Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,454)

Search Parameters:
Keywords = metabolite changes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2125 KiB  
Article
Transcriptome and Metabolome Analysis of the Leaf Colour Mutation Mechanism in a Light-Green Leaf Mutant of Maize
by Dan Li, Kuangzheng Qu, Dianrong Ma, Zhenxing Zhu and Xiaochun Lu
Agronomy 2025, 15(6), 1364; https://doi.org/10.3390/agronomy15061364 (registering DOI) - 31 May 2025
Abstract
Leaf colour is a valuable morphological phenotype for studying plant metabolism and physiology. To elucidate the mutation mechanism of leaf colour variation in maize, we compared the ethyl methylsulfonate (EMS)-induced maize mutant zmpgl, which has light green leaves, with the wild-type maize [...] Read more.
Leaf colour is a valuable morphological phenotype for studying plant metabolism and physiology. To elucidate the mutation mechanism of leaf colour variation in maize, we compared the ethyl methylsulfonate (EMS)-induced maize mutant zmpgl, which has light green leaves, with the wild-type maize line B73. At the seedling stage, the zmpgl mutant presented distinct light green leaf colouration. Comprehensive analyses revealed that both the photosynthetic parameters and pigment contents of the mutant seedlings were significantly lower than those of the wild-type seedlings. Transmission electron microscopy of the mutant leaves revealed alterations in the chloroplast structure, which consequently impaired the photosynthetic efficiency and accumulation of organic matter. Through integrated transcriptomic and metabolomic profiling, we identified differentially expressed genes (DEGs) and differentially abundant metabolites associated with the zmpgl phenotype. These molecular components were associated with pathways related to plant metabolism, chloroplast structure-associated hormone signalling, and redox homeostasis. Further investigation revealed a significant differential expression of genes involved in several critical biological processes, including tetrapyrrole synthesis, lipid metabolism (related to leaf photosynthesis), amino acid metabolism (associated with chlorophyll synthesis and the light response), and abscisic acid (ABA) biosynthesis. These processes are crucial for plant photosynthesis, respiration, and catalytic functions. This study not only provides a valuable resource for further investigation of plant photosynthetic systems but also establishes a foundational framework for the comprehensive functional characterisation of genes involved in the leaf colour change in the zmpgl mutant. These findings contribute to our understanding of the molecular basis of leaf colour variation and its impact on photosynthetic performance in maize. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
22 pages, 3214 KiB  
Article
Transcriptome and Metabolome Analyses of the Salt Stress Response Mechanism in Lonicera caerulea
by Dandan Zang, Yadong Duan, Hengtian Zhao, Ning Wang, Yiming Zhang, Yanmin Wang and Huizi Liu
Biology 2025, 14(6), 641; https://doi.org/10.3390/biology14060641 (registering DOI) - 31 May 2025
Abstract
Lonicera caerulea is a wild fruit species with high edible and medicinal value. However, the molecular regulation and metabolic mechanisms of L. caerulea under salt stress are still unclear. Salt stress causes damage to the cell membrane of L. caerulea and induces changes [...] Read more.
Lonicera caerulea is a wild fruit species with high edible and medicinal value. However, the molecular regulation and metabolic mechanisms of L. caerulea under salt stress are still unclear. Salt stress causes damage to the cell membrane of L. caerulea and induces changes in malondialdehyde content, relative electrolyte leakage, leaves’ stomatal opening, and the water loss rate. It also increases the activity of antioxidant enzymes and the content of soluble sugars. A comprehensive transcriptomic and metabolomic analysis of L. caerulea exposed to salt stress at four different (treatment) time intervals yielded a total of 99,574 unigenes and 1375 metabolites. Among these, 4081, 4042, and 4403 differentially expressed genes (DEGs) were identified in 12 transcriptomes, while 776, 832, and 793 differentially accumulated metabolites (DAMs) were detected in 12 metabolomes. The DEGs play important roles in several signaling pathways, including MAPK signaling, fatty acid metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, and plant hormone signal transduction. KEGG pathway enrichment analysis revealed that these DEGs and DAMs are associated with flavonoid and lipid biosynthesis pathways. The combined transcriptomic and metabolomic analyses suggest that flavonoid and fatty acid compounds may be involved in regulating plant responses to salt stress. These findings will lay the foundation for the selection of L. caerulea germplasm resources and the expansion of its cultivation area. These research findings will lay the foundation for the cultivation of salt-tolerant new varieties of L. caerulea and their planting in saline–alkali soils. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
35 pages, 1918 KiB  
Review
Microbial Secondary Metabolites and Their Use in Achieving Sustainable Agriculture: Present Achievements and Future Challenges
by Bettina Berquó Marks, Marco Antonio Nogueira and Mariangela Hungria
Agronomy 2025, 15(6), 1350; https://doi.org/10.3390/agronomy15061350 (registering DOI) - 30 May 2025
Viewed by 42
Abstract
The agricultural sector faces serious challenges due to climate change, threatening global food security. In addition to economic impacts, decreasing agricultural production jeopardizes nutrition, particularly in vulnerable populations. The implementation of mitigation actions and sustainable alternatives becomes urgent. In this context, microbial secondary [...] Read more.
The agricultural sector faces serious challenges due to climate change, threatening global food security. In addition to economic impacts, decreasing agricultural production jeopardizes nutrition, particularly in vulnerable populations. The implementation of mitigation actions and sustainable alternatives becomes urgent. In this context, microbial secondary metabolites (MSMs) emerge as a promising solution. Some of these molecules have the potential to strengthen soil health, increase plant resistance to pests and adverse weather conditions, and improve nutrient availability, for example, LCOs (lipochitooligosaccharides) to improve legume nodulation and several other physiological changes in the plant, and several pyrazines with biocontrol potential. However, although the potential benefits are clear, the industrial viability of commercially using these compounds has not yet been fully established. In addition, the connection of the academic research on MSMs with their potential role in agriculture as bio-inputs is still limited. This review aims to contribute to filling the gaps by aggregating information on the classification, application, and synthesis of these molecules. Additionally, we discuss strategies and technologies that could enhance the use of MSMs in agriculture. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
33 pages, 6049 KiB  
Article
Comprehensive Evaluation of the Effects of Hot Air Drying Temperature on the Chemical Composition, Flavor Characteristics and Biological Activity of Houttuynia cordata Thunb.
by Ning Yin, Jing Luo, Chaoping Wang, Yaokun Xiong, Yong Sun, En Yuan and Hua Zhang
Foods 2025, 14(11), 1962; https://doi.org/10.3390/foods14111962 (registering DOI) - 30 May 2025
Viewed by 37
Abstract
This study systematically investigated the drying kinetics and quality characteristics of Houttuynia cordata Thunb. (HCT) under different processing conditions, evaluating how freeze-drying and hot-air drying (40 °C, 50 °C, 60 °C) affect bioactive compound preservation, antioxidant efficacy, and metabolic profiles to identify [...] Read more.
This study systematically investigated the drying kinetics and quality characteristics of Houttuynia cordata Thunb. (HCT) under different processing conditions, evaluating how freeze-drying and hot-air drying (40 °C, 50 °C, 60 °C) affect bioactive compound preservation, antioxidant efficacy, and metabolic profiles to identify the optimal drying method for maximizing its functional benefits. A thin-layer drying model was established to evaluate drying parameters such as effective diffusion coefficient and activation energy. Changes in chemical composition, sensory properties, and antioxidant activity were analyzed using UHPLC-LTQ-Orbitrap-MS, electronic nose/tongue, and HepG2 cell assays. Results showed that the Aghabashlo model was optimal for demonstrating the drying process with the best fit. The 50 °C heating temperature was shown to yield the highest diffusion coefficient. Hot-air drying at 50 °C balanced efficiency and sensory quality, whereas 60 °C significantly altered flavor and metabolite composition. Results of the metabolomic analysis indicated that freeze-drying enhanced the retention of phenolic acids and flavonoids, while hot-air drying led to increased fatty acid metabolites. Freeze-drying preserved the antioxidant activity and natural flavor of HCT. Nevertheless, the metabolic fate of rutin, quercetin, and chlorogenic acid was not significantly affected by the drying method (freeze-drying vs. 50 °C drying). These findings provide a theoretical foundation for improving HCT’s therapeutic and sensory qualities through optimized drying techniques. Full article
48 pages, 1818 KiB  
Review
Exercise Suppresses Appetite in Obesity: A Biochemical, Metabolic, and Molecular Approach
by Omid Razi, Nastaran Zamani, Camila de Moraes, Ismail Laher and Marios Hadjicharalambous
Appl. Sci. 2025, 15(11), 6191; https://doi.org/10.3390/app15116191 (registering DOI) - 30 May 2025
Viewed by 37
Abstract
Exercise suppresses appetite in individuals with obesity irrespective of the type, duration, or intensity of the exercise. This effect is mediated through various physiological and biochemical mechanisms. Exercise influences appetite-regulatory hormones such as ghrelin and leptin, reducing hunger signals. Additionally, exercise generates metabolites [...] Read more.
Exercise suppresses appetite in individuals with obesity irrespective of the type, duration, or intensity of the exercise. This effect is mediated through various physiological and biochemical mechanisms. Exercise influences appetite-regulatory hormones such as ghrelin and leptin, reducing hunger signals. Additionally, exercise generates metabolites and myokines, along with hepatokines, which modulate appetite suppression. Brain-derived neurotrophic factor (BDNF) is also implicated in modulating appetite. Changes in eating behaviors, gastric motility, and gastric emptying further contribute to a reduced appetite. Mental stress and body temperature alterations during exercise can also impact hunger levels. This review synthesizes current evidence and provides specific biochemical, metabolic and molecular mechanisms of how exercise and obesity affect appetite regulation. More specifically, it is extensively discussed the effect of exercise and obesity on: 1, endocrine mediators (hepatokines, metabolites, myokines, and neurotrophins); 2, physiological modulators (gastric emptying and body temperature); and 3, behavioral influences (eating patterns and visual food cues) in association with appetite regulation. Collectively, these factors highlight the complex interplay between physical activity and appetite regulation, offering insights into potential therapeutic strategies for managing obesity through exercise. Full article
(This article belongs to the Special Issue Exercise, Fitness, Human Performance and Health: 2nd Edition)
16 pages, 5765 KiB  
Article
Integrative Analyses of Metabolome and Transcriptome Reveal Scion–Stock Asymmetry Reduction and Shift of Sugar Metabolism During Graft Junction Formation in Malus Domestica (‘Hanfu’) Homograft
by Wenting Huang, Shengyuan Wang, Chong Mao, Ling Xiang, Xiao Zhang, Feng Jiang, Yuqin Cheng and Tianzhong Li
Int. J. Mol. Sci. 2025, 26(11), 5290; https://doi.org/10.3390/ijms26115290 (registering DOI) - 30 May 2025
Viewed by 27
Abstract
Grafting is widely used as a breeding method to enhance productivity and resilience. However, the mechanisms of graft healing remain poorly understood. In this study, we performed Malus domestica (‘Hanfu’) homograft and observed morphological and anatomical changes during the healing process in the [...] Read more.
Grafting is widely used as a breeding method to enhance productivity and resilience. However, the mechanisms of graft healing remain poorly understood. In this study, we performed Malus domestica (‘Hanfu’) homograft and observed morphological and anatomical changes during the healing process in the graft junction within 40 days after grafting (DAG). The results showed that the healing process was divided into two phases: 0–20 days (callus proliferation phase) and 20–40 days (vascular bundle reconnection phase). During the early stage (20 DAG), gene expression exhibited asymmetry between the scion and rootstock, whereas synchronization occurred in the late stage (40 DAG). Transcriptomic and metabolomic analyses of the scion and rootstock during these two critical phases identified that differentially expressed genes (DEGs) were enriched in “Carbon fixation by Calvin cycle” and “photosynthesis-related pathways”, while differentially expressed metabolites (DEMs) were clustered in “Galactose metabolism”, implying a critical role of carbohydrates in grafting. Genes encoding enzymes involved in sugar biosynthesis, such as amylase (MdAMY), invertase (MdINV), galactinol synthase (MdGS), raffinose synthase (MdRS), and stachyose synthase (MdSS), were generally more highly expressed during Phase I than Phase II. In contrast, genes encoding enzymes related to sugar consumption, such as fructose kinases (MdSUS), cellulose synthases (MdCESA), and galacturonosyltransferase (MdGAUT), showed weak expression in Phase I but were strongly activated in Phase II. Glucose, sucrose, galactose, and melibiose levels increased significantly at 20 DAG compared with 0 DAG and subsequently decreased by 40 DAG. Exogenous application of 0.5% sucrose, raffinose, or melibiose significantly enhanced vascular bundle reconnection rates at 7 DAG compared with the control group (p < 0.01), confirming the pivotal role of sugar metabolism in graft healing. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 4933 KiB  
Article
Integrated Transcriptome and Metabolome Analyses Reveal Complex Oxidative Damage Mechanisms in Rice Seedling Roots Under Different Carbonate Stresses
by Yang Cao, Fei Hao, Jingpeng Li, Bolun Zhang, Zeming Li, Tiantian Liu, Yan Gao, Xuguang Niu, Xiaohu Liu, Hui Zhang and Lijuan Yang
Antioxidants 2025, 14(6), 658; https://doi.org/10.3390/antiox14060658 - 30 May 2025
Viewed by 126
Abstract
Alkaline stress (AS) is one of the major threats that severely affects rice growth and grain yield. However, the differences in the damage caused by the main components of soda saline-alkali land, sodium carbonate (Na2CO3), and sodium bicarbonate (NaHCO [...] Read more.
Alkaline stress (AS) is one of the major threats that severely affects rice growth and grain yield. However, the differences in the damage caused by the main components of soda saline-alkali land, sodium carbonate (Na2CO3), and sodium bicarbonate (NaHCO3) to rice seedlings are still unclear. This study explored the effects of different carbonate stresses (Na2CO3 and NaHCO3) on rice seedling growth, root damage, physiological responses, and molecular changes. By administering equivalent concentrations of sodium ions through these different carbonate treatments, we observed that both stresses significantly inhibited rice growth. However, the inhibitory effect was more pronounced under the Na2CO3 treatment. Compared with the NaHCO3 treatment, Na2CO3 stress caused more severe damage to root cell membranes and led to a substantial decline in root vigor. Moreover, the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) were markedly increased, indicating that Na2CO3 induces more severe oxidative damage. Transcriptomic and metabolomic analyses revealed a greater number of differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) in the Na2CO3 treatment group. The integrative analysis and validation demonstrated that pathways related to auxin, ascorbate, flavonoids, and glutathione metabolism were particularly enriched under Na2CO3 stress. These findings suggest that Na2CO3 stress may interfere with auxin signaling pathways and exerts a more profound impact on endogenous antioxidant systems, affecting rice growth at multiple levels. In summary, this research highlights the differential impacts of Na2CO3 and Na2CO3 stresses on rice seedling growth, physiology, and molecular processes, particularly oxidative damage and antioxidant responses. The insights gained provide a valuable theoretical foundation for enhancing rice alkali tolerance and developing strategies for the rational cultivation of rice in saline-alkaline soils. Full article
Show Figures

Figure 1

19 pages, 1995 KiB  
Article
Identification of Key Genes Controlling Flavor Changes During Jujube Fruit Development by Integrating Transcriptome and Metabolome Analysis
by Xin Zhang, Xurui Wen, Wendi Xu, Yufeng Ren, Tianjun Wei, Hui Li, Jun Zhou and Zhanlin Bei
Agronomy 2025, 15(6), 1337; https://doi.org/10.3390/agronomy15061337 - 29 May 2025
Viewed by 116
Abstract
To elucidate the molecular mechanisms that underlie jujube (Ziziphus jujuba) flavor synthesis, we integrated transcriptomic and metabolomic analyses on the ‘Lingwuchangzao’ cultivar across seven developmental stages. Our multi-omics approach detected 750 metabolites, categorized into 11 primary and 35 secondary classes, with [...] Read more.
To elucidate the molecular mechanisms that underlie jujube (Ziziphus jujuba) flavor synthesis, we integrated transcriptomic and metabolomic analyses on the ‘Lingwuchangzao’ cultivar across seven developmental stages. Our multi-omics approach detected 750 metabolites, categorized into 11 primary and 35 secondary classes, with K-means clustering revealing significant stage-specific variations in sugars, alcohols, and organic acids. KEGG enrichment analysis identified differentially expressed genes (DEGs) in key metabolic pathways, including carbohydrate metabolism and plant hormone signal transduction, showing dynamic changes during development. Weighted gene co-expression network analysis (WGCNA) further pinpointed gene networks related to starch/sucrose and carbon metabolism, and eight novel genes linked to starch and fatty acid metabolism. Notably, the white ripening stage (BS) emerged as the critical phase for flavor compound accumulation, offering new molecular insights and targets for quality improvement. Full article
11 pages, 2259 KiB  
Article
Hepatocellular Metabolic Profile: Understanding Post-Thawing Metabolic Shift in Primary Hepatocytes In Vitro
by Salvator Palmisano, Joshua D. Breidenbach, Brett R. Blackwell, Tara Harvey, Kes A. Luchini, M. Grace Thornhill, Erick S. LeBrun, Phillip Mach, Trevor Glaros and Emilio S. Rivera
Cells 2025, 14(11), 803; https://doi.org/10.3390/cells14110803 - 29 May 2025
Viewed by 97
Abstract
Primary human hepatocytes (PHHs) are widely used as in vitro models for liver function and drug metabolism studies, yet their metabolic stability post-thawing remains an open question. To better characterize early metabolic changes, we conducted a time-course experiment using liquid chromatography-tandem mass spectrometry [...] Read more.
Primary human hepatocytes (PHHs) are widely used as in vitro models for liver function and drug metabolism studies, yet their metabolic stability post-thawing remains an open question. To better characterize early metabolic changes, we conducted a time-course experiment using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze metabolic shifts in PHHs cultured in suspension. Unexposed and exposed (acetaminophen-treated) samples were evaluated, and TITAN analysis was applied to determine the time point of maximal metabolic change at both individual metabolite and global metabolic profile levels. Our results indicate that the majority of metabolic shifts occur within the first five hours post-thawing. In the early culture time points, substantial metabolic overlap was observed between unexposed and exposed cells, suggesting a conserved biological response likely related to cellular recovery. However, at later time points, metabolite profiles diverged, with acetaminophen treatment-specific metabolic changes emerging, potentially reflecting differences in homeostatic restoration versus hepatotoxic responses. Our study highlights the importance of considering early post-thawing metabolic dynamics in experimental design and offers insights for optimizing hepatocyte culture protocols to better replicate in vivo physiological conditions. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

18 pages, 5983 KiB  
Article
Plasma and Fecal Metabolites Combined with Gut Microbiome Reveal Systemic Metabolic Shifts in 60Co Gamma-Irradiated Rats
by Jie Zong, Haiyang Wu, Xuan Hu, Ami Yao, Wenhua Zhu, Guifang Dou, Shuchen Liu, Xiaoxia Zhu, Ruolan Gu, Yunbo Sun, Zhuona Wu, Shanshan Wang and Hui Gan
Metabolites 2025, 15(6), 363; https://doi.org/10.3390/metabo15060363 - 29 May 2025
Viewed by 136
Abstract
Background: High-dose γ-ray exposure (≥7 Gy) in nuclear emergencies induces life-threatening acute radiation syndrome, characterized by rapid hematopoietic collapse (leukocytes <0.5 × 10⁹/L) and gastrointestinal barrier failure. While clinical biomarkers like leukocyte depletion guide current therapies targeting myelosuppression, the concomitant metabolic disturbances [...] Read more.
Background: High-dose γ-ray exposure (≥7 Gy) in nuclear emergencies induces life-threatening acute radiation syndrome, characterized by rapid hematopoietic collapse (leukocytes <0.5 × 10⁹/L) and gastrointestinal barrier failure. While clinical biomarkers like leukocyte depletion guide current therapies targeting myelosuppression, the concomitant metabolic disturbances and gut microbiota dysbiosis—critical determinants of delayed mortality—remain insufficiently profiled across the 28-day injury-recovery continuum. Methods: This study investigates the effects of 60Co γ-ray irradiation on metabolic characteristics and gut microbiota in Sprague Dawley rats using untargeted metabolomics and 16S rRNA sequencing. Meanwhile, body weight and complete blood counts were measured. Results: Body weight exhibited significant fluctuations, with the most pronounced deviation observed at 14 days. Blood counts revealed a rapid decline in white blood cells, red blood cells, and platelets post-irradiation, reaching nadirs at 7–14 days, followed by gradual recovery to near-normal levels by 28 days. Untargeted metabolomics identified 32 upregulated and 33 downregulated plasma metabolites at 14 days post-irradiation, while fecal metabolites showed 47 upregulated and 18 downregulated species at 3 days. Key metabolic pathways impacted included Glycerophospholipid metabolism, alpha-linolenic acid metabolism, and biosynthesis of unsaturated fatty acids. Gut microbiota analysis demonstrated no significant change in α-diversity but significant β-diversity shifts (p < 0.05), indicating a marked alteration in the compositional structure of the intestinal microbial community following radiation exposure. Principal coordinate analysis confirmed distinct clustering between control and irradiated groups, with increased abundance of Bacteroidota and decreased Firmicutes in irradiated rats. These findings highlight dynamic metabolic and microbial disruptions post-irradiation, with recovery patterns suggesting a 28-day restoration cycle. Spearman’s rank correlation analysis explored associations between the top 20 fecal metabolites and 50 abundant bacterial taxa. Norank_f_Muribaculaceae, Prevotellaceae_UCG-001, and Bacteroides showed significant correlations with various radiation-altered metabolites, highlighting metabolite–microbiota relationships post-radiation. Conclusions: This study provides insights into potential biomarkers for radiation-induced physiological damage and underscores the interplay between systemic metabolism and gut microbiota in radiation response. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

20 pages, 1443 KiB  
Article
Oral Glucoraphanin and Curcumin Supplements Modulate Key Cytoprotective Enzymes in the Skin of Healthy Human Subjects: A Randomized Trial
by Anna L. Chien, Hua Liu, Saleh Rachidi, Jessica L. Feig, Ruizhi Wang, Kristina L. Wade, Katherine K. Stephenson, Aysegul Sevim Kecici, Jed W. Fahey and Sewon Kang
Metabolites 2025, 15(6), 360; https://doi.org/10.3390/metabo15060360 - 29 May 2025
Viewed by 151
Abstract
Background/Objectives: Oxidative stress plays a pivotal role in skin aging and carcinogenesis. Phytochemicals such as sulforaphane (SF, from broccoli sprouts or seeds) or curcumin (CUR, from turmeric) can be highly protective against this stress. They each induce a suite of cytoprotective and antioxidant [...] Read more.
Background/Objectives: Oxidative stress plays a pivotal role in skin aging and carcinogenesis. Phytochemicals such as sulforaphane (SF, from broccoli sprouts or seeds) or curcumin (CUR, from turmeric) can be highly protective against this stress. They each induce a suite of cytoprotective and antioxidant enzymes that are coordinately transcribed via the Keap1-Nrf2-ARE pathway in mammals, such as the prototypical cytoprotective enzyme NAD(P)H dehydrogenase 1 (NQO1). Methods: Eighteen healthy human volunteers (9 males, 9 females, aged 18–69. were randomized to receive daily glucoraphanin (GR), which is converted to SF upon ingestion (450 mg; 1 mmol), CUR (1000 mg; 2.7 mmol), or both (450 mg GR + 1000 mg CUR), as oral supplements. After 8 days of a diet low in both compounds, blood and urine were collected for compliance and biomarker measurements. Randomized spots on the buttock’s skin were exposed to 2 x M.E.D. of UVB, and punch biopsies were obtained 1 and 3 days later for biomarker and histological measurement. Erythema was measured with a chromameter daily for 3 consecutive days following UVB. The process was repeated after receiving oral supplements, both with and without UVB exposure. Results: Compared to baseline, each treatment (n = 6 for each) induced NQO1 mRNA levels in skin biopsies: 3.1-fold with GR, 3.3-fold with CUR, and 3.6-fold with the combination of GR and CUR. Across all treatments (n = 18), expression of the pro-inflammatory cytokines IL-1β and TNF-α were reduced, as were IL-6, IL-17, STING, and CYR61, though less robustly. Modulation of these biomarkers persisted, but was less pronounced, in biopsies taken following UV exposure. The presence of SF and its metabolites in the skin post-treatment was confirmed by examining 6 of 12 subjects who ingested GR. Supplement effects on erythema following UV exposure were not significant, and no significant changes were measured in the same biomarkers in blood cells (PBMC), or by counting dyskeratotic keratinocytes. Supplements were well tolerated and compliance was excellent. Conclusions: Oral GR and CUR are well tolerated and have for the first time been shown to result in increased expression of cytoprotective genes and reduced expression of inflammatory cytokine genes in human skin in vivo. This mechanism-based clinical study suggests that an antioxidant, anti-inflammatory, and cytoprotective benefit from these oral supplements is delivered to the skin in humans. Full article
(This article belongs to the Special Issue Food Intake and Bioactive Metabolism in Humans)
Show Figures

Figure 1

22 pages, 2306 KiB  
Article
Seasonal and Edaphic Modulation Influences the Phenolic Contents and Antioxidant Activity in Cork Oak (Quercus suber L.): Evidence from the Algerian Mediterranean Forest
by Melia Hoceini-Bentaha, Saliha Kadi-Bennane, Mohand Ouidir Boussoum, El-Hafid Nabti, Nassima Kadir, Nadjet Mestar-Guechaoui, Nasir A. Ibrahim, Mohammed Saad Aleissa, Nosiba S. Basher, Malika Boudiaf, Lamia Trabelsi and Karim Houali
Forests 2025, 16(6), 906; https://doi.org/10.3390/f16060906 - 28 May 2025
Viewed by 55
Abstract
The cork oak (Quercus suber L.), an emblematic species of Mediterranean biodiversity, is the focus of this study, which aimed to characterize the relationships between abiotic factors and variations in its secondary metabolites. Rhizospheric soil samples (collected at two depths: 0–15 cm [...] Read more.
The cork oak (Quercus suber L.), an emblematic species of Mediterranean biodiversity, is the focus of this study, which aimed to characterize the relationships between abiotic factors and variations in its secondary metabolites. Rhizospheric soil samples (collected at two depths: 0–15 cm and 15–25 cm), roots, and leaves were gathered in Azouza forest (Kabylia, Algeria) during the winter and summer seasons of 2019. Analyses were conducted on total polyphenol (TPP), flavonoid (FLAV), and tannin (TT) contents, and their antioxidant activities were assessed using DPPH, FRAP, and TAC assays. The results reveal seasonal and soil-depth variability, with the highest concentrations observed in leaves (170.2 mg GAE/g DW for TPP, 14.15 mg TAE/g DW for TT, and 6.4 mg QE/g DW for FLAV). Antioxidant activity was also more pronounced in leaves, with IC50 values of 130.90 µg/mL (DPPH) and 61.22 µg/mL (FRAP). Roots from the deeper layer (15–25 cm) exhibited higher phenolic compound levels and greater antioxidant activity compared to those from the superficial layer (0–15 cm). Principal component analysis showed that 93% of the variance was explained by seasonal factors and sampling depth, confirming their key role in secondary metabolite synthesis and biological activity. The cork oak’s biochemical adaptability to environmental changes reveals climate adaptation strategies, highlighting soil–plant influences on its metabolic responses in Mediterranean ecosystems. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

18 pages, 1899 KiB  
Systematic Review
Exploring Metabolic Signatures: Unraveling the Association with Obesity in Children and Adolescents
by Diamanto Koutaki, Garyfallia Stefanou, Sofia-Maria Genitsaridi, Eleni Ramouzi, Athanasia Kyrkili, Meropi D. Kontogianni, Eleni Kokkou, Eleni Giannopoulou, Penio Kassari and Evangelia Charmandari
Nutrients 2025, 17(11), 1833; https://doi.org/10.3390/nu17111833 - 28 May 2025
Viewed by 38
Abstract
Background: Childhood obesity is a growing global health concern. Metabolomics, the comprehensive study of metabolites within biological systems, offers a powerful approach to better define the phenotype and understand the complex biochemical alterations associated with obesity. The aim of this systematic review was [...] Read more.
Background: Childhood obesity is a growing global health concern. Metabolomics, the comprehensive study of metabolites within biological systems, offers a powerful approach to better define the phenotype and understand the complex biochemical alterations associated with obesity. The aim of this systematic review was to summarize current knowledge in the field of metabolomics in childhood obesity and to identify metabolic signatures or biomarkers associated with overweight/obesity (Ov/Ob) and Metabolically Unhealthy Obesity (MUO) in children and adolescents. Methods: We performed a systematic search of Medline and Scopus databases according to PRISMA guidelines. We included only longitudinal prospective studies or randomized controlled trials with ≥12 months of follow-up, as well as meta-analyses of the above that assessed the relation between metabolic signatures related to obesity and Body Mass Index (BMI) or other measures of adiposity in children and adolescents aged 2–19 years with overweight or obesity. Initially, 595 records were identified from PubMed and 1565 from Scopus. After removing duplicates and screening for relevance, 157 reports were assessed for eligibility. From the additional search, 75 new records were retrieved, of which none were eligible for our study. Finally, 7 reports were included in the present systematic review (4 reporting on Ov/Ob and 4 on MUO). Results: The presented studies suggest that the metabolism of amino acids and lipids is primarily affected by childhood obesity. Metabolites like glycoprotein acetyls, the Apolipoprotein B/Apolipoprotein A-1 ratio, and lactate have emerged as potential biomarkers for insulin resistance and metabolic syndrome, highlighting their potential value in clinical applications. Conclusions: There is a need for future longitudinal studies to assess metabolic changes over time, interventional studies to evaluate the efficacy of therapeutic strategies, and large-scale population studies to explore metabolic diversity across different demographics. Our findings reveal specific biomarkers in the amino acid and lipid pathway that may serve as early indicators of childhood obesity and its associated cardiometabolic complications. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

16 pages, 10849 KiB  
Article
UPLC-ESI-QTRAP-MS-Based Metabolomics Revealed Changes in Biostimulant-Related Metabolite Profiles in Zingiber mioga Flower Buds During Development
by Jiao Xie, Yahan Zhou, Zhifei Cheng and Huijuan Liu
Metabolites 2025, 15(6), 358; https://doi.org/10.3390/metabo15060358 - 28 May 2025
Viewed by 52
Abstract
Background: The composition and abundance of biostimulants are important factors in the formation of the flavour and nutritional value of flower buds, as well as key factors influencing their growth and development. Methods: Therefore, the variation characteristics of phenolic acids, nucleotides and derivatives, [...] Read more.
Background: The composition and abundance of biostimulants are important factors in the formation of the flavour and nutritional value of flower buds, as well as key factors influencing their growth and development. Methods: Therefore, the variation characteristics of phenolic acids, nucleotides and derivatives, alkaloids, lipids, tannins, terpenoids and others in Z. mioga flower buds during the growth and development were studied by UPLC-MS/MS. Results: The vast majority of the 204 compounds identified in this study showed a clear upward trend throughout the bud development, accumulating to a maximum at maturity. Considering both the PCA and HCA results, the four growth stages were effectively separated, indicating the significant differences between the stages, and the late developmental stage (SG3) was likely to be the key node in growing and developing flower buds. Differential metabolites that affected the stage division were screened by OPLS-DA. Conclusions: Correlation analysis based on the key top 50 differential metabolites showed that biostimulant-related compounds collectively influenced the growth and maturation of Z. mioga flower buds in a joint and comprehensive manner. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

24 pages, 2022 KiB  
Article
Cooked Bean (Phaseolus vulgaris L.) Consumption Alters Bile Acid Metabolism in a Mouse Model of Diet-Induced Metabolic Dysfunction: Proof-of-Concept Investigation
by Tymofiy Lutsiv, Vanessa K. Fitzgerald, Elizabeth S. Neil, John N. McGinley, Hisham Hussan and Henry J. Thompson
Nutrients 2025, 17(11), 1827; https://doi.org/10.3390/nu17111827 - 28 May 2025
Viewed by 33
Abstract
Background/Objectives: Metabolic dysregulation underlies a myriad of chronic diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity, and bile acids emerge as an important mediator in their etiology. Weight control by improving diet quality is the standard of care in prevention [...] Read more.
Background/Objectives: Metabolic dysregulation underlies a myriad of chronic diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity, and bile acids emerge as an important mediator in their etiology. Weight control by improving diet quality is the standard of care in prevention and control of these metabolic diseases. Inclusion of pulses, such as common bean, is an affordable yet neglected approach to improving diet quality and metabolic outcomes. Thus, this study evaluated the possibility that common bean alters bile acid metabolism in a health-beneficial manner. Methods: Using biospecimens from several similarly designed studies, cecal content, feces, liver tissue, and plasma samples from C57BL/6 mice fed an obesogenic diet lacking (control) or containing cooked common bean were subjected to total bile acid analysis and untargeted metabolomics. RNA-seq, qPCR, and Western blot assays of liver tissue complemented the bile acid analyses. Microbial composition and predicted function in the cecal contents were evaluated using 16S rRNA gene amplicon and shotgun metagenomic sequencing. Results: Bean-fed mice had increased cecal bile acid content and excreted more bile acids per gram of feces. Consistent with these effects, increased synthesis of bile acids in the liver was observed. Microbial composition and capacity to metabolize bile acids were markedly altered by bean, with greater prominence of secondary bile acid metabolites in bean-fed mice, i.e., microbial metabolites of chenodeoxycholate/lithocholate increased while metabolites of hyocholate were reduced. Conclusions: In rendering mice resistant to obesogenic diet-induced MASLD and obesity, cooked bean consumption sequesters bile acids, increasing their hepatic synthesis and enhancing their diversity through microbial metabolism. Bean-induced changes in bile acid metabolism have potential to improve dyslipidemia. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

Back to TopTop