Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = mesoscopic interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8357 KB  
Article
Multiscale Damage and Failure Behavior of Drainage Asphalt Mixture Under Multifactor
by Xiong Tao, Tao Bai, Jianwei Fan, Haiwei Shen and Hao Cheng
Materials 2025, 18(21), 4924; https://doi.org/10.3390/ma18214924 - 28 Oct 2025
Abstract
Macroscopic fatigue tests, mesoscopic finite element simulations, and microscopic molecular dynamics simulations were composed to study the damage and failure of drainage asphalt mixtures in multiscale. The applicability of the fatigue models fit by strain, stress, and the linear fitting slope of the [...] Read more.
Macroscopic fatigue tests, mesoscopic finite element simulations, and microscopic molecular dynamics simulations were composed to study the damage and failure of drainage asphalt mixtures in multiscale. The applicability of the fatigue models fit by strain, stress, and the linear fitting slope of the indirect tensile modulus curves were compared. The mesoscopic damage and failure distribution and evolution characteristics were studied, considering the single or coupling effect of traffic loading, hydrodynamic pressure, mortar aging, and interfacial attenuation. The microscopic molecular mechanism of the interface adhesion failure between the aggregate and mortar under water-containing conditions was analyzed. Results show that the fatigue model based on the linear fitting slopes of the indirect tensile modulus curves has significant applicability for drainage asphalt mixtures with different void rates and gradations. The damage and failure have an obvious leap development when traffic loading increases from 0.7 MPa to 0.8 MPa. The hydrodynamic pressure significantly increases the stress of the mortar around the voids and close to the aggregate, promoting damage development and crack extension, especially when it is greater than 0.3 MPa. With the aging deepening of the mortar, the increase rate of the damage degree gradually decreases from the top to the bottom of the mixture. With the development of interfacial attenuation, the damage and failure of interfaces continue increasing, while that of the mortar increases first and then decreases, which is related to the loading concentration in the interface and the stress decrease in the mortar. Under the coupling effects, whether the cracks mainly generate in the mortar or interface depends on their damage degrees, thus causing the stripping of the aggregate wrapped or not wrapped by the mortar, respectively. The van del Waals force is the main molecular effect of interface adhesion, and both acidic and alkaline aggregate components significantly tend to form hydrogen bonds with water rather than asphalt, thus attenuating the interface adhesion. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 15691 KB  
Article
Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
by Xinke Xiao, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He and Xuanming Cai
Materials 2025, 18(15), 3686; https://doi.org/10.3390/ma18153686 - 6 Aug 2025
Viewed by 568
Abstract
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response [...] Read more.
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response characteristics and underlying mechanisms under such conditions is of critical importance for both theoretical development and practical engineering applications. This study proposes an innovative three-dimensional (3D) multiscale constitutive model that comprehensively integrates mesoscopic fiber–matrix interface effects and pore characteristics. To systematically investigate the dynamic response and damage evolution of SFRP under medium strain rate conditions, 3D-printed SFRP porous structures with volume fractions of 25%, 35%, and 45% are designed and subjected to drop hammer impact experiments combined with multiscale numerical simulations. The experimental and simulation results demonstrate that, for specimens with a 25% volume fraction, the strain rate strengthening effect is the primary contributor to the increase in peak stress. In contrast, for specimens with a 45% volume fraction, the interaction between damage evolution and strain rate strengthening leads to a more complex stress–strain response. The specific energy absorption (SEA) of 25% volume fraction specimens increases markedly with increasing strain rate. However, for specimens with 35% and 45% volume fractions, the competition between these two mechanisms results in non-monotonic variations in energy absorption efficiency (EAE). The dominant failure mode under impact loading is shear-dominated compression, with damage evolution becoming increasingly complex as the fiber volume fraction increases. Furthermore, the damage characteristics transition from fiber pullout and matrix folding at lower volume fractions to the coexistence of brittle and ductile behaviors at higher volume fractions. The numerical simulations exhibit strong agreement with the experimental data. Multi-directional cross-sectional analysis further indicates that the initiation and propagation of shear bands are the principal drivers of structural instability. This study offers a robust theoretical foundation for the impact-resistant design and dynamic performance optimization of 3D-printed short fiber-reinforced polymer (SFRP) porous structures. Full article
Show Figures

Figure 1

25 pages, 150744 KB  
Article
Permanent Deformation Mechanism of Steel Bridge Deck Pavement Using Three-Dimensional Discrete–Continuous Coupling Method on the Mesoscopic Scale
by Xingchen Min and Yun Liu
Appl. Sci. 2025, 15(11), 6187; https://doi.org/10.3390/app15116187 - 30 May 2025
Viewed by 535
Abstract
Unlike conventional asphalt pavements, steel bridge deck pavement (SBDP) is directly constructed on orthotropic steel deck plates characterized by relatively low flexural stiffness, rendering it more susceptible to rutting deformation under elevated temperatures and repeated loading. To investigate the mesoscopic mechanism underlying rutting [...] Read more.
Unlike conventional asphalt pavements, steel bridge deck pavement (SBDP) is directly constructed on orthotropic steel deck plates characterized by relatively low flexural stiffness, rendering it more susceptible to rutting deformation under elevated temperatures and repeated loading. To investigate the mesoscopic mechanism underlying rutting formation in SBDP, a three-dimensional (3D) discrete–continuous coupled model of a steel–asphalt composite structural specimen (SACSS) was developed and employed to conduct virtual rutting simulations, which were subsequently validated against laboratory test results. The impact of surface cracking on rutting progression was then explored. In addition, the spatial motion and contact interactions of particles during the rutting process were monitored and analyzed. The influence of steel plate stiffness on the rutting resistance of SBDP was also evaluated. The numerical analyses yielded the following key findings: (1) Under three steel–asphalt interface bonding (SAIB) failure conditions (0%, 17%, and 100%), the virtual simulation results exhibited strong agreement with experimental trends in rutting depth over time, thereby confirming the validity and reliability of the coupled modeling approach. (2) At 30 °C, the presence of surface cracks is found to increase the rutting depth by 35.77%, whereas this effect is mitigated at 45 °C. (3) The meso-mechanical mechanisms governing rutting deformation in SBDP are further elucidated under different temperature conditions. (4) Moreover, at elevated temperatures, the use of a steel plate with an elastic modulus of 206 MPa effectively inhibit rutting development. This study offers mesoscopic-level insights into the effects of temperature, SAIB conditions, steel plate stiffness, and surface cracking on the macroscopic rutting behavior of SBDP, thereby providing a theoretical foundation for the design and optimization of long-lasting SBDPs. Full article
Show Figures

Figure 1

33 pages, 9219 KB  
Review
Multiscale Modeling and Data-Driven Life Prediction of Kinematic Interface Behaviors in Mechanical Drive Systems
by Yue Liu, Qiang Wei, Wenkui Wang, Libin Zhao and Ning Hu
Coatings 2025, 15(6), 660; https://doi.org/10.3390/coatings15060660 - 30 May 2025
Cited by 1 | Viewed by 1332
Abstract
The multiscale coupling characteristics of the kinematic interface behavior of mechanical transmission systems are the core factors affecting system accuracy and lifetime. In this paper, we propose an innovative framework to achieve multiscale modeling from surface topographic parameters to system-level dynamics response through [...] Read more.
The multiscale coupling characteristics of the kinematic interface behavior of mechanical transmission systems are the core factors affecting system accuracy and lifetime. In this paper, we propose an innovative framework to achieve multiscale modeling from surface topographic parameters to system-level dynamics response through four stages: microscopic topographic regulation, mesoscopic wear modeling, macroscopic gap evolution, and system vibration prediction. Through the active design of laser-textured surfaces and gradient coatings, the contact stress distribution can be regulated to keep the wear extension; combined with the multiscale physical model and joint simulation technology, the dynamic feedback mechanism of wear–gap–vibration is revealed. Aiming at the challenges of data scarcity and mechanism complexity, we integrate data enhancement and migration learning techniques to construct a hybrid mechanism–data-driven life prediction model. This paper breaks through the limitations of traditional isolated analysis and provides theoretical support for the design optimization and intelligent operation and maintenance of high-precision transmission systems. Full article
Show Figures

Figure 1

26 pages, 4245 KB  
Review
Research Advances for Protein-Based Pickering Emulsions as Drug Delivery Systems
by Long Deng, Junqiu Liao, Weiqi Liu, Xiaoxiao Liang, Rujin Zhou and Yanbin Jiang
Pharmaceutics 2025, 17(5), 587; https://doi.org/10.3390/pharmaceutics17050587 - 30 Apr 2025
Cited by 1 | Viewed by 1160
Abstract
Nanotechnologically engineered protein-based carriers have attracted considerable attention in the pharmaceutical field due to the advantages of superior biocompatibility, tunability and good emulsifying properties. Recently, protein-based Pickering emulsions (PPEs) systems with multi-level structures have been introduced as innovative colloidal delivery systems for advanced [...] Read more.
Nanotechnologically engineered protein-based carriers have attracted considerable attention in the pharmaceutical field due to the advantages of superior biocompatibility, tunability and good emulsifying properties. Recently, protein-based Pickering emulsions (PPEs) systems with multi-level structures have been introduced as innovative colloidal delivery systems for advanced drug encapsulation, protection, delivery and controlled release. Natural source protein nanoparticles are promising candidates to provide a wide range of functional performances and interfacial properties in the preparation and stabilization of Pickering emulsions. Herein, this review summarizes the development of PPEs in drug delivery systems, focusing on the research progress concerning the aspects of protein particle preparation methods, formation mechanisms and rational design principles, emphasizing the relationship between protein particle structure and functional properties. To further understand the interfacial behavior in protein nanoparticle stabilized emulsion, the mesoscopic dissipative particle dynamics (DPD) simulations were discussed, which bridges the gaps between macroscopic time and length scales, as well as molecular-scale simulations on particles and oil/water interface systems. The structure-effect relationship between the tunable physicochemical properties of protein-based interface design, which leads to the effective loading, stimuli-responsiveness for the controlled release and multiple delivery, was then summarized. Finally, the opportunities and challenges for the future development of PPEs for drug delivery are discussed. This review aims to provide a reference for the further application of PPEs as advanced drug delivery systems. Full article
(This article belongs to the Special Issue Recent Advances in Peptide and Protein-Based Drug Delivery Systems)
Show Figures

Figure 1

22 pages, 3660 KB  
Article
The Effect of Particle–Matrix Interface on the Local Mechanical Properties of Filled Polymer Composites: Simulations and Theoretical Analysis
by Timur A. Nadzharyan and Elena Yu. Kramarenko
Polymers 2025, 17(1), 111; https://doi.org/10.3390/polym17010111 - 3 Jan 2025
Cited by 1 | Viewed by 1348
Abstract
A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or [...] Read more.
A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or several anisometric filler particles surrounded by interface shells are considered. The dependence of the mechanical response of the cells to external deformation on the interface thickness and stiffness is studied. The use of the particle–matrix interface as a damping tool in mesoscopic polymer-composite problems with large deformations is discussed. The influence of the interface on the anisotropy of the composite response is considered. Full article
(This article belongs to the Special Issue Polymer-Based Composite Structures and Mechanical Metamaterials)
Show Figures

Figure 1

21 pages, 13380 KB  
Article
Macro-Mesoscopic Failure Mechanism Based on a Direct Shear Test of a Cemented Sand and Gravel Layer
by Long Qian, Xingwen Guo, Qinghui Liu, Xin Cai and Xiaochuan Zhang
Buildings 2024, 14(12), 4078; https://doi.org/10.3390/buildings14124078 - 23 Dec 2024
Cited by 1 | Viewed by 1149
Abstract
In order to explore the influence of different layer treatment methods on the macro- and meso-mechanical properties of cemented sand and gravel (CSG), in this paper, the shear behavior of CSG material was simulated by a three-dimensional particle flow program (PFC3D) based on [...] Read more.
In order to explore the influence of different layer treatment methods on the macro- and meso-mechanical properties of cemented sand and gravel (CSG), in this paper, the shear behavior of CSG material was simulated by a three-dimensional particle flow program (PFC3D) based on the results of direct shear test in the laboratory. In shear tests, untreated CSG samples with interface coating mortar and chiseling were used, and granular discrete element software (PDC3D 7.0) was used to establish mesoscopic numerical models of CSG samples with the above three interface treatment methods, in order to reveal the effects of interface treatment methods on the interface strength and damage mechanism of CSG samples. The results show that, with the increase in normal stress, the amount of aggregate falling off the shear failure surface increases, the bump and undulation are more obvious, and the failure mode of the test block is inferred to be extrusion friction failure. The shear strength of the mortar interface is 40% higher than that of the untreated interface, and the failure surface is smooth and flat under different normal stresses. The shear strength of the chiseled interface is 10% higher than that of the untreated interface, and the failure surface fluctuates significantly under different normal stresses. Through the analysis of the fracture evolution process in the numerical simulation, it is found that the fracture of the sample at the mortar interface mainly expands along the mortar–aggregate interface and the damage mode is shear slip. However, the cracks of the samples at the gouged interface are concentrated on the upper and lower sides of the interface, and the damage mode is tension–shear. The failure mode of the samples without surface treatment is mainly tensile and shear failure, and the failure mode gradually changes to extrusion friction failure. Full article
Show Figures

Figure 1

20 pages, 10843 KB  
Article
Experimental and Numerical Simulations on the Mechanical Characteristics of Soil–Rock Mixture in Uniaxial Compression
by Zhenping Zhang, Xiaodong Fu, Qian Sheng, Shuo Wang and Yuwei Fang
Appl. Sci. 2024, 14(22), 10485; https://doi.org/10.3390/app142210485 - 14 Nov 2024
Cited by 2 | Viewed by 1510
Abstract
Soil–rock mixture is a common geo-material found in natural deposit slopes and various constructions, such as tunnels, hydropower stations, and subgrades. The complex mechanical characteristics of soil–rock mixture arise from its multi-phase compositions and cooperative interactions. This paper investigated the mechanical properties of [...] Read more.
Soil–rock mixture is a common geo-material found in natural deposit slopes and various constructions, such as tunnels, hydropower stations, and subgrades. The complex mechanical characteristics of soil–rock mixture arise from its multi-phase compositions and cooperative interactions. This paper investigated the mechanical properties of soil–rock mixture, focusing on the influence of rock content, and soil–rock interface strength was discussed. Specimens with varying rock contents were subjected to uniaxial compression tests. The results indicated that rock content, as a key structural parameter, significantly controls the crack propagation trends. As rock content increases, the initial structure of the soil matrix is damaged, leading to the formation of a weak-strength soil–rock interface. The failure mode transitions from longitudinal cracking to multiple shear fractures. To analyze the strength of the soil–rock interface from a mesoscopic perspective, simulations of soil–rock mixture specimens with irregular rock blocks were conducted using the particle discrete element method (PDEM). At the meso-scale, the specimen with 30% rock content exhibited a complex particle displacement distribution, with differences in the direction and magnitude of displacement between soil and rock particles being critical to the failure modes of the specimen. As the soil–rock interface strength increased from 0.1 to 0.9, the distribution of force chains within the specimen shifted from a centralized to a more uniform distribution, and the thickness of force chains became increasingly uniform. The strength responses of the soil–rock mixture under uniaxial compression condition were discussed, revealing that the uniaxial compression strength (UCS) of soil–rock mixture decreases exponentially with increasing rock content. An estimation formula was developed to characterize the UCS of soil–rock mixture in relation to rock content and interface strength. The findings from both the experiments and simulations can provide valuable insights for evaluating the stability of deposit slopes and other constructions involving soil–rock mixture. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Rock Mass Engineering)
Show Figures

Figure 1

24 pages, 10209 KB  
Article
A Simulation Study on the Effect of Supersonic Ultrasonic Acoustic Streaming on Solidification Dendrite Growth Behavior During Laser Cladding Based on Boundary Coupling
by Xing Han, Hao Zhan, Chang Li, Xuan Wang, Jiabo Liu, Shuchao Li, Qian Sun and Fanhong Kong
Coatings 2024, 14(11), 1381; https://doi.org/10.3390/coatings14111381 - 30 Oct 2024
Cited by 2 | Viewed by 1297
Abstract
Laser cladding has unique technical advantages, such as precise heat input control, excellent coating properties, and local selective cladding for complex shape parts, which is a vital branch of surface engineering. During the laser cladding process, the parts are subjected to extreme thermal [...] Read more.
Laser cladding has unique technical advantages, such as precise heat input control, excellent coating properties, and local selective cladding for complex shape parts, which is a vital branch of surface engineering. During the laser cladding process, the parts are subjected to extreme thermal gradients, leading to the formation of micro-defects such as cracks, pores, and segregation. These defects compromise the serviceability of the components. Ultrasonic vibration can produce thermal, mechanical, cavitation, and acoustic flow effects in the melt pool, which can comprehensively affect the formation and evolution for the microstructure of the melt pool and reduce the microscopic defects of the cladding layer. In this paper, the coupling model of temperature and flow field for the laser cladding of 45 steel 316L was established. The transient evolution laws of temperature and flow field under ultrasonic vibration were revealed from a macroscopic point of view. Based on the phase field method, a numerical model of dendrite growth during laser cladding solidification under ultrasonic vibration was established. The mechanism of the effect of ultrasonic vibration on the solidification dendrite growth during laser cladding was revealed on a mesoscopic scale. Based on the microstructure evolution model of the paste region in the scanning direction of the cladding pool, the effects of a static flow field and acoustic flow on dendrite growth were investigated. The results show that the melt flow changes the heat and mass transfer behaviors at the solidification interface, concurrently changing the dendrites’ growth morphology. The acoustic streaming effect increases the flow velocity of the melt pool, which increases the tilt angle of the dendrites to the flow-on side and promotes the growth of secondary dendrite arms on the flow-on side. It improves the solute distribution in the melt pool and reduces elemental segregation. Full article
Show Figures

Figure 1

23 pages, 40212 KB  
Article
Global and Local Shear Behavior of the Frozen Soil–Concrete Interface: Effects of Temperature, Water Content, Normal Stress, and Shear Rate
by Kun Zhang, Jianglin Yan, Yanhu Mu, Xiaoming Zhu and Lianhai Zhang
Buildings 2024, 14(10), 3319; https://doi.org/10.3390/buildings14103319 - 21 Oct 2024
Cited by 5 | Viewed by 1626
Abstract
The interface between soil and concrete in cold climates has a significant effect on the structural integrity of embedded structures, including piles, liners, and others. In this study, a novel temperature control system was employed to conduct direct shear tests on this interface. [...] Read more.
The interface between soil and concrete in cold climates has a significant effect on the structural integrity of embedded structures, including piles, liners, and others. In this study, a novel temperature control system was employed to conduct direct shear tests on this interface. The test conditions included normal stress (25 to 100 kPa), temperature (ranging from 20 to −6 °C), water content (from 10 to 19%), and shear rates (0.1 to 1.2 mm/min). Simultaneously, the deformation process of the interface was continuously photographed using a modified visual shear box, and the non-uniform deformation mechanism of the interface was analyzed by combining digital image correlation (DIC) technology with the photographic data. The findings revealed that the shear stress–shear displacement curves did not exhibit a discernible peak strength at elevated temperatures, indicating deformation behavior characterized by strain hardening. In the frozen state, however, the deformation softened, and the interfacial ice bonding strength exhibited a positive correlation with decreasing temperature. When the initial water content was 16% and the normal stress was 100 kPa, the peak shear strength increased significantly from 99.9 kPa to 182.9 kPa as the test temperature dropped from 20 °C to −6 °C. Both shear rate and temperature were found to have a marked effect on the peak shear strength, with interface cohesion being the principal factor contributing to this phenomenon. At a shear rate of 0.1 mm/min, the curve showed hardening characteristics, but at other shear rates, the curves exhibited strain-softening behavior, with the softening becoming more pronounced as shear rates increased and temperatures decreased. Due to the refreezing of interfacial ice, the residual shear strength increased in proportion to the reduction in shear rate. On a mesoscopic level, it was evident that the displacement of soil particles near the interface exhibited more pronounced changes. At lower shear rates, the phenomenon of interfacial refreezing became apparent, as evidenced by the periodic changes in interfacial granular displacement at the interface. Full article
(This article belongs to the Special Issue Structural Mechanics Analysis of Soil-Structure Interaction)
Show Figures

Figure 1

26 pages, 25259 KB  
Article
Coupling MATSim and the PALM Model System—Large Scale Traffic and Emission Modeling with High-Resolution Computational Fluid Dynamics Dispersion Modeling
by Janek Laudan, Sabine Banzhaf, Basit Khan and Kai Nagel
Atmosphere 2024, 15(10), 1183; https://doi.org/10.3390/atmos15101183 - 30 Sep 2024
Cited by 2 | Viewed by 2655
Abstract
To effectively mitigate anthropogenic air pollution, it is imperative to implement strategies aimed at reducing emissions from traffic-related sources. Achieving this objective can be facilitated by employing modeling techniques to elucidate the interplay between environmental impacts and traffic activities. This paper highlights the [...] Read more.
To effectively mitigate anthropogenic air pollution, it is imperative to implement strategies aimed at reducing emissions from traffic-related sources. Achieving this objective can be facilitated by employing modeling techniques to elucidate the interplay between environmental impacts and traffic activities. This paper highlights the importance of combining traffic emission models with high-resolution turbulence and dispersion models in urban areas at street canyon level and presents the development and implementation of an interface between the mesoscopic traffic and emission model MATSim and PALM-4U, which is a set of urban climate application modules within the PALM model system. The proposed coupling mechanism converts MATSim output emissions into input emission flows for the PALM-4U chemistry module, which requires translating between the differing data models of both modeling systems. In an idealized case study, focusing on Berlin, the model successfully identified “hot spots” of pollutant concentrations near high-traffic roads and during rush hours. Results show good agreement between modeled and measured NOx concentrations, demonstrating the model’s capacity to accurately capture urban pollutant dispersion. Additionally, the presented coupling enables detailed assessments of traffic emissions but also offers potential for evaluating the effectiveness of traffic management policies and their impact on air quality in urban areas. Full article
(This article belongs to the Special Issue Recent Advances in Mobile Source Emissions (2nd Edition))
Show Figures

Figure 1

20 pages, 12121 KB  
Article
Simulation of Frost-Heave Failure of Air-Entrained Concrete Based on Thermal–Hydraulic–Mechanical Coupling Model
by Xinmiao Wang, Feng Xue, Xin Gu and Xiaozhou Xia
Materials 2024, 17(15), 3727; https://doi.org/10.3390/ma17153727 - 27 Jul 2024
Cited by 2 | Viewed by 1748
Abstract
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based [...] Read more.
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based on the ice-crystal phase transition mechanism of pore water and the theory of fine-scale inclusions, this paper establishes an estimation model for effective thermal conductivity and permeability coefficients that can reflect the distribution characteristics of the internal pore size and the content of microbubbles in porous media and explores the evolution mechanism of effective thermal conductivity and permeability coefficients during the freezing process. The segmented Gaussian integration method is adopted for the calculation of integrals involving pore size distribution curves. In addition, based on the concept that the fracture phase represents continuous damage, a switching model for the permeability coefficient is proposed to address the fundamental impact of frost cracking on permeability. Finally, the proposed estimation models for thermal conductivity and permeability are applied to the cement mortar and the interface transition zone (ITZ), and a thermal–hydraulic–mechanical coupling finite element model of concrete specimens at the mesoscale based on the fracture phase-field method is established. After that, the frost-cracking mechanism in ordinary concrete samples during the freezing process is explored, as well as the mechanism of microbubbles in relieving pore pressure and the adverse effect of accelerated cooling on frost cracking. The results show that the cracks first occurred near the aggregate on the concrete sample surface and then extended inward along the interface transition zone, which is consistent with the frost-cracking scenario of concrete structures in cold regions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

22 pages, 4266 KB  
Article
Splitting Tensile Mechanical Performance and Mesoscopic Failure Mechanisms of High-Performance Concrete under 10-Year Corrosion from Salt Lake Brine
by Fang Wang, Hongfa Yu, Haiyan Ma, Ming Cheng, Jianbo Guo, Jinhua Zhang, Weifeng Liu, Weiquan Gao, Qinghua Tao and Juan Guo
Buildings 2024, 14(6), 1673; https://doi.org/10.3390/buildings14061673 - 5 Jun 2024
Cited by 6 | Viewed by 1429
Abstract
In regions characterized by the challenging combination of brine corrosion in the salt lakes and river sand with alkali silica reaction (ASR) activity in areas of the Northwest, high-performance concrete (HPC) formulated with high-volume composite mineral admixtures as ASR suppression measures has been [...] Read more.
In regions characterized by the challenging combination of brine corrosion in the salt lakes and river sand with alkali silica reaction (ASR) activity in areas of the Northwest, high-performance concrete (HPC) formulated with high-volume composite mineral admixtures as ASR suppression measures has been preferred for civil engineering structures in the region. This study investigates the splitting tensile strength, corrosion products, microscopic structure characteristics, and mesoscopic mechanical mechanisms of splitting failure of such HPC under 10-year corrosion from salt lake brine. The relationship between mechanical properties and corrosion damage, as well as the characteristics of internal crack propagation paths and failure mechanisms of HPC under splitting load, are explored. The findings reveal that as the alkali content within HPC rises, corrosion damage intensifies, resulting in a reduction in splitting tensile strength. Moreover, a linear association between mechanical properties and corrosion damage is observed. Microscopic structural analysis and numerical simulation of the splitting failure process of HPC elucidate that while the substantial presence of mineral admixtures effectively suppresses the ASR risk associated with alkali-reactive aggregates in concrete, uneven ASR gel products persist. These discontinuous micro-fine interface cracks induced by the gel products and the cracks induced by the gel products around the selective alkali-active aggregate particles distributed in the local area are the initiation sources of mortar cracks in HPC splitting failure. In terms of the overall failure state observed during the concrete splitting process, mortar cracks manifest two distinct extension paths: along the coarse aggregate interface and directly through the aggregates themselves. Notably, a greater proportion of coarse aggregates are directly penetrated by mortar cracks, as opposed to the number of interface failures bypassing coarse aggregates. More importantly, the above work establishes a theoretical reference in three dimensions: macroscopic, mesoscopic, and microscopic, for studying concrete corrosion damage in complex environments such as salt lake brine corrosion and ASR inhibition. Full article
(This article belongs to the Special Issue Recent Advances in Technology and Properties of Composite Materials)
Show Figures

Figure 1

22 pages, 32697 KB  
Review
Molecular Dynamics Simulation on Polymer Tribology: A Review
by Tianqiang Yin, Guoqing Wang, Zhiyuan Guo, Yiling Pan, Jingfu Song, Qingjun Ding and Gai Zhao
Lubricants 2024, 12(6), 205; https://doi.org/10.3390/lubricants12060205 - 4 Jun 2024
Cited by 9 | Viewed by 4951
Abstract
A profound comprehension of friction and wear mechanisms is essential for the design and development of high-performance polymeric materials for tribological application. However, it is difficult to deeply investigate the polymer friction process in situ at the micro/mesoscopic scale by traditional research methods. [...] Read more.
A profound comprehension of friction and wear mechanisms is essential for the design and development of high-performance polymeric materials for tribological application. However, it is difficult to deeply investigate the polymer friction process in situ at the micro/mesoscopic scale by traditional research methods. In recent years, molecular dynamics (MD) simulation, as an emerging research method, has attracted more and more attention in the field of polymer tribology due to its ability to show the physicochemical evolution between the contact interfaces at the atomic scale. Herein, we review the applications of MD in recent studies of polymer tribology and their research focuses (e.g., tribological properties, distribution and conformation of polymer chains, interfacial interaction, frictional heat, and tribochemical reactions) across three perspectives: all-atom MD, reactive MD, and coarse-grained MD. Additionally, we summarize the current challenges encountered by MD simulation in polymer tribology research and present recommendations accordingly, aiming to provide several insights for researchers in related fields. Full article
(This article belongs to the Special Issue Advanced Polymeric and Colloidal Lubricants)
Show Figures

Figure 1

20 pages, 16732 KB  
Article
Mesoscopic Analysis of Fatigue Damage Development in Asphalt Mixture Based on Modified Burgers Contact Algorithm in Discrete Element Modeling
by Mingqiao Zhou and Wei Cao
Materials 2024, 17(9), 2025; https://doi.org/10.3390/ma17092025 - 26 Apr 2024
Cited by 4 | Viewed by 1851
Abstract
This study is aimed at examining the mesoscopic mechanical response and crack development characteristics of asphalt mixtures using the three-dimensional discrete element approach via particle flow code (PFC). The material is considered an assembly of three phases of aggregate, mortar, and voids, for [...] Read more.
This study is aimed at examining the mesoscopic mechanical response and crack development characteristics of asphalt mixtures using the three-dimensional discrete element approach via particle flow code (PFC). The material is considered an assembly of three phases of aggregate, mortar, and voids, for which three types of contact are identified and described using a modified Burgers model allowing for bond failure and crack formation at contact. The laboratory splitting test is conducted to determine the contact parameters and to provide the basis for selecting three different load levels used in the indirect tensile fatigue test and simulation. The reliability of the simulation is verified by comparing the fatigue lives and dissipated energies against those from the test. Under cyclic loading, the internal tensile and compressive force chains vary dynamically as a response to the cyclic loading; both are initially concentrated beneath the top loading strip and then extend downward along the loading line. The compressive chains are oriented roughly vertically and develop an elliptic shape as damage grows, while the tensile chains are mostly horizontal and become denser. An analysis based on the histories of the numbers of different contact types indicates that damage mainly originates from bond failures among the aggregate particles and at the aggregate–mortar interfaces. In terms of location, cracking is initiated below the loading point (consistent with observations from the force chains) and propagates downward and laterally, leading to the macrocrack along the vertical diameter. The findings provide a mesoscopic understanding of the fatigue damage initiation and propagation in asphalt mixture. Full article
(This article belongs to the Special Issue Asphalt Mixtures and Pavements Design (2nd Edition))
Show Figures

Figure 1

Back to TopTop