Sustained-Release Oral Delivery of NSAIDs and Acetaminophen: Advances and Recent Formulation Strategies—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Ibuprofen
3.2. Flurbiprofen
3.3. Ketoprofen
3.4. Loxoprofen
3.5. Naproxen
3.6. Aceclofenac
3.7. Diclofenac
3.8. Indomethacin
3.9. Ketorolac
3.10. Paracetamol
3.11. Other NSAID Ingredients
3.12. Future Development Strategies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-Based Systems for Targeted and Site Specific Therapeutic Delivery. Adv. Drug Deliv. Rev. 2019, 144, 57–77. [Google Scholar] [CrossRef] [PubMed]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Ahmed, N.; Ly, H.; Pan, A.; Chiang, B.; Raines, K.; Janwatin, T.; Hamed, S.; Dave, K. Retrospective Analysis of the Biopharmaceutics Characteristics of Solid Oral Modified-Release Drug Products in Approved US FDA NDAs Designated as Extended-Release or Delayed-Release Formulations. Eur. J. Pharm. Biopharm. 2023, 193, 294–305. [Google Scholar] [CrossRef]
- Murugesan, S.; Gowramma, B.; Lakshmanan, K.; Reddy Karri, V.V.S.; Radhakrishnan, A. Oral Modified Drug Release Solid Dosage Form with Special Reference to Design; An Overview. Curr. Drug Res. Rev. 2019, 12, 16–25. [Google Scholar] [CrossRef]
- Khan, B.; Choi, H.I.; Ryu, J.S.; Noh, H.Y.; Shah, F.A.; Khan, N.; Ansari, M.M.; Zeb, A.; Kim, J.K. Core-Shell Tablets Designed for Modified and Sequential Release of Ibuprofen and Rabeprazole. Int. J. Pharm. 2024, 666, 124839. [Google Scholar] [CrossRef] [PubMed]
- Pishnamazi, M.; Hafizi, H.; Pishnamazi, M.; Marjani, A.; Shirazian, S.; Walker, G.M. Controlled Release Evaluation of Paracetamol Loaded Amine Functionalized Mesoporous Silica KCC1 Compared to Microcrystalline Cellulose Based Tablets. Sci. Rep. 2021, 11, 535. [Google Scholar] [CrossRef]
- Enke, M.; Schwarz, N.; Gruschwitz, F.; Winkler, D.; Hanf, F.; Jescheck, L.; Seyferth, S.; Fischer, D.; Schneeberger, A. 3D Screen Printing Technology Enables Fabrication of Oral Drug Dosage Forms with Freely Tailorable Release Profiles. Int. J. Pharm. 2023, 642, 123101. [Google Scholar] [CrossRef]
- Đuranović, M.; Obeid, S.; Madžarević, M.; Cvijić, S.; Ibrić, S. Paracetamol Extended Release FDM 3D Printlets: Evaluation of Formulation Variables on Printability and Drug Release. Int. J. Pharm. 2021, 592, 120053. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Manna, S.; Das, E.; Jana, P.; Mukherjee, S.; Sahu, R.; Dua, T.K.; Paul, P.; Kaity, S.; Nandi, G. Fabrication and Optimization of Extended-Release Beads of Diclofenac Sodium Based on Ca++ Cross-Linked Taro (Colocasia esculenta) Stolon Polysaccharide and Pectin by Quality-by-Design Approach. Int. J. Biol. Macromol. 2024, 271, 132606. [Google Scholar] [CrossRef]
- Lohani, A.; Saxena, R.; Khan, S.; Mascarenhas-Melo, F. PH-Responsive IPN Beads of Carboxymethyl Konjac Glucomannan and Sodium Carboxymethyl Cellulose as a Controlled Release Carrier for Ibuprofen. Int. J. Biol. Macromol. 2024, 278, 134676. [Google Scholar] [CrossRef]
- Madžarević, M.; Ibrić, S. Evaluation of Exposure Time and Visible Light Irradiation in LCD 3D Printing of Ibuprofen Extended Release Tablets. Eur. J. Pharm. Sci. 2021, 158, 105688. [Google Scholar] [CrossRef]
- Aldawsari, H.M.; Naveen, N.R.; Alhakamy, N.A.; Goudanavar, P.S.; Rao, G.K.; Budha, R.R.; Nair, A.B.; Badr-Eldin, S.M. Compression-Coated Pulsatile Chronomodulated Therapeutic System: QbD Assisted Optimization. Drug Deliv. 2022, 29, 2258–2268. [Google Scholar] [CrossRef]
- Cong, D.; Qi, W.; Liu, X.; Xu, X.; Dong, L.; Xue, W.; Li, K. Pharmacokinetic Study of Enteric-Coated Sustained-Release Aspirin Tablets in Healthy Chinese Participants. Drug Des. Devel Ther. 2023, 17, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- García, M.A.; Al-Gousous, J.; González, P.M.; Langguth, P. Model-Supported Dissolution Methods for Modified-Release Products: Enteric-Coated versus Extended-Release Ketoprofen Tablets. Int. J. Pharm. 2025, 675, 125524. [Google Scholar] [CrossRef] [PubMed]
- Saady, M.; Shoman, N.A.; Teaima, M.; Abdelmonem, R.; El-Nabarawi, M.A.; Elhabal, S.F. Fabrication of Gastro-Floating Sustained-Release Etoricoxib and Famotidine Tablets: Design, Optimization, in-Vitro, and in-Vivo Evaluation. Pharm. Dev. Technol. 2024, 29, 429–444. [Google Scholar] [CrossRef]
- Vieira, W.T.; Viegas, J.S.R.; da Silva, M.G.C.; de Oliveira Nascimento, L.; Vieira, M.G.A.; Sarmento, B. Self-Assembly Mucoadhesive Beads of κ-Carrageenan/Sericin for Indomethacin Oral Extended Release. Int. J. Biol. Macromol. 2024, 270, 132062. [Google Scholar] [CrossRef]
- Esim, O.; Savaser, A.; Ozkan, C.K.; Tas, C.; Ozkan, Y. Investigation of the Mucoadhesivity, Swelling, and Drug Release Mechanisms of Indomethacin Buccal Tablets: Effect of Formulation Variables. Drug Dev. Ind. Pharm. 2020, 46, 1979–1987. [Google Scholar] [CrossRef] [PubMed]
- Sanoufi, M.R.; Aljaberi, A.; Hamdan, I.; Al-Zoubi, N. The Use of Design of Experiments to Develop Hot Melt Extrudates for Extended Release of Diclofenac Sodium. Pharm. Dev. Technol. 2020, 25, 187–196. [Google Scholar] [CrossRef]
- Chen, L.; Hu, E.; Shen, P.; Qian, S.; Heng, W.; Zhang, J.; Gao, Y.; Wei, Y. Development of Amorphous Solid Dispersion Sustained-Release Formulations with Polymer Composite Matrix-Regulated Stable Release Plateaus. Pharm. Res. 2024, 41, 1233–1245. [Google Scholar] [CrossRef]
- Che, X.; Xue, J.; Zhang, J.; Yang, X.; Wang, L. One-Step Preparation of Ibuprofen Fast- and Sustained-Release Formulation by Electrospinning with Improved Efficacy and Reduced Side Effect. Pharm. Dev. Technol. 2020, 25, 659–665. [Google Scholar] [CrossRef]
- Friuli, V.; Pisani, S.; Conti, B.; Bruni, G.; Maggi, L. Tablet Formulations of Polymeric Electrospun Fibers for the Controlled Release of Drugs with PH-Dependent Solubility. Polymers 2022, 14, 2127. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.Y.; Xiang, Z.S.; Gopal, R.; Khan, S.A. Microfluidics-Enabled Particle Engineering of Monodisperse Solid Lipid Microparticles with Uniform Drug Loading and Diverse Solid-State Outcomes. Int. J. Pharm. 2021, 596, 120230. [Google Scholar] [CrossRef]
- Rashid, R.; Zaman, M.; Ahmad, M.; Khan, M.A.; Butt, M.H.; Salawi, A.; Almoshari, Y.; Alshamrani, M.; Sarfraz, R.M. Press-Coated Aceclofenac Tablets for Pulsatile Drug Delivery: Formulation and In Vitro Evaluations. Pharmaceuticals 2022, 15, 326. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Alshora, D.H. Development and Characterization of Eudragit-Rl-100-Based Aceclofenac Sustained-Release Matrix Pellets Prepared via Extrusion/Spheronization. Polymers 2021, 13, 4034. [Google Scholar] [CrossRef]
- Xu, M.; Liu, F.; Zhou, W.; He, B.; Tan, S. Preparation and Preliminary Quality Evaluation of Aspirin/L-Glutamate Compound Pellets. J. Mater. Sci. Mater. Med. 2021, 32, 116. [Google Scholar] [CrossRef]
- Alhajj, L.; Airemwen, C.O.; Pozharani, L.B. Formulation of Aspirin Nanoparticles Using Solvent Evaporation Method and in Vivo Evaluation of Its Antithrombotic Effect. Pak. J. Pharm. Sci. 2023, 36, 1583–1589. [Google Scholar] [CrossRef]
- Biji, C.A.; Balde, A.; Kim, S.K.; Nazeer, R.A. Optimization of Alginate/Carboxymethyl Chitosan Microbeads for the Sustained Release of Celecoxib and Attenuation of Intestinal Inflammation in Vitro. Int. J. Biol. Macromol. 2024, 282, 137022. [Google Scholar] [CrossRef]
- Mudhakir, D.; Sadaqa, E.; Permana, Z.; Mumtazah, J.E.; Zefrina, N.F.; Xeliem, J.N.; Hanum, L.F.; Kurniati, N.F. Dual-Functionalized Mesoporous Silica Nanoparticles for Celecoxib Delivery: Amine Grafting and Imidazolyl PEI Gatekeepers for Enhanced Loading and Controlled Release with Reduced Toxicity. Molecules 2024, 29, 3546. [Google Scholar] [CrossRef] [PubMed]
- Batool, R.; Mudassir, J.; Khan, M.A.; Zafar, S.; Rana, S.J.; Abbas, N.; Hussain, A.; Arshad, M.S.; Muhammad, S. Fabrication and Characterization of Celecoxib-Loaded Chitosan/Guar Gum-Based Hydrogel Beads. Pharmaceuticals 2023, 16, 554. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, M.; Chen, J.; Ju, X.; Zhang, F.; He, M.; Cheng, D.; Kong, S. Preparation and Evaluation of Celecoxib Lyophilized Orally Disintegrating Tablets with High Bioavailability. Eur. J. Pharm. Biopharm. 2025, 213, 114756. [Google Scholar] [CrossRef]
- Viscusi, G.; Gorrasi, G. Facile Preparation of Layered Double Hydroxide (LDH)-Alginate Beads as Sustainable System for the Triggered Release of Diclofenac: Effect of PH and Temperature on Release Rate. Int. J. Biol. Macromol. 2021, 184, 271–281. [Google Scholar] [CrossRef]
- Obeidat, W.M.; Lahlouh, I.K.; Gharaibeh, S.F. Investigations on Compaction Behavior of Kollidon®SR-Based Multi-Component Directly Compressed Tablets for Preparation of Controlled Release Diclofenac Sodium. AAPS PharmSciTech 2023, 24, 225. [Google Scholar] [CrossRef]
- Di, K.N.; Ha, P.T.M.; Nguyen, N.P.; Nguyen, N.Y.; Truong, T.C.; Nguyen, T.T.V.; Truong, Q.K.; Nguyen, M.Q.; Pham, D.T. Enhanced Anti-Inflammatory Effects of Diclofenac Delivered Orally via Polyvinylpyrrolidone K30/Silk Fibroin Nanoparticles in a Murine Model of Carrageenan-Induced Paw Edema. ChemMedChem 2025, 20, e202400760. [Google Scholar] [CrossRef]
- da Silva, C.N.S.; Di-Medeiros, M.C.B.; Lião, L.M.; Fernandes, K.F.; Batista, K.d.A. Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium. Materials 2021, 14, 2115. [Google Scholar] [CrossRef]
- Crișan, A.G.; Porfire, A.; Iurian, S.; Rus, L.M.; Lucăcel Ciceo, R.; Turza, A.; Tomuță, I. Development of a Bilayer Tablet by Fused Deposition Modeling as a Sustained-Release Drug Delivery System. Pharmaceuticals 2023, 16, 1321. [Google Scholar] [CrossRef]
- Bulut, E. Flurbiprofen-Loaded Interpenetrating Polymer Network Beads Based on Alginate, Polyvinyl Alcohol and Methylcellulose: Design, Characterization and in-Vitro Evaluation. J. Biomater. Sci. Polym. Ed. 2020, 31, 1671–1688. [Google Scholar] [CrossRef] [PubMed]
- Işıklan, N.; Erol, Ü.H. Design and Evaluation of Temperature-Responsive Chitosan/Hydroxypropyl Cellulose Blend Nanospheres for Sustainable Flurbiprofen Release. Int. J. Biol. Macromol. 2020, 159, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Erol, Ü.H.; Güncüm, E.; Işıklan, N. Development of Chitosan-Graphene Oxide Blend Nanoparticles for Controlled Flurbiprofen Delivery. Int. J. Biol. Macromol. 2023, 246, 125627. [Google Scholar] [CrossRef] [PubMed]
- Bulut, E. Development and Optimization of Fe3+-Crosslinked Sodium Alginate-Methylcellulose Semi-Interpenetrating Polymer Network Beads for Controlled Release of Ibuprofen. Int. J. Biol. Macromol. 2021, 168, 823–833. [Google Scholar] [CrossRef]
- Ćirić, A.; Medarević, Đ.; Čalija, B.; Dobričić, V.; Rmandić, M.; Barudžija, T.; Malenović, A.; Djekic, L. Effect of Ibuprofen Entrapment Procedure on Physicochemical and Controlled Drug Release Performances of Chitosan/Xanthan Gum Polyelectrolyte Complexes. Int. J. Biol. Macromol. 2021, 167, 547–558. [Google Scholar] [CrossRef]
- Thadasack, M.; Chaunier, L.; Rabesona, H.; Viau, L.; De-Carvalho, M.; Bouchaud, G.; Lourdin, D. Release Kinetics of [Lidocainium][Ibuprofenate] as Active Pharmaceutical Ingredient-Ionic Liquid from a Plasticized Zein Matrix in Simulated Digestion. Int. J. Pharm. 2022, 629, 122349. [Google Scholar] [CrossRef]
- Yan, H.; Chen, X.; Bao, C.; Yi, J.; Lei, M.; Ke, C.; Zhang, W.; Lin, Q. Synthesis and Assessment of CTAB and NPE Modified Organo-Montmorillonite for the Fabrication of Organo-Montmorillonite/Alginate Based Hydrophobic Pharmaceutical Controlled-Release Formulation. Colloids Surf. B Biointerfaces 2020, 191, 110983. [Google Scholar] [CrossRef]
- Li, Y.; Fan, R.; Xing, H.; Fei, Y.; Cheng, J.; Lu, L. Study on Swelling and Drug Releasing Behaviors of Ibuprofen-Loaded Bimetallic Alginate Aerogel Beads with PH-Responsive Performance. Colloids Surf. B Biointerfaces 2021, 205, 111895. [Google Scholar] [CrossRef]
- Akaki, S.; Hosokawa, M.; Maeda, S.; Kono, Y.; Maeda, H.; Ogawara, K.I. Efficient Loading into and Controlled Release of Lipophilic Compound from Liposomes by Using Cyclodextrin as Novel Trapping Agent. Biol. Pharm. Bull. 2024, 47, 1832–1835. [Google Scholar] [CrossRef]
- Patani, B.O.; Akin-Ajani, O.D.; Kumaran, A.; Odeku, O.A. Irvingia Gabonensis (O’Rorke) Bail Polymer Matrix System for Controlled Drug Delivery. Polim. Med. 2022, 52, 67–76. [Google Scholar] [CrossRef]
- Yousefi, V.; Tarhriz, V.; Eyvazi, S.; Dilmaghani, A. Synthesis and Application of Magnetic@layered Double Hydroxide as an Anti-Inflammatory Drugs Nanocarrier. J. Nanobiotechnol. 2020, 18, 155. [Google Scholar] [CrossRef]
- Samuel, B.A.; Mohammed, B.I.; Philip, A.K. Phase Transited Asymmetric Membrane Floating Nanoparticles: A Means for Better Management of Poorly Water-Soluble Drugs. DARU J. Pharm. Sci. 2021, 29, 241–253. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.; Yu, S.; Hong, S. PH-and Temperature-Responsive Radially Porous Silica Nanoparticles with High-Capacity Drug Loading for Controlled Drug Delivery. Nanotechnology 2020, 31, 335103. [Google Scholar] [CrossRef]
- Huang, C.; Yin, Z.; Yang, Y.; Mo, N.; Yang, H.; Wang, Y. Evaluation of Pharmacokinetics and Safety with Bioequivalence of Ibuprofen Sustained-Release Capsules of Two Formulations, in Chinese Healthy Volunteers: Bioequivalence Study. Drug Des. Devel Ther. 2023, 17, 1881–1888. [Google Scholar] [CrossRef]
- Zarinwall, A.; Maurer, V.; Pierick, J.; Oldhues, V.M.; Porsiel, J.C.; Finke, J.H.; Garnweitner, G. Amorphization and Modified Release of Ibuprofen by Post-Synthetic and Solvent-Free Loading into Tailored Silica Aerogels. Drug Deliv. 2022, 29, 2086–2099. [Google Scholar] [CrossRef]
- Varghese, S.; Chaudhary, J.P.; Thareja, P.; Ghoroi, C. Newly Developed Nano-Biocomposite Embedded Hydrogel to Enhance Drug Loading and Modulated Release of Anti-Inflammatory Drug. Pharm. Dev. Technol. 2023, 28, 299–308. [Google Scholar] [CrossRef]
- Albarahmieh, E.; Alkhalidi, B.A.; Al-Hiari, Y. Evaluation of Amorphous Dispersion of a Cellulose Ester-Colophony Mix for Ibuprofen Controlled Release Processed by HME and Spin Coating. Carbohydr. Polym. 2020, 241, 116265. [Google Scholar] [CrossRef]
- Akin-Ajani, O.D.; Hassan, T.M.; Odeku, O.A. Talinum triangulare (Jacq.) Willd. Mucilage and Pectin in the Formulation of Ibuprofen Microspheres. Polim. Med. 2022, 52, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Uddin, A.; Halder, S.; Deb, N.; Das, H.; Shuma, M.L.; Hasan, I.; Shill, M.C.; Haider, S.S. Impact of Methods of Preparation on Mechanical Properties, Dissolution Behavior, and Tableting Characteristics of Ibuprofen-Loaded Amorphous Solid Dispersions. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 2303942. [Google Scholar] [CrossRef]
- Gong, X.; Dang, G.; Guo, J.; Liu, Y.; Gong, Y. A Sodium Alginate/Feather Keratin Composite Fiber with Skin-Core Structure as the Carrier for Sustained Drug Release. Int. J. Biol. Macromol. 2020, 155, 386–392. [Google Scholar] [CrossRef]
- Karmakar, P.D.; Pal, S. Dextran Based Amphiphilic Self-Assembled Biopolymeric Macromolecule Synthesized via RAFT Polymerization as Indomethacin Carrier. Int. J. Biol. Macromol. 2021, 183, 718–726. [Google Scholar] [CrossRef]
- Al-hashimi, N.; Dahmash, E.Z.; Khoder, M.; Alany, R.; Elshaer, A. Engineering PH-Dependent Orally Disintegrating Tablets for Modified Indomethacin Release: A Polymer-Based Approach. AAPS PharmSciTech 2025, 26, 93. [Google Scholar] [CrossRef] [PubMed]
- Damiati, S.A.; Damiati, S. Microfluidic Synthesis of Indomethacin-Loaded PLGA Microparticles Optimized by Machine Learning. Front. Mol. Biosci. 2021, 8, 677547. [Google Scholar] [CrossRef]
- Pyteraf, J.; Jamróz, W.; Kurek, M.; Szafraniec-Szczęsny, J.; Kramarczyk, D.; Jurkiewicz, K.; Knapik-Kowalczuk, J.; Tarasiuk, J.; Wroński, S.; Paluch, M.; et al. How to Obtain the Maximum Properties Flexibility of 3D Printed Ketoprofen Tablets Using Only One Drug-Loaded Filament? Molecules 2021, 26, 3106. [Google Scholar] [CrossRef] [PubMed]
- Shamim, R.; Shafique, S.; Hussain, K.; Abbas, N.; Ijaz, S.; Bukhari, N.I. Surfactant-Assisted Wet Granulation-Based Matrix Tablets without Exceptional Additives: Prolonging Systemic Exposure of Model BCS Class II Ketoprofen. AAPS PharmSciTech 2024, 25, 241. [Google Scholar] [CrossRef]
- Vo, A.Q.; Kutz, G.; He, H.; Narala, S.; Bandari, S.; Repka, M.A. Continuous Manufacturing of Ketoprofen Delayed Release Pellets Using Melt Extrusion Technology: Application of QbD Design Space, Inline Near Infrared, and Inline Pellet Size Analysis. J. Pharm. Sci. 2020, 109, 3598–3607. [Google Scholar] [CrossRef]
- Naeem, S.; Barkat, K.; Shabbir, M.; Khalid, I.; Anjum, I.; Shamshad, N.; Mehmood, Y.; Khan, D.H.; Badshah, S.F.; Syed, M.A.; et al. Fabrication of PH Responsive Hydrogel Blends of Chondroitin Sulfate/Pluronic F-127 for the Controlled Release of Ketorolac: Its Characterization and Acute Oral Toxicity Study. Drug Dev. Ind. Pharm. 2022, 48, 611–622. [Google Scholar] [CrossRef]
- Tung, N.T.; Dong, T.H.Y.; Tran, C.S.; Nguyen, T.K.T.; Chi, S.C.; Dao, D.S.; Nguyen, D.H. Integration of Lornoxicam Nanocrystals into Hydroxypropyl Methylcellulose-Based Sustained Release Matrix to Form a Novel Biphasic Release System. Int. J. Biol. Macromol. 2022, 209, 441–451. [Google Scholar] [CrossRef]
- Vieira, W.T.; Nicolini, M.V.S.; da Silva, M.G.C.; Nascimento, L.d.O.; Vieira, M.G.A. κ-Carrageenan/Sericin Polymer Matrix Modified with Different Crosslinking Agents and Thermal Crosslinking: Improved Release Profile of Mefenamic Acid. Int. J. Biol. Macromol. 2024, 262, 129823. [Google Scholar] [CrossRef]
- Navarro-Ruíz, E.; Álvarez-Álvarez, C.; Peña, M.Á.; Torrado-Salmerón, C.; Dahma, Z.; de la Torre-Iglesias, P.M. Multiparticulate Systems of Meloxicam for Colonic Administration in Cancer or Autoimmune Diseases. Pharmaceutics 2022, 14, 1504. [Google Scholar] [CrossRef]
- Freitas, E.D.; Freitas, V.M.S.; Rosa, P.C.P.; da Silva, M.G.C.; Vieira, M.G.A. Development and Evaluation of Naproxen-Loaded Sericin/Alginate Beads for Delayed and Extended Drug Release Using Different Covalent Crosslinking Agents. Mater. Sci. Eng. C 2021, 118, 111412. [Google Scholar] [CrossRef] [PubMed]
- Hameed, H.A.; Khan, S.; Shahid, M.; Ullah, R.; Bari, A.; Ali, S.S.; Hussain, Z.; Sohail, M.; Khan, S.U.; Htar, T.T. Engineering of Naproxen Loaded Polymer Hybrid Enteric Microspheres for Modified Release Tablets: Development, Characterization, in Silico Modelling and in Vivo Evaluation. Drug Des. Devel. Ther. 2020, 14, 27–41. [Google Scholar] [CrossRef]
- Poortinga, A.T.; van Nostrum, C.F. Microbubble-Encapsulation of Actives for Controlled Release and Its Application to the Taste-Masking of Acetaminophen. Int. J. Pharm. 2025, 672, 125309. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.M.A.; Lee, D.H.; Na, Y.G.; Jin, M.; Jung, M.; Kim, H.E.; Yoo, H.; Won, J.H.; Lee, J.Y.; Baek, J.S.; et al. Enhancement of S(+)-Zaltoprofen Oral Bioavailability Using Nanostructured Lipid Carrier System. Arch. Pharm. Res. 2022, 45, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Otero, M.; Kazi, M.; Alqadami, A.A.; Wabaidur, S.M.; Siddiqui, M.R.; Alothman, Z.A.; Sumbul, S. Unary and Binary Adsorption Studies of Lead and Malachite Green onto a Nanomagnetic Copper Ferrite/Drumstick Pod Biomass Composite. J. Hazard. Mater. 2019, 365, 759–770. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Bahkali, A.H.; Khiyami, M.A.; Alfadul, S.M.; Wabaidur, S.M.; Alam, M.; Alfarhan, B.Z. Low Cost Biosorbents from Fungi for Heavy Metals Removal from Wastewater. Sep. Sci. Technol. 2020, 55, 1766–1775. [Google Scholar] [CrossRef]
- Anam, A.; Abbas, G.; Shah, S.; Saadullah, M.; Shahwar, D.; Mahmood, K.; Hanif, M.; Ahmad, N.; Basheer, E.; Obaidullah, A.J.; et al. Quantitative Analysis of Loxoprofen Sodium Loaded Microspheres Comprising Pectin and Its Thiolated Conjugates: In-Vivo Evaluation of Their Sustained Release Behavior. Heliyon 2024, 10, e36297. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
API | Dosage Form Type | Polymer(s)/Material(s) | Release Kinetics/Mechanism | Main Outcomes | Ref. |
---|---|---|---|---|---|
Aceclofenac | Press-coated IR core (pulsatile) | Core: aceclofenac + croscarmellose; Coat: HPMC K100M + HPMC E5 (12.5:87.5) | Pulsatile: lag = 5 h → burst (~99%/6 h) | Core disintegration 15 s; assay 99.9%; hardness 5.5 kp; optimized coat E6 stable ≥ 3 months (ICH); chrono-adapted to morning RA pain | [23] |
Aceclofenac | Matrix pellets (extrusion–spheronization) | Eudragit RL100; PVP K90 | pH-dependent sustained | ≤10% (pH 1.2, 2 h); prolonged at pH 6.8–7.4; ↓ gastric irritation vs. control | [24] |
Acetylsalicylic acid | Enteric-coated pellets (ES + fluidized-bed coat) | ASA/MCC/L-HPC/PVP; enteric: Eudragit L30D-55/TEC; L-Glu companion pellets | pH-triggered (intestinal) | ASA 1.8% (2 h, pH 1.0) → 88.8% (45 min, pH 6.8); L-Glu 98.9% (45 min, pH 7.2); sphericity 0.93–0.94; free SA 0.24%; GI protection confirmed (rat) | [25] |
Acetylsalicylic acid | Nanoparticles (solvent evaporation) | Sodium alginate; PVP; DCM | Diffusion + anomalous transport | Size 76–128 nm; PDI ≤ 0.46; ζ +36 to +48 mV; EE 36–44%; release 25–36%/2 h → 97%/24 h; antioxidant activity; significant in vivo antithrombotic effect (dose-dependent) | [26] |
Celecoxib | Mucoadhesive microspheres (ionotropic gelation) | Sodium alginate; CM-chitosan; CaCl2 | Higuchi (R2 = 0.996); KP (n = 0.45–0.65, anomalous); sustained 24 h | Size 153–230 μm; EE 59–84%; DL 9–14%; release = 87%/24 h (no burst); mucoadhesion 59%/8 h; amorphous drug | [27] |
Celecoxib | Functionalized MSNs | APTES-MSN + imidazolyl-PEI gatekeepers | pH-dependent (higher at pH 5.5) | Size ~216 nm; PDI ~0.35; ζ +20 mV; LC 13.5%, EE 13.2%; 2 h: 21% (pH 7.4) vs. 33% (pH 5.5); ↓ PEI cytotoxicity; strongest ↓NO in RAW 264.7 | [28] |
Celecoxib | Hydrogel beads (ionotropic gelation) | Chitosan; guar gum; crosslinked TPP ± glutaraldehyde | KP (n = 0.50–0.62, non-Fickian); sustained ≤24 h | Size 1.2–2.7 mm; EE 44–55%; SC: 74%/24 h (pH 7.5) & 24% (pH 1.2); DC: ≤24%/24 h; DC > SC mucoadhesion; Papp ↑; in vivo ↓ CRP/IL-6 | [29] |
Celecoxib | Nano-lyophilized orally disintegrating tablets (ODTs) | PVP K30 (11.3%); SDS (2.6%); mannitol (36.6%) | Rapid dissolution (>90% in 3 min) | Tablet disintegration ≤ 5 s; nanosized CXB (~ 351 nm); solubility ↑ at all pH; relative BA: 155% (rat), 292% (dog) vs. Celebrex®; Tmax ↓ 25–33% | [30] |
Diclofenac sodium | Alginate–LDH microbeads | Sodium alginate; Mg–Al LDH (intercalated DCF); CaCl2 | Baker–Lonsdale; pH/temperature-responsive SR | Size ~0.9 mm; release 29%/24 h (pH 2.5) → 64% (pH 12); 41%/24 h (25 °C) → 64% (45 °C); plateau ~96 h; Ea 43.5 kJ/mol | [31] |
Diclofenac sodium | IPN hydrogel microspheres | Pectin; taro polysaccharide; CaCl2 | Higuchi (R2 = 0.99); KP (n = 0.48–0.61); SR (T90% ≥ 11 h) | Size 100–130 μm; EE ≤ 91.8%; 60–80%/12 h; no burst | [9] |
Diclofenac sodium | Matrix tablets (direct compression) | Kollidon® SR; MCC; PVA100; lactose | KP (n = 0.45–0.60, non-Fickian); SR ≤ 24 h | 100 mg/tablet; Ø13 mm; quaternary KSR–PVA100–MCC matched reference SR (f2 > 50); strong/low-porosity; once-daily feasible | [32] |
Diclofenac sodium | HME matrix | Ethylcellulose; Natrosol L; PEG 8000 | Controlled, tunable by polymer/API | Up to 92%/16 h; profile matches reference; tunable via ratios | [18] |
Diclofenac sodium | Silk fibroin nanoparticles (PVP K30 functionalized) | Silk fibroin; PVP K30 | <20% (pH 1.2, 2 h); biphasic at pH 6.8 | Size 400–800 nm; ζ −17 to −19 mV; EE ~40% (solvent exchange); PVP 23–50%; in vivo anti-inflammatory + 20–30%; faster onset (1 h) | [33] |
Diclofenac sodium | Modified polysaccharide nanoparticles | Cashew-gum polysaccharide (CGP)-g-PPG | KP (R2 = 0.998; n = 0.84); SR ≤ 68 h | Size 275–321 nm; PDI 0.34; ζ ~−6 mV; EE 95.6%; 41%/50 h → plateau 68 h; no burst | [34] |
Diclofenac sodium | Bilayer IR/SR tablet (HME + FDM 3DP) | IR: PVA (50% DCF, honeycomb); SR: PVA ± Kollidon® SR (14–24%) | KP (n ≤ 0.45, Fickian); biphasic | IR 62–68%/30 min; SR ≤ 90%/24 h (Kollidon 19–24%); customizable; Ph. Eur. mass uniformity | [35] |
Etoricoxib (+ famotidine) | Floating monolayer (gas-generating) | Konjac/guar/xanthan; HPMC K15M; NaHCO3 | KP (n = 0.698); gastric retention ≥ 8 h | Swelling 227–357%/8 h; ET 22%/1 h, 77%/8 h; FM 25%/1 h, 94%/8 h; friability <1 %; AUC0–72 ↑ = 2× vs. IR | [15] |
Flurbiprofen | IPN beads (ionic + GA) | Sodium alginate; PVA; methylcellulose; GA | Higuchi (R2 0.95–0.99); KP (n = 0.50–0.67) | Size 713–1737 μm; EE 12.7–18.0%; ≤10%/2 h (pH 1.2); up to ~100%/6 h (pH 7.4); more crosslinking → slower | [36] |
Flurbiprofen | Temperature-responsive nanospheres | Chitosan; HPC; GA; Span 80 | KP (n = 0.71–1.15); LCST = 42 °C | Size 894–1140 nm; ζ +23–70 mV; EE 22–43%; 24 h: 37–99% (formulation-dependent); 30 °C: 83–88% vs. 44 °C: 52–60% | [37] |
Flurbiprofen | Polymeric NPs + graphene oxide | Chitosan; graphene oxide; GA; Span 80 | Biphasic: burst (46–80%/7 h) → SR (53–74%/24 h); KP (n = 0.64–1.26) | Size 362–718 nm; ζ −7.7 to −27.9 mV; EE 19–38%; ↑ GA → slower; ↑ Span 80 → faster; thermo-responsive | [38] |
Ibuprofen | Solid-lipid microparticles (microfluidic) | Beeswax; Suppocire NAI 25A | Higuchi (R2 > 0.99); KP (n = 0.44–0.53) | Size ~1 mm; PDI ~0.1; EE ≤ 101%; 50–65%/72 h; SR ≤ 10 days; eutectic in SPC | [22] |
Ibuprofen | Semi-IPN beads (Fe3+ crosslinked) | Sodium alginate; methylcellulose; FeCl3 | Higuchi; KP (n = 0.36–1.09) | Size 1.2–2.0 mm; EE ≤ 93%; ≤15%/2 h (pH 1.2); 80–94%/6 h (pH 7.4); composition/crosslink-time controlled | [39] |
Ibuprofen | Polyelectrolyte complexes | Chitosan; xanthan gum | Zero-order achievable; KP (n = 0.45–0.89) | Yield 48–64%; EE ≤ 62%; ≤10%/2 h (pH 1.2); 60–70%/12 h (pH 7.2) | [40] |
Ibuprofen | IPN beads | CM-konjac glucomannan; Na-CMC; AlCl3 | Zero-order (R2 0.97–0.99); KP (n = 0.86–0.99) | Size 324–580 μm; yield 85–95%; EE 75–95%; ≤10%/2 h (pH 1.2); ≥ 80%/24 h (pH 7.4) | [10] |
Ibuprofen (+ [Lid][Ibu]) | Thermoplastic zein matrix | Zein; [Lid][Ibu] API-IL ± glycerol | KP (0.5 < n < 1); swelling/diffusion-controlled; pH-selective | Swelling 3–4×; Eʹ drop 12→2 MPa; [Lid]+: 35%/2 h (SGF), 60–70%/4 h; [Ibu]−: ~5%/2 h (SGF), 50–70%/2 h (SIF) | [41] |
Ibuprofen + rabeprazole | Core–shell (enteric core + IR shell) | IBU core: Eudragit L30D-55; RAB shell | Sequential: IR RAB + delayed pH-triggered IBU | RAB 99.5%/1 h (pH 1.2); IBU 3.4%/2 h (pH 1.2) → 88%/45 min (pH 6.8); dogs: IBU AUC ↑~ 1.7–1.9×; stable ≥ 24 mo | [5] |
Ibuprofen | OMMT-reinforced alginate beads | Alginate; Ca2+; OMMT (CTAB/NPE) | Sustained; KP (n = 0.77–0.83) | LC ≤ 5.9%; EE 94.4%; adsorption 28.2 mg/g; ~70–85%/72 h; reduced burst vs. alginate | [42] |
Ibuprofen | Alginate aerogel beads (Ca2+/Ba2+) | Sodium alginate; Ca2+/Ba2+ | pH-responsive; 1st-order; KP (n = 0.59–0.96) | EE ≤ 95%; porosity 58–79%; <20%/48 h (pH 1.2); 96.9%/1 h (pH 7.2); Ba2+ stabilizes in acid | [43] |
Ibuprofen | 3D-printed tablets (LCD, visible light) | PEGDA; PEG 400; water; riboflavin | Sustained; KP (n < 0.45, diffusion) | Amorphous IBU; 100%/6–7 h (450 nm) vs. 40–85% (405 nm); drug load 5–6% (22% with high-water resin) | [11] |
Ibuprofen | Liposomes (CD-assisted remote loading) | DSPC:Chol:PEG-DSPE; intraliposomal SBE-β-CD | Diffusion-controlled; burst suppression by CD | Size 82–146 nm; PDI < 0.25; EE: 7% (hydration) → 27% (pH-gradient) → 80% (CD 200 mM); burst 62%/4 h without CD | [44] |
Ibuprofen | Direct-compressed matrix | Irvingia gabonensis (vs. HPMC/xanthan) | Super case-II (n > 1.0); SR | t25 1.05–3.6 h (IG) faster than HPMC/xanthan; CSFR 2.6–24; natural, low-cost CR polymer | [45] |
Ibuprofen; Diclofenac sodium | Core–shell magnetic LDH NPs | Fe3O4 core; Mg/Al-LDH shell | Sustained ≤ 72 h; surface diffusion + anion exchange | IBU 90%/24 h, 96%/72 h; DCF 78%/24 h, 82%/72 h; basal spacing 2.62 nm (IBU), 2.22 nm (DCF) | [46] |
Ibuprofen | Floating asymmetric-membrane NPs | Ethylcellulose; HPMC E15LV; glycerol; Tween 20 | Gastro-retentive; Higuchi (R2 = 0.99); Fickian (n = 0.05) | Size 114–167 nm; loading 97.4%; buoyancy > 12 h (no lag); solubility ~2× vs. raw; anti-inflammatory 85% vs. 78% | [47] |
Ibuprofen | Radially porous silica NPs (agarose-coated) | Mesoporous silica + APTES; agarose coating | pH-dependent; temp-responsive; SR ≤ 300 h | Loading 270 wt% (2.7 g/g); ~40%/50 h (pH 2) vs. ~80%/50 h (pH 12); non-toxic to fibroblasts | [48] |
Ibuprofen | Prolonged-release capsules | —(commercial SR excipients) | Sustained; plateau PK | Fasting: Cmax 14.9 μg/mL @ 5 h, AUC0–t 105; Fed: Cmax 21.3 μg/mL @ 5.6 h, AUC0–t 113; bioequivalent (90% CI in 80–125%); safe | [49] |
Ibuprofen | Silica aerogel (surface-modified) | SA; SA@APTES (hydrophilic) or SA@TMCS (hydrophobic) | Controlled; surface-chemistry modulated | Amorphization 85–100%; stability ≥ 6 m; SA/APTES: 80% in 1–10 min; TMCS: 80% in 3–24 h | [50] |
Ibuprofen | Alginate hydrogel + Fe-cellulose nanobiocomposite | Alginate; Fe-CNB ± β-CD | pH-dependent via charge reversal | DLE: CA 23%, β-CD 46%, Fe-CNB 41%, Fe-CNB+β-CD 47%; 20% (pH 1.2, 2 h) vs. 49% (pH 7.4, 12 h) | [51] |
Ibuprofen | HME amorphous solid dispersion | RSPO + PVP VA64 (35–50%); comps. with EC/Soluplus | Fickian diffusion (n = 0.10–0.26); dissolution plateau | ~43%/1 h; 70%/12 h; 88%/24 h stable across 35–50% VA64; plateau reduces batch variability | [19] |
Ibuprofen | Thin films (spin-coating vs. HME) | Cellaburate/rosin (65:35) + 30% IBU | First-order; KP 0.5–1.2; Weibull (b > 1) | Amorphous; spin: >90%/1 h (burst); HME: ~100%/=5 h; film thickness 82 μm (spin) vs. 1.6 mm (HME); stability ≥ 3 m (spin) | [52] |
Ibuprofen | Ionotropically gelled microspheres | Na-alginate + plant mucilage/pectin; ZnCl2 | Ratio-dependent | SR at polymer ratio 1:1; IR at 1:2; EE ≤ 60.4%; no drug–polymer interaction | [53] |
Ibuprofen | Dual-nozzle electrospun nanofibers | PVP (fast) + HPMC (slow) | Biphasic: ~40% @ 5 min + SR ≤ 12 h | Fiber 316 ± 29 nm; amorphous; stable 1 m @ 40 °C; in vivo ulcers: 1.8 ± 0.5 vs. 8.8 ± 1.5 (p < 0.01) | [20] |
Ibuprofen | Matrix tablets with ASD-IBP | ASD (IBP + Kolliphor P407); matrix: Kollidon SR/Eudragit RSPO | Modified SR ~12 h; Weibull best; KP n = 0.52–0.74 | Solubility ↑ 28–35×; 69–88%/12 h; MDT 3.6–5.6 h; hardness 3.5–6.2 kg/cm2; friability < 0.5% | [54] |
Indomethacin | Core–shell composite fibers (wet-spun) | Sodium alginate; feather keratin | Sustained | ≤80%/12 h (intestinal media); keratin fraction modulates release | [55] |
Indomethacin | RAFT nanomicelles | Dextran-g-PMABTE | pH-dependent; prolonged | 88%/48 h; faster at pH 7.4; LC 24.1%; EE 96% | [56] |
Indomethacin | Self-assembled microspheres | κ-Carrageenan; sericin (ionotropic) | pH-responsive; mucoadhesive | ~90%/24 h (formulation-dependent); high loading ≤ 54%; strong mucoadhesion; biocompatible | [16] |
Indomethacin | Buccal matrix tablets | Chitosan (10–20%); Carbopol (5–15%); HPMC; fillers | Diffusion + swelling; KP n = 0.65–1.31 | Hardness ↑ with PAA (~100 N); swelling up to 7.67 (10% PAA)/8 h; mucoadhesion ≤ 0.79 N; 27–39%/12 h (10% PAA) | [17] |
Indomethacin | Pellets → ODT matrix | Eudragit L100 pellets in ODT | pH-dependent | Inhibited at pH 1.2; intense at pH 6.8; pellets intact after compression; ODT disintegration < 30 s | [57] |
Indomethacin | PLGA microparticles (microfluidic + ANN optimization) | PLGA | Biphasic; sustained (80%/9 d) | Size-tunable monodisperse MPs; EE ~62%, DL ~7.8%; ANN accurately predicted size; reproducible long-term release | [58] |
Ketoprofen | Enteric-coated (100 mg) & XR (200 mg) | EC: PVAP or MMA; XR: HPMC/HEC/MCC ± DCP | EC: pH-triggered; XR: dissolution-controlled, buffer-dependent | EC acid resistance; MDT 24–46 min (buffer-dependent); XR: ~60%/3 h, 90%/6 h (USP); slower in citrate/succinate; DCP raises microclimate pH & solubility 1.5–2.3×; XR BA ~92% | [14] |
Ketoprofen | 3D-printed multilayer tablets (FDM) | PVA filament with KTP (HME); ± Kollicoat IR layer | Profile-switchable depending on infill/layer | Filament amorphous; mechanical strength 466–2141 N/mm2; T3: 84%/3 h; T11: 62%/3 h; 20% infill → 2.3–3.3× faster; with Kollicoat IR: 70–80%/2 h | [59] |
Ketoprofen | Matrix tablets (surfactant-assisted WG) | Soluplus (3%) | KP n = 0.45–0.56; SR ≥ 24 h | 2.29-fold ↑ bioavailability vs. control; once-daily feasible | [60] |
Ketoprofen | Hot-extruded pellets | Eudragit L100; Eudragit L100-55; Stearic acid | pH-dependent | <5% in SGF (120 min); >85–95% in SIF (30–45 min); stable pellets | [61] |
Ketorolac | pH-responsive hydrogel | Chondroitin sulfate; Pluronic F-127; acrylic acid; APS; MBA | Zero-order; pH-dependent | Minimal release in acid; gradual up to 36 h at pH 7.4; high swelling/porosity; crosslinked network | [62] |
Ketorolac | Compression-coated pulsatile tablet | PEO WSR; Eudragit RLPO | Pulsatile (lag = 9 h → release) | 95% released within 17.4 h; ↑ bioavailability vs. solution; controlled lag | [12] |
Lornoxicam | Biphasic compression-coated tablet | IR: PVP K30 nanocrystals; SR: HPMC matrix | IR + zero-order SR | Nanocrystal size 279 nm; solubility ↑ 3×; IR: disintegration 30 s, 58%/5 min; SR: zero-order (20%/2 h, 80%/8 h, f2 = 86); dog PK: Cmax 5.1 vs. 3.7 µg/mL, relative BA 109% | [63] |
Mefenamic acid | Multiparticulate gel beads | κ-Carrageenan; sericin; PA/DSP/CMC | Prolonged ≤ 48 h (with CMC) | <10%/2 h (pH 1.2); prolonged release at pH 7.4; polymer compatibility confirmed; stable structure | [64] |
Meloxicam | Multimolecular granules (multi-stage WG) | Lactose; Eudragit NM/FS; Metolose | Delayed (pH ≥ 6.8); no initial burst | Release ≤ 98.5%/8 h; acid protection; stable granules | [65] |
Meloxicam | Electrospun nanofibers → SR tablets | HPMC-AS; HPMC K100LV | Tunable; acid-resistant after coating | Fiber size ~0.39 μm; solubility ↑ across pH 1–7.2; coated tablets prevented release at pH 1.0 (2 h) and 4.5 (4 h); gradual at pH 7.2; ↓ gastric irritation risk | [21] |
Naproxen | Microspheres (CaCl2 gelation) | Sericin; alginate; ± PVA/PEG/DSP | Delayed (acid) + SR (≤6 h intestinal) | EE 84–89%; DL 18–30%; <10%/2 h (pH 1.2); ~98%/5–6 h (pH 7.4); reduced crystallinity; thermal stability | [66] |
Naproxen | Hybrid polymeric microspheres → tablets | Eudragit L100; HPMC; SLS | pH-selective sustained | Particle size 29–74 μm; EE 73–92%; ≤5%/2 h (pH 1.2); >85%/6 h (pH 6.8); in vivo: Cmax 44 µg/mL, Tmax 4.3 h, BA ↑ 5.5-fold | [67] |
Paracetamol | 3D-printed tablets (FDM) | PCL or PEO-based filaments (HME) | Polymer-dependent profile | PCL: ≤50%/8 h; PEO 100K/200K: ~100%/4 h; tunable by polymer type | [8] |
Paracetamol | 3D screen-printed IR/ER tablets | IR: PVP/PEG400; ER: Eudragit RL; silica mod. | Programmable IR/ER | IR ≥ 80%/15 min; ER ≥ 80%/95 min; size/weight within Ph. Eur.; reproducible | [7] |
Paracetamol | Gas microvesicle encapsulation | Hydrophobic silica particles | Bile-triggered release | <0.2 μg/mL at pH 7; complete release with bile (pH 4–7); stable in saliva/gastric fluids; good palatability | [68] |
Paracetamol | Direct-compressed mesoporous silica tablets | KCC-1 and KCC-1-NH2 | Surface-modulated sustained | Surface area: 356 vs. 248 m2/g; slower release with NH2 modification; near-complete within 240 min; diffusion-controlled | [6] |
Zaltoprofen | Nanostructured lipid carriers (hot-melt homogenization) | GMS (solid lipid); Capryol 90 (liquid lipid); Myrj 52 (surfactant) | Sustained; biphasic | Particle size 105.5 nm; EE 99.8%; ~40%/2 h, ~75%/24 h; Papp ↑ 1.6-fold; oral BA ↑ 4.3-fold (431%) | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drapińska, P.; Skulmowska-Polok, K.; Chałupka, J.; Sikora, A. Sustained-Release Oral Delivery of NSAIDs and Acetaminophen: Advances and Recent Formulation Strategies—A Systematic Review. Pharmaceutics 2025, 17, 1264. https://doi.org/10.3390/pharmaceutics17101264
Drapińska P, Skulmowska-Polok K, Chałupka J, Sikora A. Sustained-Release Oral Delivery of NSAIDs and Acetaminophen: Advances and Recent Formulation Strategies—A Systematic Review. Pharmaceutics. 2025; 17(10):1264. https://doi.org/10.3390/pharmaceutics17101264
Chicago/Turabian StyleDrapińska, Paulina, Katarzyna Skulmowska-Polok, Joanna Chałupka, and Adam Sikora. 2025. "Sustained-Release Oral Delivery of NSAIDs and Acetaminophen: Advances and Recent Formulation Strategies—A Systematic Review" Pharmaceutics 17, no. 10: 1264. https://doi.org/10.3390/pharmaceutics17101264
APA StyleDrapińska, P., Skulmowska-Polok, K., Chałupka, J., & Sikora, A. (2025). Sustained-Release Oral Delivery of NSAIDs and Acetaminophen: Advances and Recent Formulation Strategies—A Systematic Review. Pharmaceutics, 17(10), 1264. https://doi.org/10.3390/pharmaceutics17101264