Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = metabolism in metastatic cascade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1171 KB  
Review
Unveiling the Involvement of Extracellular Vesicles in Breast Cancer’s Organotrophic Metastasis: Molecular Mechanisms and Translational Prospects
by Haotian Shang, Yumin Zhang and Tengfei Chao
Int. J. Mol. Sci. 2025, 26(12), 5430; https://doi.org/10.3390/ijms26125430 - 6 Jun 2025
Viewed by 1701
Abstract
Breast cancer metastasis remains the primary driver of patient mortality, involving dynamic interactions between tumor cells and distant organ microenvironments. In recent years, tumor cell-derived extracellular vesicles (EVs) have emerged as critical information carriers, playing central roles in breast cancer metastasis by mediating [...] Read more.
Breast cancer metastasis remains the primary driver of patient mortality, involving dynamic interactions between tumor cells and distant organ microenvironments. In recent years, tumor cell-derived extracellular vesicles (EVs) have emerged as critical information carriers, playing central roles in breast cancer metastasis by mediating organ-specific pre-metastatic niche formation, immune modulation, and tumor cell adaptive evolution. Studies have demonstrated that EVs drive the metastatic cascade through the delivery of bioactive components, including nucleic acids (e.g., miRNAs, circRNAs), proteins (e.g., integrins, metabolic enzymes), and lipids, which collectively regulate osteoclast activation, immune cell polarization, vascular permeability alterations, and extracellular matrix (ECM) remodeling in target organs such as bone, the lungs, and the liver. Molecular heterogeneity in EVs derived from different breast cancer subtypes strongly correlates with organotropism, providing potential biomarkers for metastasis prediction. Leveraging the organotrophic mechanisms of EVs and their dual regulatory roles in metastasis (pro-metastatic and anti-metastatic), strategies targeting EV biogenesis, cargo loading, or delivery exhibits translational potential in diagnostics and therapeutics. In this review, we summarize recent advances in understanding the role of breast cancer-derived exosomes in mediating metastatic organotropism and discuss the potential clinical applications of targeting exosomes as novel diagnostic and therapeutic strategies for breast cancer. Full article
(This article belongs to the Special Issue Role of Extracellular Vesicles in Diseases)
Show Figures

Figure 1

34 pages, 3049 KB  
Review
Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer
by Pathea Shawnae Bruno, Aneeta Arshad, Maria-Raluca Gogu, Natalie Waterman, Rylie Flack, Kimberly Dunn, Costel C. Darie and Anca-Narcisa Neagu
Life 2025, 15(1), 126; https://doi.org/10.3390/life15010126 - 18 Jan 2025
Cited by 8 | Viewed by 4541
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they [...] Read more.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein–protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

13 pages, 670 KB  
Review
Targeting Hyaluronan Synthesis in Cancer: A Road Less Travelled
by Theodoros Karalis
Biologics 2023, 3(4), 402-414; https://doi.org/10.3390/biologics3040022 - 12 Dec 2023
Cited by 4 | Viewed by 4725
Abstract
Hyaluronan is one of the major components of the extracellular matrix and is involved in the regulation of multiple processes in both human physiology and disease. In human cancers, hyaluronan metabolism displays remarkable alterations, leading to the accumulation of large amounts of hyaluronan [...] Read more.
Hyaluronan is one of the major components of the extracellular matrix and is involved in the regulation of multiple processes in both human physiology and disease. In human cancers, hyaluronan metabolism displays remarkable alterations, leading to the accumulation of large amounts of hyaluronan matrices in the tumoural tissues. The altered levels of hyaluronan in the tumours stem from the enhanced expression and activity of hyaluronan synthases in both tumour and stromal cells. Moreover, hyaluronidase activity is also upregulated in cancer, leading to the generation of lower molecular weight hyaluronan fragments that in turn assist tumour growth, neo-angiogenesis and the metastatic cascade. Hyaluronan accumulation in malignant tissues not only assists tumour growth and metastases but is also associated with worse outcomes in cancer patients. Therefore, targeting hyaluronan synthesis emerges as an interesting strategy that might be employed for cancer treatment. This review article summarises current evidence and discusses ways to move forward in the field of targeting hyaluronan synthesis for cancer therapy. Full article
Show Figures

Figure 1

15 pages, 1202 KB  
Review
Stromal-Modulated Epithelial-to-Mesenchymal Transition in Cancer Cells
by Huda I. Atiya, Grace Gorecki, Geyon L. Garcia, Leonard G. Frisbie, Roja Baruwal and Lan Coffman
Biomolecules 2023, 13(11), 1604; https://doi.org/10.3390/biom13111604 - 1 Nov 2023
Cited by 13 | Viewed by 3219
Abstract
The ability of cancer cells to detach from the primary site and metastasize is the main cause of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the first event of the metastatic cascade, resulting in the loss of cell–cell adhesion [...] Read more.
The ability of cancer cells to detach from the primary site and metastasize is the main cause of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the first event of the metastatic cascade, resulting in the loss of cell–cell adhesion and the acquisition of motile and stem-like phenotypes. A critical modulator of EMT in cancer cells is the stromal tumor microenvironment (TME), which can promote the acquisition of a mesenchymal phenotype through direct interaction with cancer cells or changes to the broader microenvironment. In this review, we will explore the role of stromal cells in modulating cancer cell EMT, with particular emphasis on the function of mesenchymal stromal/stem cells (MSCs) through the activation of EMT-inducing pathways, extra cellular matrix (ECM) remodeling, immune cell alteration, and metabolic rewiring. Full article
(This article belongs to the Special Issue EMT and Cancer II)
Show Figures

Figure 1

19 pages, 2871 KB  
Review
Role of Ubiquitination and Epigenetics in the Regulation of AhR Signaling in Carcinogenesis and Metastasis: “Albatross around the Neck” or “Blessing in Disguise”
by Ammad Ahmad Farooqi, Venera Rakhmetova, Gulnara Kapanova, Gulnur Tanbayeva, Akmaral Mussakhanova, Akmaral Abdykulova and Alma-Gul Ryskulova
Cells 2023, 12(19), 2382; https://doi.org/10.3390/cells12192382 - 29 Sep 2023
Cited by 6 | Viewed by 3273
Abstract
The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. [...] Read more.
The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. AhR mediates transcriptional programming in a ligand-specific, context-specific and cell-type-specific manner. Pioneering cutting-edge research works have provided fascinating new insights into the mechanistic role of AhR-driven downstream signaling in a wide variety of cancers. AhR ligands derived from food, environmental contaminants and intestinal microbiota strategically activated AhR signaling and regulated multiple stages of cancer. Although AhR has classically been viewed and characterized as a ligand-regulated transcriptional factor, its role as a ubiquitin ligase is fascinating. Accordingly, recent evidence has paradigmatically shifted our understanding and urged researchers to drill down deep into these novel and clinically valuable facets of AhR biology. Our rapidly increasing realization related to AhR-mediated regulation of the ubiquitination and proteasomal degradation of different proteins has started to scratch the surface of intriguing mechanisms. Furthermore, AhR and epigenome dynamics have shown previously unprecedented complexity during multiple stages of cancer progression. AhR not only transcriptionally regulated epigenetic-associated molecules, but also worked with epigenetic-modifying enzymes during cancer progression. In this review, we have summarized the findings obtained not only from cell-culture studies, but also from animal models. Different clinical trials are currently being conducted using AhR inhibitors and PD-1 inhibitors (Pembrolizumab and nivolumab), which confirm the linchpin role of AhR-related mechanistic details in cancer progression. Therefore, further studies are required to develop a better comprehension of the many-sided and “diametrically opposed” roles of AhR in the regulation of carcinogenesis and metastatic spread of cancer cells to the secondary organs. Full article
Show Figures

Figure 1

16 pages, 4860 KB  
Article
New Functions of Intracellular LOXL2: Modulation of RNA-Binding Proteins
by Pilar Eraso, María J. Mazón, Victoria Jiménez, Patricia Pizarro-García, Eva P. Cuevas, Jara Majuelos-Melguizo, Jesús Morillo-Bernal, Amparo Cano and Francisco Portillo
Molecules 2023, 28(11), 4433; https://doi.org/10.3390/molecules28114433 - 30 May 2023
Cited by 5 | Viewed by 3016
Abstract
Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, [...] Read more.
Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process—the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2’s nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs’ targets, points to six RBPs as candidates to be substrates of LOXL2’s action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process. Full article
Show Figures

Graphical abstract

15 pages, 1221 KB  
Review
CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages
by Noorzaileen Eileena Zaidi, Nur Aima Hafiza Shazali, Thean-Chor Leow, Mohd Azuraidi Osman, Kamariah Ibrahim, Wan-Hee Cheng, Kok-Song Lai and Nik Mohd Afizan Nik Abd Rahman
Cells 2022, 11(22), 3556; https://doi.org/10.3390/cells11223556 - 10 Nov 2022
Cited by 15 | Viewed by 6349
Abstract
Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, [...] Read more.
Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer–macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Graphical abstract

22 pages, 1876 KB  
Review
Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer
by Federica Ruscitto, Niccolò Roda, Chiara Priami, Enrica Migliaccio and Pier Giuseppe Pelicci
Int. J. Mol. Sci. 2022, 23(11), 6271; https://doi.org/10.3390/ijms23116271 - 3 Jun 2022
Cited by 12 | Viewed by 5137
Abstract
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis [...] Read more.
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis formation and metastatic outgrowth. Whole-genome sequencing analyses of primary BC and metastases revealed that BC metastatization is a non-genetically selected trait, rather the result of transcriptional and metabolic adaptation to the unfavorable microenvironmental conditions which cancer cells are exposed to (e.g., hypoxia, low nutrients, endoplasmic reticulum stress and chemotherapy administration). In this regard, the latest multi-omics analyses unveiled intra-tumor phenotypic heterogeneity, which determines the polyclonal nature of breast tumors and constitutes a challenge for clinicians, correlating with patient poor prognosis. The present work reviews BC classification and epidemiology, focusing on the impact of metastatic disease on patient prognosis and survival, while describing general principles and current in vitro/in vivo models of the BC metastatic cascade. The authors address here both genetic and phenotypic intrinsic heterogeneity of breast tumors, reporting the latest studies that support the role of the latter in metastatic spreading. Finally, the review illustrates the mechanisms underlying adaptive stress responses during BC metastatic progression. Full article
Show Figures

Figure 1

18 pages, 1691 KB  
Article
4-Pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR)—A Novel Oncometabolite Modulating Cancer-Endothelial Interactions in Breast Cancer Metastasis
by Patrycja Koszalka, Barbara Kutryb-Zajac, Paulina Mierzejewska, Marta Tomczyk, Joanna Wietrzyk, Pawel K. Serafin, Ryszard T. Smolenski and Ewa M. Slominska
Int. J. Mol. Sci. 2022, 23(10), 5774; https://doi.org/10.3390/ijms23105774 - 21 May 2022
Cited by 5 | Viewed by 2739
Abstract
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) [...] Read more.
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 692 KB  
Review
PI3K Inhibitors in Advanced Breast Cancer: The Past, The Present, New Challenges and Future Perspectives
by Paola Fuso, Margherita Muratore, Tatiana D’Angelo, Ida Paris, Luisa Carbognin, Giordana Tiberi, Francesco Pavese, Simona Duranti, Armando Orlandi, Giampaolo Tortora, Giovanni Scambia and Alessandra Fabi
Cancers 2022, 14(9), 2161; https://doi.org/10.3390/cancers14092161 - 26 Apr 2022
Cited by 31 | Viewed by 6667
Abstract
Breast cancer is the leading cause of death in the female population and despite significant efforts made in diagnostic approaches and treatment strategies adopted for advanced breast cancer, the disease still remains incurable. Therefore, development of more effective systemic treatments constitutes a crucial [...] Read more.
Breast cancer is the leading cause of death in the female population and despite significant efforts made in diagnostic approaches and treatment strategies adopted for advanced breast cancer, the disease still remains incurable. Therefore, development of more effective systemic treatments constitutes a crucial need. Recently, several clinical trials were performed to find innovative predictive biomarkers and to improve the outcome of metastatic breast cancer through innovative therapeutic algorithms. In the pathogenesis of breast cancer, the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB/AKT)-mammalian target of rapamycin (mTOR) axis is a key regulator of cell proliferation, growth, survival, metabolism, and motility, making it an interest and therapeutic target. Nevertheless, the PI3K/AKT/mTOR cascade includes a complex network of biological events, needing more sophisticated approaches for their use in cancer treatment. In this review, we described the rationale for targeting the PI3K pathway, the development of PI3K inhibitors and the future treatment directions of different breast cancer subtypes in the metastatic setting. Full article
(This article belongs to the Special Issue Advanced Breast Cancer: From Biology to Cure)
Show Figures

Figure 1

18 pages, 3229 KB  
Article
TGFβ Drives Metabolic Perturbations during Epithelial Mesenchymal Transition in Pancreatic Cancer: TGFβ Induced EMT in PDAC
by Meena U. Rajagopal, Shivani Bansal, Prabhjit Kaur, Shreyans K. Jain, Tatiana Altadil, Charles P. Hinzman, Yaoxiang Li, Joanna Moulton, Baldev Singh, Sunil Bansal, Siddheshwar Kisan Chauthe, Rajbir Singh, Partha P. Banerjee, Mark Mapstone, Massimo S. Fiandaca, Howard J. Federoff, Keith Unger, Jill P. Smith and Amrita K. Cheema
Cancers 2021, 13(24), 6204; https://doi.org/10.3390/cancers13246204 - 9 Dec 2021
Cited by 15 | Viewed by 4830
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy wherein a majority of patients present metastatic disease at diagnosis. Although the role of epithelial to mesenchymal transition (EMT), mediated by transforming growth factor beta (TGFβ), in imparting an aggressive phenotype to PDAC is [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy wherein a majority of patients present metastatic disease at diagnosis. Although the role of epithelial to mesenchymal transition (EMT), mediated by transforming growth factor beta (TGFβ), in imparting an aggressive phenotype to PDAC is well documented, the underlying biochemical pathway perturbations driving this behaviour have not been elucidated. We used high-resolution mass spectrometry (HRMS) based molecular phenotyping approach in order to delineate metabolic changes concomitant to TGFβ-induced EMT in pancreatic cancer cells. Strikingly, we observed robust changes in amino acid and energy metabolism that may contribute to tumor invasion and metastasis. Somewhat unexpectedly, TGFβ treatment resulted in an increase in intracellular levels of retinoic acid (RA) that in turn resulted in increased levels of extracellular matrix (ECM) proteins including fibronectin (FN) and collagen (COL1). These findings were further validated in plasma samples obtained from patients with resectable pancreatic cancer. Taken together, these observations provide novel insights into small molecule dysregulation that triggers a molecular cascade resulting in increased EMT-like changes in pancreatic cancer cells, a paradigm that can be potentially targeted for better clinical outcomes. Full article
(This article belongs to the Special Issue Tumor Microenvironment of Pancreatic Cancer)
Show Figures

Figure 1

25 pages, 1991 KB  
Review
Metabolic Potential of Cancer Cells in Context of the Metastatic Cascade
by Mohaned Benzarti, Catherine Delbrouck, Laura Neises, Nicole Kiweler and Johannes Meiser
Cells 2020, 9(9), 2035; https://doi.org/10.3390/cells9092035 - 5 Sep 2020
Cited by 14 | Viewed by 6088
Abstract
The metastatic cascade is a highly plastic and dynamic process dominated by cellular heterogeneity and varying metabolic requirements. During this cascade, the three major metabolic pillars, namely biosynthesis, RedOx balance, and bioenergetics, have variable importance. Biosynthesis has superior significance during the proliferation-dominated steps [...] Read more.
The metastatic cascade is a highly plastic and dynamic process dominated by cellular heterogeneity and varying metabolic requirements. During this cascade, the three major metabolic pillars, namely biosynthesis, RedOx balance, and bioenergetics, have variable importance. Biosynthesis has superior significance during the proliferation-dominated steps of primary tumour growth and secondary macrometastasis formation and only minor relevance during the growth-independent processes of invasion and dissemination. Consequently, RedOx homeostasis and bioenergetics emerge as conceivable metabolic key determinants in cancer cells that disseminate from the primary tumour. Within this review, we summarise our current understanding on how cancer cells adjust their metabolism in the context of different microenvironments along the metastatic cascade. With the example of one-carbon metabolism, we establish a conceptual view on how the same metabolic pathway can be exploited in different ways depending on the current cellular needs during metastatic progression. Full article
Show Figures

Figure 1

20 pages, 6611 KB  
Article
Hexokinase 2 Regulates Ovarian Cancer Cell Migration, Invasion and Stemness via FAK/ERK1/2/MMP9/NANOG/SOX9 Signaling Cascades
by Michelle K. Y. Siu, Yu-Xin Jiang, Jing-Jing Wang, Thomas H. Y. Leung, Chae Young Han, Benjamin K. Tsang, Annie N. Y. Cheung, Hextan Y. S. Ngan and Karen K. L. Chan
Cancers 2019, 11(6), 813; https://doi.org/10.3390/cancers11060813 - 12 Jun 2019
Cited by 113 | Viewed by 6749 | Correction
Abstract
Metabolic reprogramming is a common phenomenon in cancers. Thus, glycolytic enzymes could be exploited to selectively target cancer cells in cancer therapy. Hexokinase 2 (HK2) converts glucose to glucose-6-phosphate, the first committed step in glucose metabolism. Here, we demonstrated that HK2 was overexpressed [...] Read more.
Metabolic reprogramming is a common phenomenon in cancers. Thus, glycolytic enzymes could be exploited to selectively target cancer cells in cancer therapy. Hexokinase 2 (HK2) converts glucose to glucose-6-phosphate, the first committed step in glucose metabolism. Here, we demonstrated that HK2 was overexpressed in ovarian cancer and displayed significantly higher expression in ascites and metastatic foci. HK2 expression was significantly associated with advanced stage and high-grade cancers, and was an independent prognostic factor. Functionally, knockdown of HK2 in ovarian cancer cell lines and ascites-derived tumor cells hindered lactate production, cell migration and invasion, and cell stemness properties, along with reduced FAK/ERK1/2 activation and metastasis- and stemness-related genes. 2-DG, a glycolysis inhibitor, retarded cell migration and invasion and reduced stemness properties. Inversely, overexpression of HK2 promoted cell migration and invasion through the FAK/ERK1/2/MMP9 pathway, and enhanced stemness properties via the FAK/ERK1/2/NANOG/SOX9 cascade. HK2 abrogation impeded in vivo tumor growth and dissemination. Notably, ovarian cancer-associated fibroblast-derived IL-6 contributed to its up-regulation. In conclusion, HK2, which is regulated by the tumor microenvironment, controls lactate production and contributes to ovarian cancer metastasis and stemness regulation via FAK/ERK1/2 signaling pathway-mediated MMP9/NANOG/SOX9 expression. HK2 could be a potential prognostic marker and therapeutic target for ovarian cancer. Full article
Show Figures

Figure 1

33 pages, 3140 KB  
Review
Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications
by Nishant Gandhi and Gokul M Das
Cells 2019, 8(2), 89; https://doi.org/10.3390/cells8020089 - 26 Jan 2019
Cited by 188 | Viewed by 19507
Abstract
Current standard-of-care (SOC) therapy for breast cancer includes targeted therapies such as endocrine therapy for estrogen receptor-alpha (ERα) positive; anti-HER2 monoclonal antibodies for human epidermal growth factor receptor-2 (HER2)-enriched; and general chemotherapy for triple negative breast cancer (TNBC) subtypes. These therapies frequently fail [...] Read more.
Current standard-of-care (SOC) therapy for breast cancer includes targeted therapies such as endocrine therapy for estrogen receptor-alpha (ERα) positive; anti-HER2 monoclonal antibodies for human epidermal growth factor receptor-2 (HER2)-enriched; and general chemotherapy for triple negative breast cancer (TNBC) subtypes. These therapies frequently fail due to acquired or inherent resistance. Altered metabolism has been recognized as one of the major mechanisms underlying therapeutic resistance. There are several cues that dictate metabolic reprogramming that also account for the tumors’ metabolic plasticity. For metabolic therapy to be efficacious there is a need to understand the metabolic underpinnings of the different subtypes of breast cancer as well as the role the SOC treatments play in targeting the metabolic phenotype. Understanding the mechanism will allow us to identify potential therapeutic vulnerabilities. There are some very interesting questions being tackled by researchers today as they pertain to altered metabolism in breast cancer. What are the metabolic differences between the different subtypes of breast cancer? Do cancer cells have a metabolic pathway preference based on the site and stage of metastasis? How do the cell-intrinsic and -extrinsic cues dictate the metabolic phenotype? How do the nucleus and mitochondria coordinately regulate metabolism? How does sensitivity or resistance to SOC affect metabolic reprogramming and vice-versa? This review addresses these issues along with the latest updates in the field of breast cancer metabolism. Full article
(This article belongs to the Special Issue Mitochondrial Metabolic Reprogramming and Nuclear Crosstalk in Cancer)
Show Figures

Figure 1

20 pages, 8837 KB  
Article
SPARC Inhibits Metabolic Plasticity in Ovarian Cancer
by Christine Naczki, Bincy John, Chirayu Patel, Ashlyn Lafferty, Alia Ghoneum, Hesham Afify, Michael White, Amanda Davis, Guangxu Jin, Steven Kridel and Neveen Said
Cancers 2018, 10(10), 385; https://doi.org/10.3390/cancers10100385 - 16 Oct 2018
Cited by 23 | Viewed by 5483
Abstract
The tropism of ovarian cancer (OvCa) to the peritoneal cavity is implicated in widespread dissemination, suboptimal surgery, and poor prognosis. This tropism is influenced by stromal factors that are not only critical for the oncogenic and metastatic cascades, but also in the modulation [...] Read more.
The tropism of ovarian cancer (OvCa) to the peritoneal cavity is implicated in widespread dissemination, suboptimal surgery, and poor prognosis. This tropism is influenced by stromal factors that are not only critical for the oncogenic and metastatic cascades, but also in the modulation of cancer cell metabolic plasticity to fulfill their high energy demands. In this respect, we investigated the role of Secreted Protein Acidic and Rich in Cysteine (SPARC) in metabolic plasticity of OvCa. We used a syngeneic model of OvCa in Sparc-deficient and proficient mice to gain comprehensive insight into the paracrine effect of stromal-SPARC in metabolic programming of OvCa in the peritoneal milieu. Metabolomic and transcriptomic profiling of micro-dissected syngeneic peritoneal tumors revealed that the absence of stromal-Sparc led to significant upregulation of the enzymes involved in glycolysis, TCA cycle, and mitochondrial electron transport chain (ETC), and their metabolic intermediates. Absence of stromal-Sparc increased reactive oxygen species and perturbed redox homeostasis. Recombinant SPARC exerted a dose-dependent inhibitory effect on glycolysis, mitochondrial respiration, ATP production and ROS generation. Comparative analysis with human tumors revealed that SPARC-regulated ETC-signature inversely correlated with SPARC transcripts. Targeting mitochondrial ETC by phenformin treatment of tumor-bearing Sparc-deficient and proficient mice mitigated the effect of SPARC-deficiency and significantly reduced tumor burden, ROS, and oxidative tissue damage in syngeneic tumors. In summary, our findings provide novel insights into the role of SPARC in regulating metabolic plasticity and bioenergetics in OvCa, and shines light on its potential therapeutic efficacy. Full article
Show Figures

Figure 1

Back to TopTop