results: Sixty-four studies met the inclusion criteria, encompassing polymeric matrices (31%), lipid-based carriers (18%), microspheres/hydrogel beads/interpenetrating polymer networks (30%), nanostructured systems (11%), and hybrid platforms (10%). The most common strategies involved pH-dependent release, mucoadhesive systems, and floating drug delivery, aiming to optimize release kinetics, minimize mucosal irritation, and sustain therapeutic plasma levels. Advances in manufacturing—such as hot-melt extrusion, 3D printing, electrospinning, and spray drying—enabled enhanced control of drug release profiles, improved stability, and in some cases up to 30–50% prolongation of release time or reduction in Cmax fluctuations compared with conventional formulations. Conclusions: Recent formulation strategies show substantial potential to overcome long-standing limitations of SR NSAID delivery, with expected benefits for patient compliance and quality of life through reduced dosing frequency, better tolerability, and more predictable therapeutic effects. Nevertheless, integration of in vitro performance with pharmacokinetic and clinical safety outcomes remains limited, and the translation to clinical practice is still in its early stages. This review provides a comprehensive overview of current technological trends, identifies persisting gaps, and proposes future research directions to advance SR NSAID systems toward safer, more effective, and patient-focused therapy. Full article
Show Figures

Graphical abstract

24 pages, 5651 KB  
Article
Coefficient of Thermal Expansion of AlSi10Mg, 316L Stainless Steel and Ti6Al4V Alloys Made with Laser Powder Bed Fusion
by Selami Emanet, Edem Honu, Kekeli Agbewornu, Evelyn Quansah, Congyuan Zeng and Patrick Mensah
Materials 2025, 18(19), 4468; https://doi.org/10.3390/ma18194468 - 25 Sep 2025
Abstract
This study investigates the coefficient of thermal expansion (CTE) behavior of LPBF-fabricated AlSi10Mg, 316L stainless steel, and Ti-6Al-4V alloys, focusing on the influence of laser power, scanning speed, and annealing. AlSi10Mg exhibits the highest CTE, but its thermal expansion is highly sensitive to [...] Read more.
This study investigates the coefficient of thermal expansion (CTE) behavior of LPBF-fabricated AlSi10Mg, 316L stainless steel, and Ti-6Al-4V alloys, focusing on the influence of laser power, scanning speed, and annealing. AlSi10Mg exhibits the highest CTE, but its thermal expansion is highly sensitive to porosity and balling defects. 316L stainless steel shows moderate and stable CTE values, with minimal changes after annealing due to its dense microstructure. Ti-6Al-4V has the lowest CTE, with annealing improving expansion. Higher laser power (100 W) improves fusion, reduces porosity, and stabilizes CTE, while lower power (50 W) increases defects, particularly in AlSi10Mg and Ti-6Al-4V. Scanning speed significantly influences porosity, with 0.4 m/s providing an optimal balance between melt efficiency and defect minimization. Annealing enhances CTE uniformity by reducing the lack of fusion defects and refining grain structures, with the greatest improvements seen in low-laser-energy conditions. These findings provide valuable insights for optimizing LPBF parameters to enhance thermal stability and reliability in aerospace, biomedical, and structural applications. Full article
(This article belongs to the Special Issue The Additive Manufacturing of Metallic Alloys (Second Edition))
Show Figures

Figure 1

17 pages, 3397 KB  
Article
Preparation and Performance of Poly(Butylene Succinate) (PBS) Composites Reinforced with Taxus Residue and Compatibilized with Branched PBS
by Shiwanyi Chen, Shufeng Li, Bing Wang, Chen Chen and Liuchun Zheng
Polymers 2025, 17(19), 2597; https://doi.org/10.3390/polym17192597 - 25 Sep 2025
Abstract
In response to the escalating plastic pollution crisis, the development of high-performance biodegradable materials is critical. Poly(butylene succinate) (PBS) is an important biodegradable polymer as it possesses excellent biodegradability and processability. But it suffers from limitations such as low mechanical strength, poor thermal [...] Read more.
In response to the escalating plastic pollution crisis, the development of high-performance biodegradable materials is critical. Poly(butylene succinate) (PBS) is an important biodegradable polymer as it possesses excellent biodegradability and processability. But it suffers from limitations such as low mechanical strength, poor thermal stability, and high production costs. In this study, taxus residue (TF), a waste by-product, was utilized as a reinforcing filler to reduce PBS costs while enhancing its overall performance. To address the interfacial incompatibility between TF and PBS, branched PBS (T-PBS) was introduced as a compatibilizer. The TF was surface-modified via alkali treatment and silane coupling (KH550), and a series of PBS/TF/T-PBS composites with varying T-PBS viscosity grades were prepared by melt blending. The compatibilization mechanism of T-PBS and its influence on the composite structure, crystallization behavior, thermal stability, rheological, and mechanical properties were systematically investigated. Results show that the branched structure significantly enhanced T-PBS melt strength and reactivity. The introduction of T-PBS effectively improved interfacial compatibility between TF and PBS matrix, reducing phase separation and interfacial defects. Compared to uncompatibilized PBS/TF composites, those with appropriately viscous T-PBS exhibited improved tensile strength (increased by 19.7%) and elongation at break (increased by 78.8%), while flexural strength was also maintained at an enhanced level. The branched points acted as nucleating agents, increasing the onset temperature and degree of crystallinity. In the high-temperature region, the synergistic barrier effect from TF and char residue improved thermal stability (T85% reached 408.19 °C). Rheological analysis revealed enhanced viscosity and elasticity of the system. This study provides a promising strategy and theoretical foundation for the high-value utilization of taxus waste and the development of high-performance biodegradable PBS-based composites. Full article
Show Figures

Figure 1

33 pages, 6726 KB  
Review
Recent Techniques to Improve Amorphous Dispersion Performance with Quality Design, Physicochemical Monitoring, Molecular Simulation, and Machine Learning
by Hari Prasad Bhatta, Hyo-Kyung Han, Ravi Maharjan and Seong Hoon Jeong
Pharmaceutics 2025, 17(10), 1249; https://doi.org/10.3390/pharmaceutics17101249 - 24 Sep 2025
Viewed by 183
Abstract
Amorphous solid dispersions (ASDs) represent a promising formulation strategy for improving the solubility and bioavailability of poorly water-soluble drugs, a major challenge in pharmaceutical development. This review provides a comprehensive analysis of the physicochemical principles underlying ASD stability, with a focus on drug–polymer [...] Read more.
Amorphous solid dispersions (ASDs) represent a promising formulation strategy for improving the solubility and bioavailability of poorly water-soluble drugs, a major challenge in pharmaceutical development. This review provides a comprehensive analysis of the physicochemical principles underlying ASD stability, with a focus on drug–polymer miscibility, molecular mobility, and thermodynamic properties. The main manufacturing techniques including hot-melt extrusion, spray drying, and KinetiSol® dispersing are discussed for their impact on formulation homogeneity and scalability. Recent advances in excipient selection, molecular modeling, and in silico predictive approaches have transformed ASD design, reducing dependence on traditional trial-and-error methods. Furthermore, machine learning and artificial intelligence (AI)-based computational platforms are reshaping formulation strategies by enabling accurate predictions of drug–polymer interactions and physical stability. Advanced characterization methods such as solid-state NMR, IR, and dielectric spectroscopy provide valuable insights into phase separation and recrystallization. Despite these technological innovations, ensuring long-term stability and maintaining supersaturation remain significant challenges for ASDs. Integrated formulation design frameworks, including PBPK modeling and accelerated stability testing, offer potential solutions to address these issues. Future research should emphasize interdisciplinary collaboration, leveraging computational advancements together with experimental validation to refine formulation strategies and accelerate clinical translation. The scientists can unlock the full therapeutic potential with emerging technologies and a data-driven approach. Full article
Show Figures

Graphical abstract

18 pages, 6933 KB  
Article
Recycling of PBS and PBS Bio-Composites Containing Organic By-Product Waste
by Nadka Tz. Dintcheva, Giulia Infurna, Cristina Scolaro, Erika Alessia Di Liberto, Mariem Ltayef and Annamaria Visco
Polymers 2025, 17(19), 2577; https://doi.org/10.3390/polym17192577 - 24 Sep 2025
Viewed by 126
Abstract
The current work is driven by applying circular principles, and it investigated the potential recyclability of polybutylene succinate (PBS) containing brewer’s spent grain filler (BSGF, 30 wt%) in comparison to the recyclability of pure PBS. PBS is much more stable than the PBS/BSGF [...] Read more.
The current work is driven by applying circular principles, and it investigated the potential recyclability of polybutylene succinate (PBS) containing brewer’s spent grain filler (BSGF, 30 wt%) in comparison to the recyclability of pure PBS. PBS is much more stable than the PBS/BSGF composite during processing cycles. Typically, thermomechanical degradation induces radical formation and branching of the macromolecular chain in PBS. Furthermore, PBS becomes less hydrophilic (by 53%, reaching 84°, approaching the 90° threshold), and its surface roughness increases by about 38% after five processing cycles. BSGF increases the viscosity of the melt, especially at low frequencies, and stabilizes the melt in the PBS/BSGF, which has lower torque variations during processing compared to pure PBS. Furthermore, BSGF in r-PBS/BSGF increases both hydrophilicity (by about 15%, from 75° to 64°) and surface roughness (by about 17%) after five processing cycles of the solid bio-composite and limits the formation of carboxylic groups during thermomechanical degradation. PBS is recyclable five times because it maintains its properties unchanged during extrusion cycles. At least two reprocessing steps are required for PBS/BSGF to obtain an optimal dispersion of BSGF, which can be re-extruded approximately three times. PBS/BSGF after four and five extrusion steps shows increased rigidity (Et PBS/BSGF > Et PBS) and reduced ductility (εb PBS/BSGF < εbt PBS), which could limit the recyclability of the PBS-based composite. Full article
Show Figures

Graphical abstract

21 pages, 4703 KB  
Article
Development of Bioceramic Bone-Inspired Scaffolds Through Single-Step Melt-Extrusion 3D Printing for Segmental Defect Treatment
by Aikaterini Dedeloudi, Pietro Maria Bertelli, Laura Martinez-Marcos, Thomas Quinten, Imre Lengyel, Sune K. Andersen and Dimitrios A. Lamprou
J. Funct. Biomater. 2025, 16(10), 358; https://doi.org/10.3390/jfb16100358 - 23 Sep 2025
Viewed by 182
Abstract
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic [...] Read more.
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic solutions. Although Fused Filament Fabrication (FFF) and Direct Ink Writing (DIW) are widely utilised for fabricating bone-like implants, the need for multiple processing steps often prolongs the overall production time. In this study, a single-step melt-extrusion 3DP technique was performed to develop multi-material scaffolds including bioceramics, hydroxyapatite (HA), and β-tricalcium phosphate (TCP) in both their bioactive and calcined forms at 10% and 20% w/w, within polycaprolactone (PCL) matrices. Printing parameters were optimised, and physicochemical properties of all biomaterials and final forms were evaluated. Thermal degradation and surface morphology analyses assessed the consistency and distribution of the ceramics across the different formulations. The tensile testing of the scaffolds defined the impact of each ceramic type and wt% on scaffold flexibility performance, while in vitro cell studies determined the cytocompatibility efficiency. Hence, all 3D-printed PCL–ceramic composite scaffolds achieved structural integrity and physicochemical and thermal stability. The mechanical profile of extruded samples was relevant to the ceramic consistency, providing valuable insights for further mechanotransduction investigations. Notably, all materials showed high cell viability and proliferation, indicating strong biocompatibility. Therefore, this additive manufacturing (AM) process is a precise and fast approach for developing biomaterial-based scaffolds, with potential applications in surgical restoration and support of segmental bone defects. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Graphical abstract

17 pages, 1953 KB  
Article
Investigating the Potential of Poly(2-ethyl-2-oxazoline) and Its Polymer Blends for Enhancing Fenofibrate Amorphous Solid Dispersion Dissolution Profile
by Ziru Zhang, Rasha M. Elkanayati, Sheng Feng, Indrajeet Karnik, Sateesh Kumar Vemula and Michael A. Repka
Pharmaceutics 2025, 17(10), 1238; https://doi.org/10.3390/pharmaceutics17101238 - 23 Sep 2025
Viewed by 186
Abstract
Background/Objectives: This study aimed to develop a novel amorphous solid dispersion (ASD) platform using poly(2-ethyl-2-oxazoline) (PEtOx) for the solubility enhancement of poorly water-soluble drugs. Fenofibrate (FB), a Biopharmaceutics Classification System (BCS) Class II drug, was selected as the model drug. The novelty of [...] Read more.
Background/Objectives: This study aimed to develop a novel amorphous solid dispersion (ASD) platform using poly(2-ethyl-2-oxazoline) (PEtOx) for the solubility enhancement of poorly water-soluble drugs. Fenofibrate (FB), a Biopharmaceutics Classification System (BCS) Class II drug, was selected as the model drug. The novelty of this work lies in the formulation of dual-matrix systems by blending PEtOx of varying molecular weights (50 kDa, 200 kDa, 500 kDa) with solubility-enhancing polymers, Soluplus® and Kollidon® VA64, to investigate component compatibility, synergistic solubility enhancement, and the influence of PEtOx molecular weight on drug release. Methods: ASDs were prepared via hot-melt extrusion (HME) and characterized using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and Fourier transform–infrared spectroscopy (FTIR) to confirm FB amorphization and evaluate drug–polymer interactions. In vitro dissolution testing was performed to assess drug release performance, and stability studies were conducted at ambient conditions for one month to evaluate physical stability. Results: DSC, PXRD, and FTIR confirmed the successful amorphization of FB and good miscibility between PEtOx and the selected excipients. In vitro dissolution studies showed an 8–12-fold increase in FB release from ASDs compared to crystalline drug. Lower-molecular-weight PEtOx grades yielded faster release profiles, while binary blends with Soluplus® or Kollidon® VA64 enabled tailored drug release. Stability testing indicated that all formulations maintained their amorphous state over one month. Conclusions: PEtOx-based ASDs represent a versatile platform for enhancing the solubility and dissolution of poorly water-soluble drugs. By adjusting polymer molecular weight and combining with complementary excipients, release profiles can be optimized to achieve improved performance and stability. Full article
Show Figures

Graphical abstract

29 pages, 5920 KB  
Article
Design of a Novel Integrated Solid–Liquid Separation and Mixing Pin Screw for CF-PLA Particle-Based 3D Printing: Fluid Simulation and Performance Evaluation
by Jun Wang, Xinke Liu, Guanjun Fu, Xipeng Luo, Hang Hu, Shuisheng Chen and Yizhe Huang
Appl. Sci. 2025, 15(18), 10275; https://doi.org/10.3390/app151810275 - 22 Sep 2025
Viewed by 159
Abstract
Particle-based 3D printing shows great potential in high-performance composite fabrication due to high raw material utilization and flexible material compatibility. However, constrained by conventional extrusion system structures, critical issues (non-uniform melt conveying, insufficient mixing efficacy, poor extrusion stability, etc.) remain. To address these, [...] Read more.
Particle-based 3D printing shows great potential in high-performance composite fabrication due to high raw material utilization and flexible material compatibility. However, constrained by conventional extrusion system structures, critical issues (non-uniform melt conveying, insufficient mixing efficacy, poor extrusion stability, etc.) remain. To address these, this study proposes a novel separate-type pin screw integrating solid–liquid separation (from split screws) and high-efficiency mixing (from pin screws) to improve CF/PLA composite extrusion efficiency and mixing homogeneity in particle-based 3D printing. Three-dimensional modeling, static strength/stiffness analysis, and POLYFLOW-based numerical simulation of particle melt conveying/mixing in the screw channel were conducted to analyze structural parameter effects on pressure field, shear rate, and mixing. Experiments assessed printer extrusion rate (different screws) and printed specimen mechanical properties. The simulation and experiment confirmed the optimized screw has better pressure distribution and mixing at 20 rpm, with optimal pin parameters: diameter 2 mm, height 1.6 mm, radial angle 60°, and axial spacing 10 mm. This work offers theoretical/structural support for particle-based 3D printing extrusion system optimization. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

Back to TopTop