Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (276)

Search Parameters:
Keywords = membrane and electrode assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1817 KiB  
Article
Modified Polyethylene Oxide Solid-State Electrolytes with Poly(vinylidene fluoride-hexafluoropropylene)
by Jinwei Yan, Wen Huang, Tangqi Hu, Hai Huang, Chengwei Zhu, Zhijie Chen, Xiaohong Fan, Qihui Wu and Yi Li
Molecules 2025, 30(11), 2422; https://doi.org/10.3390/molecules30112422 - 31 May 2025
Viewed by 246
Abstract
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of [...] Read more.
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of polyethylene oxide (PEO)-based polymer via blending with poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)). The experimental results showed that the addition of P(VDF-HFP) disrupted the crystalline regions of PEO by increasing the amorphous domains, thus improving lithium-ion migration capability. The electrolyte membrane with 30 wt% P(VDF-HFP) and 70 wt% PEO exhibited the highest ionic conductivity, widest electrochemical window, and enhanced thermal stability, as well as a high lithium-ion transference number (0.45). The cells assembled with this membrane electrolyte demonstrated an excellent rate of performance and cycling stability, retaining specific capacities of 122.39 mAh g−1 after 200 cycles at 0.5C, and 112.77 mAh g−1 after 200 cycles at 1C and 25 °C. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries. Full article
Show Figures

Figure 1

18 pages, 4435 KiB  
Article
Developing a New Type of Annular Flow Field Based on Murray’s Law in Proton Exchange Membrane Water Electrolyzers
by Rui Mu, Xiaoyu Cao, Yi Zhang, Yong He and Zhihua Wang
Processes 2025, 13(5), 1553; https://doi.org/10.3390/pr13051553 - 17 May 2025
Viewed by 287
Abstract
The proton exchange membrane water electrolysis (PEMWE) technology is a highly promising method for hydrogen production. The flow field structure is a key factor affecting the electrolyzer’s performance and overall cost. The commonly used flow field designs are typically parallel flow fields or [...] Read more.
The proton exchange membrane water electrolysis (PEMWE) technology is a highly promising method for hydrogen production. The flow field structure is a key factor affecting the electrolyzer’s performance and overall cost. The commonly used flow field designs are typically parallel flow fields or serpentine flow fields. However, parallel flow fields often suffer from an uneven distribution of reactants, which can negatively impact electrolyzer performance. Serpentine flow fields, on the other hand, exhibit higher pressure drops, leading to increased energy consumption. Furthermore, research on circular planar flow field designs in PEMWE has been limited. Therefore, this study proposes a novel annular flow field design based on a circular plane using Murray’s branching law, with comparative analysis against parallel and serpentine flow fields. This design aims to address the aforementioned issues. A three-dimensional numerical model coupling multiple physical fields was developed with the aim of verifying the effectiveness of the annular flow field design in terms of pressure drop, velocity distribution, temperature distribution, hydrogen distribution, and polarization curves. To confirm the model’s reliability, bipolar plates with the novel annular flow field were fabricated and assembled into a single cell for validation. The results show that the novel annular flow field exhibits optimal electrolytic performance and can significantly improve the uniformity of flow and temperature distribution in PEMWE. At a voltage of 2.6 V, the current density increased by 29.99% and 13.84% compared to the parallel and serpentine flow fields, respectively. The velocity distribution was the most uniform, and the average temperature of the Membrane Electrode Assembly (MEA) decreased by approximately 6.08 K and 6.84 K compared to the parallel and serpentine flow fields, respectively. Notably, the pressure drop of the annular flow field was significantly reduced, with reductions of 53.63% and 46.09% compared to the parallel and serpentine flow fields, respectively. This study provides an effective solution for the design of circular plane flow fields in PEMWE. Full article
(This article belongs to the Special Issue Technological Processes for Chemical and Related Industries)
Show Figures

Figure 1

19 pages, 4907 KiB  
Article
Synergistic Framework for Fuel Cell Mass Transport Optimization: Coupling Reduced-Order Models with Machine Learning Surrogates
by Shixin Li, Qingshan Liu and Yisong Chen
Energies 2025, 18(10), 2414; https://doi.org/10.3390/en18102414 - 8 May 2025
Viewed by 290
Abstract
Facing the complex coupled process of thermal mass transfer and electrochemical reaction inside fuel cells, the development of a one-dimensional model is an efficient solution to study the influence of mass transfer property parameters on the transfer and reaction process, which can effectively [...] Read more.
Facing the complex coupled process of thermal mass transfer and electrochemical reaction inside fuel cells, the development of a one-dimensional model is an efficient solution to study the influence of mass transfer property parameters on the transfer and reaction process, which can effectively balance the computational efficiency and accuracy. Firstly, a one-dimensional two-phase non-isothermal parametric model is established to capture the performance and state of fuel cell quickly. Then, a sensitivity analysis is performed on various mass transfer parameters of the membrane electrode assembly. Subsequently, a neural network surrogate model and genetic algorithm are combined to optimize the mass transfer property parameters globally. The impact of these parameters on the thermal and mass transfer within the fuel cell is analyzed. The results show that the maximum error between the calculation results of the developed numerical model and the experimental results is 3.87%, and the maximum error between the predicted values of the trained surrogate model and the true values is 0.15%. The mass transfer characteristics of the gas diffusion layer have the most significant impact on the performance of the fuel cell. After optimizing the mass transfer characteristic parameters, the net power density of the fuel cell increased by 5.51%. The combination of the one-dimensional model, the surrogate model, and the genetic algorithm can effectively improve the optimization efficiency. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

13 pages, 5005 KiB  
Article
Formicarium-Inspired Hierarchical Conductive Architecture for CoSe2@MoSe2 Catalysts Towards Advanced Anion Exchange Membrane Electrolyzers
by Zhongmin Wan, Zhongkai Huang, Changjie Ou, Lihua Wang, Xiangzhong Kong, Zizhang Zhan, Tian Tian, Haolin Tang, Shu Xie and Yongguang Luo
Molecules 2025, 30(10), 2087; https://doi.org/10.3390/molecules30102087 - 8 May 2025
Viewed by 273
Abstract
The exploration of high-performance, low-cost, and dual-function electrodes is crucial for anion exchange membrane water electrolysis (AEMWE) to meet the relentless demand for green H2 production. In this study, a heteroatom-doped carbon-cage-supported CoSe2@MoSe2@NC catalyst with a formicarium structure [...] Read more.
The exploration of high-performance, low-cost, and dual-function electrodes is crucial for anion exchange membrane water electrolysis (AEMWE) to meet the relentless demand for green H2 production. In this study, a heteroatom-doped carbon-cage-supported CoSe2@MoSe2@NC catalyst with a formicarium structure has been fabricated using a scalable one-step selenization strategy. The component-refined bifunctional catalyst exhibited minimal overpotential values of 116 mV and 283 mV at 10 mA cm−2 in 1 M KOH for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Specifically, rationally designed heterostructures and flexible carbonaceous sponges facilitate interfacial reaction equalization, modulate local electronic distributions, and establish efficient electron transport pathways, thereby enhancing catalytic activity and durability. Furthermore, the assembled AEMWE based on the CoSe2@MoSe2@NC bifunctional catalysts can achieve a current density of 106 mA cm−2 at 1.9 V and maintain a favorable durability after running for 100 h (a retention of 95%). This work highlights a new insight into the development of advanced bifunctional catalysts with enhanced activity and durability for AEMWE. Full article
(This article belongs to the Special Issue Water Electrolysis)
Show Figures

Graphical abstract

15 pages, 3378 KiB  
Article
Dendritic Gold Nanoparticles Loaded on 3D Graphene-like Surface and Layer-by-Layer Assembly for Enhanced Glucose Biosensing
by Zifeng Zhu, Yiming Zhao, Yongming Ruan, Xuexiang Weng and Gesmi Milcovich
Biosensors 2025, 15(4), 246; https://doi.org/10.3390/bios15040246 - 12 Apr 2025
Viewed by 390
Abstract
Background/Objectives: In this study, AuDNs/EPLE composite electrodes with hierarchical dendritic nanogold structures were fabricated using the in situ electrodeposition of gold nanoparticles through the i-t method. Methods: A conductive polymer composite membrane, PEDOT, was synthesized via the electropolymerization of EDOT and [...] Read more.
Background/Objectives: In this study, AuDNs/EPLE composite electrodes with hierarchical dendritic nanogold structures were fabricated using the in situ electrodeposition of gold nanoparticles through the i-t method. Methods: A conductive polymer composite membrane, PEDOT, was synthesized via the electropolymerization of EDOT and the negatively charged PSS. The negatively charged SO3 groups on the surface of the PEDOT membrane were electrostatically adsorbed with the glucose oxidase (GOD) enzyme and a positively charged chitosan co-solution (GOD/chit+). Using a layer-by-layer self-assembly approach, GOD was incorporated into the multilayers of the composite electrode to create the composite GOD/chit+/PEDOT/AuDNs/EPLE. Results: Electrochemical analysis revealed a GOD surface coverage of 8.5 × 10−10 mol cm−2 and an electron transfer rate of 1.394 ± 0.02 s−1. The composite electrode exhibited a linear response to glucose in the concentration range of 6.923 × 10−2 mM to 1.54 mM, with an apparent Michaelis constant of 0.352 ± 0.02 mM. Furthermore, the GOD/chit+/PEDOT/AuDNs/EPLE also showed good accuracy of glucose determination in human serum samples. Conclusions: These findings highlight the potential of the GOD/chit+/PEDOT/AuDNs/EPLE composite electrode in the development of efficient enzymatic biofuel cells for glucose sensing and energy harvesting applications. Full article
(This article belongs to the Special Issue Nanosensors for Bioanalysis)
Show Figures

Figure 1

15 pages, 4546 KiB  
Article
Optimizing Methanol Flow Rate for Enhanced Semi-Passive Mini-Direct Methanol Fuel Cell Performance
by Laura Faria and Vicenta María Barragán
Fuels 2025, 6(2), 21; https://doi.org/10.3390/fuels6020021 - 24 Mar 2025
Viewed by 399
Abstract
Direct methanol fuel cells (DMFCs) typically operate in passive mode, where methanol is distributed across the membrane electrode assembly through natural diffusion. Usual methanol concentrations range from 1% to 5% by weight (wt.%), although this can vary depending on the specific configuration and [...] Read more.
Direct methanol fuel cells (DMFCs) typically operate in passive mode, where methanol is distributed across the membrane electrode assembly through natural diffusion. Usual methanol concentrations range from 1% to 5% by weight (wt.%), although this can vary depending on the specific configuration and application. In this work, the effect of an additional pumping system to supply the methanol has been analyzed by varying the methanol flow rate within the pump’s range. To this end, a parametric experimental study was carried out to study the influence of temperature (25–40 °C), concentration (0.15–6 wt.% methanol in water), and the flow rate of methanol (1.12–8.65 g/s) on the performance of a single mini-direct methanol fuel cell (DMFC) operating in semi-passive mode with a passive cathode and an active anode. Open circuit voltage, maximum power density, and cell efficiency were analyzed. To this purpose, open circuit voltage and current–voltage curves were measured in different experimental conditions. Results indicate that temperature is the most decisive parameter to increase DMFC performance. For all methanol concentrations and flow rates, performance improves with higher operating temperatures. However, the impact of the concentration and flow rate depends on the other parameters. The operating optimal concentration was 1% wt. At this concentration, a maximum power of 14.2 mW was achieved at 40 °C with a methanol flow of 7.6 g/s. Under these same conditions, the cell also reached its maximum efficiency of 23%. The results show that switching from passive to semi-passive mode generally increases open-circuit voltage and maximum power, thus improving fuel cell performance, likely due to the enhanced uniform distribution of the reactant in semi-passive mode. However, further increases in flow rate led to a decrease in performance, probably due to the methanol crossover effect. An optimal methanol flow rate is observed, depending on methanol flow temperature and concentration. Full article
Show Figures

Figure 1

17 pages, 28408 KiB  
Article
Immobilization of Enzymes on Electrodes and Electrode Design in Biofuel Cells
by Chang Yen Chen, Adama A. Bojang, Damayanti Damayanti and Ho Shing Wu
Catalysts 2025, 15(3), 253; https://doi.org/10.3390/catal15030253 - 6 Mar 2025
Viewed by 905
Abstract
In an enzyme-based fuel cell system, glucose oxidase and laccase were immobilized on carbon paper as the anode and cathode electrodes. A conductive polymer (polypyrrole) was added to improve conductivity. The mediator and enzymes were mixed in a phosphate-buffer solution for entrapment. A [...] Read more.
In an enzyme-based fuel cell system, glucose oxidase and laccase were immobilized on carbon paper as the anode and cathode electrodes. A conductive polymer (polypyrrole) was added to improve conductivity. The mediator and enzymes were mixed in a phosphate-buffer solution for entrapment. A Nafion 212 membrane separated the two half-cells. Power density measurements were taken at a glucose concentration of 10 mM across different operating voltages. Potassium hexacyanoferrate III was used as a redox mediator in the anode and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) in the cathode to boost power output. The biofuel cells, constructed from acrylic (40 × 50 × 50 mm) with a working volume of 20 × 30 × 40 mm, were assembled using a rubber gasket to secure the Nafion membrane. The use of micropore tape covering the electrodes extended the system’s operational lifespan. Without the micropore tape, the maximum power density was 57.6 μW/cm2 at 0.24 V. With the micropore tape, the cell achieved a maximum power density of 324.9 μW/cm2 at 0.57 V, sustaining performance for 20 days. Thus, micropore tape effectively enhances enzyme retention and biofuel cell performance. Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
Show Figures

Figure 1

12 pages, 3077 KiB  
Article
Electrochemical Hydrogen Pump/Compressor in Single- and Double-Stage Regime
by Galin Borisov, Nevelin Borisov and Evelina Slavcheva
Hydrogen 2025, 6(1), 14; https://doi.org/10.3390/hydrogen6010014 - 6 Mar 2025
Viewed by 805
Abstract
This study presents the integration and evaluation of commercially available gas diffusion electrodes (GDEs), specifically designed for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) within membrane electrode assemblies (MEA) for electrochemical hydrogen pump/compressor applications (EHP/C). Using Nafion 117 as a solid polymer electrolyte, [...] Read more.
This study presents the integration and evaluation of commercially available gas diffusion electrodes (GDEs), specifically designed for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) within membrane electrode assemblies (MEA) for electrochemical hydrogen pump/compressor applications (EHP/C). Using Nafion 117 as a solid polymer electrolyte, the MEAs were analyzed for cell efficiency, hydrogen evolution, and hydrogen oxidation reactions (HER and HOR) under differential pressure up to 16 bar and a temperature ranging from 20 °C to 60 °C. Key properties of the GDEs, such as electrode thickness and conductivity, were investigated. The catalytic layer was characterized via XRD and EDX analyses to assess its surface and bulk composition. Additionally, the effects of increasing MEA’s geometric size (from 1 cm2 to 5 cm2) and hydrogen crossover phenomena on the efficiency were examined in a single-cell setup. Electrochemical performance tests conducted in a single electrochemical hydrogen pump/compressor cell under hydrogen flow rates from 36.6 Ml·min⁻1·cm⁻2 to 51.3 mL·min⁻1 cm⁻2 at atmospheric pressure provided insights into the optimal operational parameters. For a double-stage application, the MEAs demonstrated enhanced current densities, achieving up to 0.6 A·cm⁻2 at room temperature with further increases to 1 A·cm⁻2 at elevated temperatures. These results corroborated the single-cell data, highlighting potential improvements in system efficiency and a reduction in adverse effects. The work underscores the potential of HT-PEMFC-based GDEs for the integration of MEAs applicable to advanced hydrogen compression technologies. Full article
Show Figures

Figure 1

17 pages, 5040 KiB  
Article
Experimental and Simulation Study of Proton Exchange Membrane Fuel Cell with 12 µm Thick Membrane over the Temperature Range of 80 °C to 120 °C
by Yunfei Zhang, Zhengrui Xiao, Xiaoyang Zhao, Jian Wang, Yadong Wang and Jun Yu
Membranes 2025, 15(3), 72; https://doi.org/10.3390/membranes15030072 - 1 Mar 2025
Viewed by 1195
Abstract
Recent advancements have been made in understanding the mechanisms and perspectives of fuel cells operating at elevated temperatures. However, the changes in electrochemical processes within the membrane electrode assembly remain unclear. This study aims to investigate the performance variation laws of membrane electrode [...] Read more.
Recent advancements have been made in understanding the mechanisms and perspectives of fuel cells operating at elevated temperatures. However, the changes in electrochemical processes within the membrane electrode assembly remain unclear. This study aims to investigate the performance variation laws of membrane electrode assemblies composed of Gore12 during operation at an increasing temperature ranging from 80 to 120 °C, utilizing overpotential decomposition and electrochemical impedance analysis. The experimental results indicate that increasing back pressure can improve the performance of fuel cells, particularly at higher temperatures. The charge transfer resistance initially decreases and then increases with temperature. Furthermore, combined with the simulation results, it is demonstrated that Gore12’s thin membrane structure provides excellent self-humidification, which ensures efficient proton conduction at low relative humidity. These findings offer new insights into improving the performance of PEMFCs and enabling stable operation at high temperatures. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

16 pages, 8053 KiB  
Article
A Novel Hydrogen Leak Detection Method for PEM Fuel Cells Using Active Thermography
by Martina Totaro, Dario Santonocito, Giacomo Risitano, Orazio Barbera and Giosuè Giacoppo
Energies 2025, 18(5), 1185; https://doi.org/10.3390/en18051185 - 28 Feb 2025
Viewed by 958
Abstract
Hydrogen leakage in Proton Exchange Membrane (PEM) fuel cells poses critical safety, efficiency, and operational reliability risks. This study introduces an innovative infrared (IR) thermography-based methodology for detecting and quantifying hydrogen leaks towards the outside of PEM fuel cells. The proposed method leverages [...] Read more.
Hydrogen leakage in Proton Exchange Membrane (PEM) fuel cells poses critical safety, efficiency, and operational reliability risks. This study introduces an innovative infrared (IR) thermography-based methodology for detecting and quantifying hydrogen leaks towards the outside of PEM fuel cells. The proposed method leverages the catalytic properties of a membrane electrode assembly (MEA) as an active thermal tracer, facilitating real-time visualisation and assessment of hydrogen leaks. Experimental tests were conducted on a single-cell PEM fuel cell equipped with intact and defective gaskets to evaluate the method’s effectiveness. Results indicate that the active tracer generates distinct thermal signatures proportional to the leakage rate, overcoming the limitations of hydrogen’s low IR emissivity. Comparative analysis with passive tracers and baseline configurations highlights the active tracer-based approach’s superior positional accuracy and sensitivity. Additionally, the method aligns detected thermal anomalies with defect locations, validated through pressure distribution maps. This novel, non-invasive technique offers precise, reliable, and scalable solutions for hydrogen leak detection, making it suitable for dynamic operational environments and industrial applications. The findings significantly advance hydrogen’s safety diagnostics, supporting the broader adoption of hydrogen-based energy systems. Full article
Show Figures

Figure 1

24 pages, 3072 KiB  
Review
Recent Advances in Membrane Electrode Assembly Based Nitrate Reduction Electrolyzers for Sustainable Ammonia Synthesis
by Keon-Han Kim and Jeonghoon Lim
Catalysts 2025, 15(2), 172; https://doi.org/10.3390/catal15020172 - 12 Feb 2025
Viewed by 1408
Abstract
The electrochemical reduction from nitrate (NO3RR) to ammonia (NH3) provides a decentralized and environmentally friendly route for sustainable ammonia production while addressing the urgent issue of nitrate pollution in water bodies. Recent advancements in NO3RR research have [...] Read more.
The electrochemical reduction from nitrate (NO3RR) to ammonia (NH3) provides a decentralized and environmentally friendly route for sustainable ammonia production while addressing the urgent issue of nitrate pollution in water bodies. Recent advancements in NO3RR research have improved catalyst designs, mechanistic understanding, and electrolyzer technologies, enhancing selectivity, yield, and energy efficiency. This review explores cutting-edge developments, focusing on innovative designs for catalysts and electrolyzers, such as membrane electrode assemblies (MEA) and electrolyzer configurations, understanding the role of membranes in MEA designs, and various types of hybrid and membrane-free reactors. Furthermore, the integration of NO3RR with anodic oxidation reactions has been demonstrated to improve overall efficiency by generating valuable co-products. However, challenges such as competitive hydrogen evolution, catalyst degradation, and scalability remain critical barriers to large-scale adoption. We provide a comprehensive overview of recent progress, evaluate current limitations, and identify future research directions for realizing the full potential of NO3RR in sustainable nitrogen cycling and ammonia synthesis. Full article
(This article belongs to the Special Issue Electrocatalytic Nitrogen-Cycle)
Show Figures

Graphical abstract

13 pages, 6895 KiB  
Article
Catalytic Activity of Pt/Pd Mono- and Bimetallic Catalysts in Electrochemical Hydrogen Pump/Compressor
by Nevelin Borisov, Borislava Mladenova, Galin Borisov and Evelina Slavcheva
Inorganics 2025, 13(2), 48; https://doi.org/10.3390/inorganics13020048 - 7 Feb 2025
Viewed by 698
Abstract
In this study, mono- and bimetallic platinum (Pt), palladium (Pd) and Pt-Pd nanoparticles were synthesized using the wet sol–gel method, employing a carbon-based XC72R as catalytic carrier. The overall metal content was set at 40 wt.% at varying Pt:Pd ratios. Characterization of the [...] Read more.
In this study, mono- and bimetallic platinum (Pt), palladium (Pd) and Pt-Pd nanoparticles were synthesized using the wet sol–gel method, employing a carbon-based XC72R as catalytic carrier. The overall metal content was set at 40 wt.% at varying Pt:Pd ratios. Characterization of the morphology and surface structure was conducted through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) and X-ray diffraction (XRD) analyses. The electrochemical performance and catalytic activity against the hydrogen evolution reaction (HER) were assessed in a three-electrode cell for screening purposes, as well as in a prototype cell of an electrochemical hydrogen pump/compressor (EHP/C) where the catalysts served as cathodes, while the anode was Pt/XC72 40% wt. with 0.38 mgPt·cm−2 within a membrane electrode assembly (MEA) with a 180 µm thick Nafion 117 proton-conductive membrane. The results obtained indicated superior catalytic activity of the bimetallic catalysts in comparison to the pure metal samples. Further electrochemical tests in an EHP/C cell at varying differential pressures in the range of 0–3 bar revealed stable behavior and high current density, reaching approximately 0.7 A cm−2 at 60 °C. The accelerated durability tests performed demonstrated excellent stability of the synthesized composite catalysts. These findings underscore the potential of Pt-Pd nanoparticles as efficient catalysts with sustainable performance for electrochemical hydrogen pumping/compressing applications. Full article
Show Figures

Figure 1

30 pages, 5285 KiB  
Review
Proton Exchange Membrane Fuel Cell Catalyst Layer Degradation Mechanisms: A Succinct Review
by Paul C. Okonkwo
Catalysts 2025, 15(1), 97; https://doi.org/10.3390/catal15010097 - 20 Jan 2025
Cited by 1 | Viewed by 3013
Abstract
Increasing demand for clean energy power generation is a direct result of the rapid depletion of fossil fuel reserves, the volatility of fossil commodity prices, and the environmental damage caused by burning fossil fuels. Fuel cell vehicles, portable power supplies, stationary power stations, [...] Read more.
Increasing demand for clean energy power generation is a direct result of the rapid depletion of fossil fuel reserves, the volatility of fossil commodity prices, and the environmental damage caused by burning fossil fuels. Fuel cell vehicles, portable power supplies, stationary power stations, and submarines are just some of the applications where proton exchange membrane (PEM) fuel cells are a prominent technology for power generation. PEM fuel cells have several advantages over conventional power sources, including a higher power density, lower emissions, a lower operating temperature, higher efficiency, noiseless operation, ease of design, and operation. The catalyst layer of the membrane electrode assembly is discussed in this paper as a vital part of the proton exchange membrane fuel cell. Along with that, the platinum (Pt)-based catalyst, carbon support, and nafion ionomer found in the catalyst layer often degrade. Catalyst growth, agglomeration, Pt loss, migration, active site contamination, and other microscopic processes are all considered in the degradation process. Employing experimental and numerical research with a focus on enhancing the material properties was suggested as a possible solution to understanding the problem of catalyst layer degradation. Ultimately, this review aims to prevent catalyst layer degradation and lower the high costs associated with replacing catalysts in proton exchange membrane fuel cells through the recommendations provided in this study. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

14 pages, 2861 KiB  
Article
Flexible Vibration Sensors with Omnidirectional Sensing Enabled by Femtosecond Laser-Assisted Fabrication
by Yaojia Mou, Cong Wang, Shilei Liu, Linpeng Liu and Ji’an Duan
Polymers 2025, 17(2), 211; https://doi.org/10.3390/polym17020211 - 16 Jan 2025
Viewed by 895
Abstract
Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations [...] Read more.
Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations and accelerations. The sensor’s design incorporates a polylactic acid (PLA) housing with cavities and spherical recesses, a polydimethylsiloxane (PDMS) membrane, and electrodes that are positioned above. Employing femtosecond laser ablation and template transfer techniques, a parallel groove array is created within the flexible polymer sensing layer. This includes conductive pathways, and integrates stainless-steel balls as oscillators to further amplify the sensor’s sensitivity. The sensor’s performance is evaluated over a frequency range of 50 Hz to 400 Hz for vibrations and from 1 g to 5 g for accelerations, exhibiting a linear correlation coefficient of 0.92 between the sensor’s voltage output and acceleration. It demonstrates stable and accurate responses to vibration signals from devices such as drills and mobile phone ringtones, as well as robust responsiveness to omnidirectional and long-distance vibrations. The sensor’s simplicity in microstructure fabrication, ease of assembly, and low cost render it highly promising for applications in engineering machinery with rotating or vibrating components. Full article
(This article belongs to the Special Issue Nature-Inspired and Polymers-Based Flexible Electronics and Sensors)
Show Figures

Figure 1

29 pages, 5737 KiB  
Review
Recent Progress in Materials Design and Fabrication Techniques for Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cells
by Xinhai Deng, Liying Ma, Chao Wang, Hao Ye, Lin Cao, Xinxing Zhan, Juan Tian and Xin Tong
Catalysts 2025, 15(1), 74; https://doi.org/10.3390/catal15010074 - 14 Jan 2025
Cited by 1 | Viewed by 2157
Abstract
Proton Exchange Membrane Fuel Cells (PEMFCs) are widely regarded as promising clean energy technologies due to their high energy conversion efficiency, low environmental impact, and versatile application potential in transportation, stationary power, and portable devices. Central to the operation and performance of PEMFCs [...] Read more.
Proton Exchange Membrane Fuel Cells (PEMFCs) are widely regarded as promising clean energy technologies due to their high energy conversion efficiency, low environmental impact, and versatile application potential in transportation, stationary power, and portable devices. Central to the operation and performance of PEMFCs are advancements in materials and manufacturing processes that directly influence their efficiency, durability, and scalability. This review provides a comprehensive overview of recent progress in these areas, emphasizing the critical role of membrane electrode assembly (MEA) technology and its constituent components, including catalyst layers, membranes, and gas diffusion layers (GDLs). The MEA, as the heart of PEMFCs, has seen significant innovations in its structure and manufacturing methodologies to ensure optimal performance and durability. At the material level, catalyst layer advancements, including the development of platinum-group metal catalysts and cost-effective non-precious alternatives, have focused on improving catalytic activity, durability, and mass transport. Similarly, the evolution of membranes, particularly advancements in perfluorosulfonic acid membranes and alternative hydrocarbon-based or composite materials, has addressed challenges related to proton conductivity, mechanical stability, and operation under harsh conditions such as low humidity or high temperature. Additionally, innovations in gas diffusion layers have optimized their porosity, hydrophobicity, and structural properties, ensuring efficient reactant and product transport within the cell. By examining these interrelated aspects of PEMFC development, this review aims to provide a holistic understanding of the state of the art in PEMFC materials and manufacturing technologies, offering insights for future research and the practical implementation of high-performance fuel cells. Full article
(This article belongs to the Special Issue Advances in Catalyst Design and Application for Fuel Cells)
Show Figures

Figure 1

Back to TopTop